Properties

Label 900.2.bf.e.607.1
Level $900$
Weight $2$
Character 900.607
Analytic conductor $7.187$
Analytic rank $0$
Dimension $128$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [900,2,Mod(7,900)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("900.7"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(900, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 8, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 900.bf (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [128,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.18653618192\)
Analytic rank: \(0\)
Dimension: \(128\)
Relative dimension: \(32\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 607.1
Character \(\chi\) \(=\) 900.607
Dual form 900.2.bf.e.43.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.41320 - 0.0534584i) q^{2} +(-1.72686 - 0.133985i) q^{3} +(1.99428 + 0.151095i) q^{4} +(2.43324 + 0.281664i) q^{6} +(2.46165 + 0.659597i) q^{7} +(-2.81025 - 0.320139i) q^{8} +(2.96410 + 0.462748i) q^{9} +(-3.01796 + 1.74242i) q^{11} +(-3.42361 - 0.528125i) q^{12} +(1.36518 + 5.09493i) q^{13} +(-3.44355 - 1.06374i) q^{14} +(3.95434 + 0.602653i) q^{16} +(-2.16382 - 2.16382i) q^{17} +(-4.16413 - 0.812413i) q^{18} -3.88577 q^{19} +(-4.16255 - 1.46886i) q^{21} +(4.35813 - 2.30106i) q^{22} +(3.70190 - 0.991920i) q^{23} +(4.81002 + 0.929369i) q^{24} +(-1.65691 - 7.27315i) q^{26} +(-5.05658 - 1.19625i) q^{27} +(4.80957 + 1.68737i) q^{28} +(3.85118 - 2.22348i) q^{29} +(1.86992 + 1.07960i) q^{31} +(-5.55607 - 1.06306i) q^{32} +(5.44505 - 2.60455i) q^{33} +(2.94224 + 3.17359i) q^{34} +(5.84133 + 1.37071i) q^{36} +(-3.67542 - 3.67542i) q^{37} +(5.49138 + 0.207727i) q^{38} +(-1.67483 - 8.98115i) q^{39} +(-4.04792 + 7.01121i) q^{41} +(5.80400 + 2.29832i) q^{42} +(-1.36185 + 5.08248i) q^{43} +(-6.28194 + 3.01888i) q^{44} +(-5.28456 + 1.20389i) q^{46} +(-0.231550 - 0.0620436i) q^{47} +(-6.74785 - 1.57052i) q^{48} +(-0.437526 - 0.252606i) q^{49} +(3.44669 + 4.02653i) q^{51} +(1.95274 + 10.3670i) q^{52} +(-0.265818 + 0.265818i) q^{53} +(7.08202 + 1.96086i) q^{54} +(-6.70669 - 2.64170i) q^{56} +(6.71018 + 0.520636i) q^{57} +(-5.56137 + 2.93635i) q^{58} +(-5.69158 + 9.85810i) q^{59} +(-4.61792 - 7.99848i) q^{61} +(-2.58487 - 1.62566i) q^{62} +(6.99134 + 3.09423i) q^{63} +(7.79502 + 1.79934i) q^{64} +(-7.83420 + 3.38968i) q^{66} +(0.192807 + 0.719566i) q^{67} +(-3.98832 - 4.64221i) q^{68} +(-6.52556 + 1.21691i) q^{69} +2.06980i q^{71} +(-8.18171 - 2.24936i) q^{72} +(-8.97449 + 8.97449i) q^{73} +(4.99763 + 5.39060i) q^{74} +(-7.74933 - 0.587121i) q^{76} +(-8.57845 + 2.29859i) q^{77} +(1.88676 + 12.7817i) q^{78} +(7.56173 + 13.0973i) q^{79} +(8.57173 + 2.74326i) q^{81} +(6.09534 - 9.69186i) q^{82} +(-4.01723 + 14.9925i) q^{83} +(-8.07937 - 3.55826i) q^{84} +(2.19627 - 7.10978i) q^{86} +(-6.94837 + 3.32364i) q^{87} +(9.03903 - 3.93047i) q^{88} -3.61495i q^{89} +13.4424i q^{91} +(7.53251 - 1.41883i) q^{92} +(-3.08444 - 2.11486i) q^{93} +(0.323910 + 0.100059i) q^{94} +(9.45212 + 2.58020i) q^{96} +(0.818990 - 3.05651i) q^{97} +(0.604809 + 0.380373i) q^{98} +(-9.75182 + 3.76814i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 128 q + 2 q^{2} - 8 q^{6} + 8 q^{8} - 2 q^{12} + 4 q^{13} - 4 q^{16} + 16 q^{17} + 36 q^{18} - 24 q^{21} + 10 q^{22} - 48 q^{26} - 8 q^{28} - 18 q^{32} + 20 q^{33} - 40 q^{36} + 16 q^{37} + 34 q^{38} - 8 q^{41}+ \cdots - 164 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/900\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(451\) \(577\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.41320 0.0534584i −0.999285 0.0378008i
\(3\) −1.72686 0.133985i −0.997003 0.0773565i
\(4\) 1.99428 + 0.151095i 0.997142 + 0.0755476i
\(5\) 0 0
\(6\) 2.43324 + 0.281664i 0.993367 + 0.114989i
\(7\) 2.46165 + 0.659597i 0.930416 + 0.249304i 0.692032 0.721867i \(-0.256716\pi\)
0.238384 + 0.971171i \(0.423382\pi\)
\(8\) −2.81025 0.320139i −0.993574 0.113186i
\(9\) 2.96410 + 0.462748i 0.988032 + 0.154249i
\(10\) 0 0
\(11\) −3.01796 + 1.74242i −0.909948 + 0.525359i −0.880415 0.474205i \(-0.842736\pi\)
−0.0295338 + 0.999564i \(0.509402\pi\)
\(12\) −3.42361 0.528125i −0.988310 0.152457i
\(13\) 1.36518 + 5.09493i 0.378634 + 1.41308i 0.847962 + 0.530057i \(0.177829\pi\)
−0.469329 + 0.883024i \(0.655504\pi\)
\(14\) −3.44355 1.06374i −0.920327 0.284297i
\(15\) 0 0
\(16\) 3.95434 + 0.602653i 0.988585 + 0.150663i
\(17\) −2.16382 2.16382i −0.524802 0.524802i 0.394216 0.919018i \(-0.371016\pi\)
−0.919018 + 0.394216i \(0.871016\pi\)
\(18\) −4.16413 0.812413i −0.981495 0.191488i
\(19\) −3.88577 −0.891456 −0.445728 0.895168i \(-0.647055\pi\)
−0.445728 + 0.895168i \(0.647055\pi\)
\(20\) 0 0
\(21\) −4.16255 1.46886i −0.908343 0.320531i
\(22\) 4.35813 2.30106i 0.929157 0.490587i
\(23\) 3.70190 0.991920i 0.771899 0.206830i 0.148689 0.988884i \(-0.452495\pi\)
0.623210 + 0.782054i \(0.285828\pi\)
\(24\) 4.81002 + 0.929369i 0.981841 + 0.189707i
\(25\) 0 0
\(26\) −1.65691 7.27315i −0.324947 1.42638i
\(27\) −5.05658 1.19625i −0.973139 0.230218i
\(28\) 4.80957 + 1.68737i 0.908923 + 0.318883i
\(29\) 3.85118 2.22348i 0.715147 0.412890i −0.0978169 0.995204i \(-0.531186\pi\)
0.812964 + 0.582314i \(0.197853\pi\)
\(30\) 0 0
\(31\) 1.86992 + 1.07960i 0.335848 + 0.193902i 0.658434 0.752638i \(-0.271219\pi\)
−0.322586 + 0.946540i \(0.604552\pi\)
\(32\) −5.55607 1.06306i −0.982183 0.187925i
\(33\) 5.44505 2.60455i 0.947862 0.453394i
\(34\) 2.94224 + 3.17359i 0.504589 + 0.544265i
\(35\) 0 0
\(36\) 5.84133 + 1.37071i 0.973555 + 0.228452i
\(37\) −3.67542 3.67542i −0.604235 0.604235i 0.337198 0.941434i \(-0.390521\pi\)
−0.941434 + 0.337198i \(0.890521\pi\)
\(38\) 5.49138 + 0.207727i 0.890819 + 0.0336978i
\(39\) −1.67483 8.98115i −0.268188 1.43814i
\(40\) 0 0
\(41\) −4.04792 + 7.01121i −0.632179 + 1.09497i 0.354926 + 0.934894i \(0.384506\pi\)
−0.987105 + 0.160072i \(0.948827\pi\)
\(42\) 5.80400 + 2.29832i 0.895577 + 0.354638i
\(43\) −1.36185 + 5.08248i −0.207680 + 0.775071i 0.780936 + 0.624611i \(0.214742\pi\)
−0.988616 + 0.150461i \(0.951924\pi\)
\(44\) −6.28194 + 3.01888i −0.947037 + 0.455113i
\(45\) 0 0
\(46\) −5.28456 + 1.20389i −0.779165 + 0.177503i
\(47\) −0.231550 0.0620436i −0.0337750 0.00904999i 0.241892 0.970303i \(-0.422232\pi\)
−0.275667 + 0.961253i \(0.588899\pi\)
\(48\) −6.74785 1.57052i −0.973968 0.226685i
\(49\) −0.437526 0.252606i −0.0625037 0.0360865i
\(50\) 0 0
\(51\) 3.44669 + 4.02653i 0.482633 + 0.563827i
\(52\) 1.95274 + 10.3670i 0.270797 + 1.43765i
\(53\) −0.265818 + 0.265818i −0.0365129 + 0.0365129i −0.725127 0.688615i \(-0.758219\pi\)
0.688615 + 0.725127i \(0.258219\pi\)
\(54\) 7.08202 + 1.96086i 0.963741 + 0.266839i
\(55\) 0 0
\(56\) −6.70669 2.64170i −0.896219 0.353013i
\(57\) 6.71018 + 0.520636i 0.888785 + 0.0689600i
\(58\) −5.56137 + 2.93635i −0.730243 + 0.385562i
\(59\) −5.69158 + 9.85810i −0.740980 + 1.28342i 0.211069 + 0.977471i \(0.432305\pi\)
−0.952049 + 0.305944i \(0.901028\pi\)
\(60\) 0 0
\(61\) −4.61792 7.99848i −0.591264 1.02410i −0.994062 0.108811i \(-0.965296\pi\)
0.402798 0.915289i \(-0.368038\pi\)
\(62\) −2.58487 1.62566i −0.328278 0.206459i
\(63\) 6.99134 + 3.09423i 0.880826 + 0.389837i
\(64\) 7.79502 + 1.79934i 0.974378 + 0.224918i
\(65\) 0 0
\(66\) −7.83420 + 3.38968i −0.964323 + 0.417240i
\(67\) 0.192807 + 0.719566i 0.0235551 + 0.0879089i 0.976703 0.214596i \(-0.0688436\pi\)
−0.953148 + 0.302505i \(0.902177\pi\)
\(68\) −3.98832 4.64221i −0.483655 0.562950i
\(69\) −6.52556 + 1.21691i −0.785585 + 0.146498i
\(70\) 0 0
\(71\) 2.06980i 0.245640i 0.992429 + 0.122820i \(0.0391938\pi\)
−0.992429 + 0.122820i \(0.960806\pi\)
\(72\) −8.18171 2.24936i −0.964224 0.265090i
\(73\) −8.97449 + 8.97449i −1.05038 + 1.05038i −0.0517232 + 0.998661i \(0.516471\pi\)
−0.998661 + 0.0517232i \(0.983529\pi\)
\(74\) 4.99763 + 5.39060i 0.580963 + 0.626644i
\(75\) 0 0
\(76\) −7.74933 0.587121i −0.888909 0.0673474i
\(77\) −8.57845 + 2.29859i −0.977605 + 0.261948i
\(78\) 1.88676 + 12.7817i 0.213634 + 1.44725i
\(79\) 7.56173 + 13.0973i 0.850761 + 1.47356i 0.880523 + 0.474004i \(0.157192\pi\)
−0.0297623 + 0.999557i \(0.509475\pi\)
\(80\) 0 0
\(81\) 8.57173 + 2.74326i 0.952414 + 0.304807i
\(82\) 6.09534 9.69186i 0.673118 1.07029i
\(83\) −4.01723 + 14.9925i −0.440949 + 1.64564i 0.285468 + 0.958388i \(0.407851\pi\)
−0.726417 + 0.687255i \(0.758816\pi\)
\(84\) −8.07937 3.55826i −0.881532 0.388238i
\(85\) 0 0
\(86\) 2.19627 7.10978i 0.236830 0.766667i
\(87\) −6.94837 + 3.32364i −0.744944 + 0.356332i
\(88\) 9.03903 3.93047i 0.963564 0.418989i
\(89\) 3.61495i 0.383184i −0.981475 0.191592i \(-0.938635\pi\)
0.981475 0.191592i \(-0.0613650\pi\)
\(90\) 0 0
\(91\) 13.4424i 1.40915i
\(92\) 7.53251 1.41883i 0.785318 0.147923i
\(93\) −3.08444 2.11486i −0.319842 0.219301i
\(94\) 0.323910 + 0.100059i 0.0334088 + 0.0103203i
\(95\) 0 0
\(96\) 9.45212 + 2.58020i 0.964703 + 0.263340i
\(97\) 0.818990 3.05651i 0.0831559 0.310342i −0.911803 0.410629i \(-0.865309\pi\)
0.994959 + 0.100287i \(0.0319760\pi\)
\(98\) 0.604809 + 0.380373i 0.0610949 + 0.0384234i
\(99\) −9.75182 + 3.76814i −0.980094 + 0.378712i
\(100\) 0 0
\(101\) 2.15969 + 3.74069i 0.214897 + 0.372213i 0.953241 0.302212i \(-0.0977250\pi\)
−0.738344 + 0.674425i \(0.764392\pi\)
\(102\) −4.65562 5.87456i −0.460975 0.581668i
\(103\) 1.31939 0.353529i 0.130003 0.0348342i −0.193231 0.981153i \(-0.561897\pi\)
0.323234 + 0.946319i \(0.395230\pi\)
\(104\) −2.20542 14.7551i −0.216259 1.44686i
\(105\) 0 0
\(106\) 0.389864 0.361444i 0.0378670 0.0351065i
\(107\) −5.32781 + 5.32781i −0.515059 + 0.515059i −0.916072 0.401013i \(-0.868658\pi\)
0.401013 + 0.916072i \(0.368658\pi\)
\(108\) −9.90351 3.14968i −0.952966 0.303078i
\(109\) 14.1851i 1.35869i 0.733820 + 0.679344i \(0.237736\pi\)
−0.733820 + 0.679344i \(0.762264\pi\)
\(110\) 0 0
\(111\) 5.85449 + 6.83939i 0.555683 + 0.649166i
\(112\) 9.33669 + 4.09179i 0.882235 + 0.386638i
\(113\) 0.117242 + 0.437551i 0.0110292 + 0.0411614i 0.971221 0.238180i \(-0.0765507\pi\)
−0.960192 + 0.279341i \(0.909884\pi\)
\(114\) −9.45501 1.09448i −0.885543 0.102507i
\(115\) 0 0
\(116\) 8.01631 3.85236i 0.744296 0.357683i
\(117\) 1.68886 + 15.7336i 0.156135 + 1.45457i
\(118\) 8.57035 13.6272i 0.788965 1.25449i
\(119\) −3.89931 6.75380i −0.357449 0.619120i
\(120\) 0 0
\(121\) 0.572043 0.990808i 0.0520040 0.0900735i
\(122\) 6.09848 + 11.5503i 0.552130 + 1.04572i
\(123\) 7.92960 11.5650i 0.714988 1.04278i
\(124\) 3.56603 + 2.43557i 0.320239 + 0.218720i
\(125\) 0 0
\(126\) −9.71477 4.74653i −0.865460 0.422854i
\(127\) 2.66261 2.66261i 0.236269 0.236269i −0.579034 0.815303i \(-0.696570\pi\)
0.815303 + 0.579034i \(0.196570\pi\)
\(128\) −10.9198 2.95955i −0.965179 0.261590i
\(129\) 3.03270 8.59427i 0.267014 0.756683i
\(130\) 0 0
\(131\) −10.6177 6.13011i −0.927670 0.535590i −0.0415959 0.999135i \(-0.513244\pi\)
−0.886074 + 0.463544i \(0.846578\pi\)
\(132\) 11.2525 4.37150i 0.979406 0.380490i
\(133\) −9.56540 2.56304i −0.829425 0.222244i
\(134\) −0.234009 1.02720i −0.0202153 0.0887365i
\(135\) 0 0
\(136\) 5.38814 + 6.77359i 0.462029 + 0.580830i
\(137\) −2.39423 + 8.93538i −0.204553 + 0.763401i 0.785033 + 0.619454i \(0.212646\pi\)
−0.989585 + 0.143947i \(0.954021\pi\)
\(138\) 9.28700 1.37089i 0.790562 0.116698i
\(139\) 8.95460 15.5098i 0.759520 1.31553i −0.183576 0.983005i \(-0.558767\pi\)
0.943096 0.332521i \(-0.107899\pi\)
\(140\) 0 0
\(141\) 0.391542 + 0.138165i 0.0329738 + 0.0116356i
\(142\) 0.110648 2.92504i 0.00928539 0.245464i
\(143\) −12.9976 12.9976i −1.08691 1.08691i
\(144\) 11.4422 + 3.61619i 0.953514 + 0.301349i
\(145\) 0 0
\(146\) 13.1625 12.2030i 1.08934 1.00993i
\(147\) 0.721701 + 0.494837i 0.0595249 + 0.0408135i
\(148\) −6.77450 7.88517i −0.556860 0.648157i
\(149\) −2.39752 1.38421i −0.196413 0.113399i 0.398568 0.917139i \(-0.369507\pi\)
−0.594981 + 0.803740i \(0.702840\pi\)
\(150\) 0 0
\(151\) −6.51667 + 3.76240i −0.530319 + 0.306180i −0.741146 0.671343i \(-0.765718\pi\)
0.210827 + 0.977523i \(0.432384\pi\)
\(152\) 10.9200 + 1.24399i 0.885728 + 0.100901i
\(153\) −5.41246 7.41506i −0.437571 0.599472i
\(154\) 12.2460 2.78978i 0.986808 0.224807i
\(155\) 0 0
\(156\) −1.98309 18.1640i −0.158774 1.45429i
\(157\) 3.61744 0.969291i 0.288703 0.0773578i −0.111561 0.993758i \(-0.535585\pi\)
0.400264 + 0.916400i \(0.368918\pi\)
\(158\) −9.98609 18.9134i −0.794451 1.50467i
\(159\) 0.494646 0.423414i 0.0392279 0.0335789i
\(160\) 0 0
\(161\) 9.76704 0.769751
\(162\) −11.9669 4.33502i −0.940212 0.340591i
\(163\) 6.76935 + 6.76935i 0.530216 + 0.530216i 0.920637 0.390420i \(-0.127670\pi\)
−0.390420 + 0.920637i \(0.627670\pi\)
\(164\) −9.13207 + 13.3707i −0.713095 + 1.04408i
\(165\) 0 0
\(166\) 6.47864 20.9727i 0.502840 1.62780i
\(167\) 0.957423 + 3.57315i 0.0740876 + 0.276499i 0.993025 0.117905i \(-0.0376178\pi\)
−0.918937 + 0.394404i \(0.870951\pi\)
\(168\) 11.2276 + 5.46045i 0.866226 + 0.421283i
\(169\) −12.8363 + 7.41103i −0.987406 + 0.570079i
\(170\) 0 0
\(171\) −11.5178 1.79813i −0.880787 0.137507i
\(172\) −3.48385 + 9.93015i −0.265641 + 0.757167i
\(173\) 22.3985 + 6.00167i 1.70293 + 0.456299i 0.973674 0.227943i \(-0.0732000\pi\)
0.729255 + 0.684242i \(0.239867\pi\)
\(174\) 9.99714 4.32553i 0.757881 0.327918i
\(175\) 0 0
\(176\) −12.9841 + 5.07133i −0.978714 + 0.382266i
\(177\) 11.1494 16.2610i 0.838041 1.22225i
\(178\) −0.193249 + 5.10866i −0.0144847 + 0.382910i
\(179\) −10.0185 −0.748819 −0.374410 0.927263i \(-0.622155\pi\)
−0.374410 + 0.927263i \(0.622155\pi\)
\(180\) 0 0
\(181\) −19.9811 −1.48518 −0.742590 0.669746i \(-0.766403\pi\)
−0.742590 + 0.669746i \(0.766403\pi\)
\(182\) 0.718610 18.9969i 0.0532669 1.40814i
\(183\) 6.90283 + 14.4310i 0.510272 + 1.06677i
\(184\) −10.7208 + 1.60242i −0.790349 + 0.118132i
\(185\) 0 0
\(186\) 4.24589 + 3.15362i 0.311324 + 0.231234i
\(187\) 10.3006 + 2.76003i 0.753253 + 0.201833i
\(188\) −0.452402 0.158719i −0.0329948 0.0115758i
\(189\) −11.6585 6.28005i −0.848030 0.456806i
\(190\) 0 0
\(191\) 13.5705 7.83490i 0.981923 0.566914i 0.0790731 0.996869i \(-0.474804\pi\)
0.902850 + 0.429955i \(0.141471\pi\)
\(192\) −13.2198 4.15164i −0.954059 0.299619i
\(193\) −5.58592 20.8469i −0.402083 1.50060i −0.809372 0.587296i \(-0.800193\pi\)
0.407289 0.913299i \(-0.366474\pi\)
\(194\) −1.32080 + 4.27569i −0.0948276 + 0.306977i
\(195\) 0 0
\(196\) −0.834384 0.569876i −0.0595988 0.0407054i
\(197\) 9.44630 + 9.44630i 0.673021 + 0.673021i 0.958411 0.285390i \(-0.0921232\pi\)
−0.285390 + 0.958411i \(0.592123\pi\)
\(198\) 13.9827 4.80383i 0.993709 0.341393i
\(199\) −2.06079 −0.146085 −0.0730427 0.997329i \(-0.523271\pi\)
−0.0730427 + 0.997329i \(0.523271\pi\)
\(200\) 0 0
\(201\) −0.236540 1.26842i −0.0166842 0.0894677i
\(202\) −2.85211 5.40181i −0.200674 0.380070i
\(203\) 10.9469 2.93320i 0.768320 0.205871i
\(204\) 6.26529 + 8.55082i 0.438658 + 0.598677i
\(205\) 0 0
\(206\) −1.88346 + 0.429076i −0.131227 + 0.0298951i
\(207\) 11.4318 1.22710i 0.794564 0.0852893i
\(208\) 2.32792 + 20.9698i 0.161412 + 1.45400i
\(209\) 11.7271 6.77063i 0.811179 0.468335i
\(210\) 0 0
\(211\) −1.99458 1.15157i −0.137313 0.0792776i 0.429770 0.902938i \(-0.358595\pi\)
−0.567083 + 0.823661i \(0.691928\pi\)
\(212\) −0.570280 + 0.489952i −0.0391670 + 0.0336500i
\(213\) 0.277323 3.57425i 0.0190019 0.244904i
\(214\) 7.81409 7.24446i 0.534161 0.495221i
\(215\) 0 0
\(216\) 13.8273 + 4.98057i 0.940828 + 0.338885i
\(217\) 3.89099 + 3.89099i 0.264138 + 0.264138i
\(218\) 0.758314 20.0465i 0.0513595 1.35772i
\(219\) 16.7001 14.2952i 1.12849 0.965983i
\(220\) 0 0
\(221\) 8.07049 13.9785i 0.542880 0.940296i
\(222\) −7.90795 9.97842i −0.530747 0.669708i
\(223\) 4.32002 16.1225i 0.289290 1.07964i −0.656357 0.754450i \(-0.727904\pi\)
0.945647 0.325194i \(-0.105430\pi\)
\(224\) −12.9759 6.28166i −0.866989 0.419711i
\(225\) 0 0
\(226\) −0.142295 0.624617i −0.00946534 0.0415489i
\(227\) 4.86933 + 1.30473i 0.323189 + 0.0865981i 0.416766 0.909014i \(-0.363164\pi\)
−0.0935772 + 0.995612i \(0.529830\pi\)
\(228\) 13.3033 + 2.05217i 0.881035 + 0.135908i
\(229\) 6.71866 + 3.87902i 0.443981 + 0.256333i 0.705285 0.708924i \(-0.250819\pi\)
−0.261304 + 0.965257i \(0.584152\pi\)
\(230\) 0 0
\(231\) 15.1218 2.81995i 0.994939 0.185539i
\(232\) −11.5346 + 5.01563i −0.757285 + 0.329292i
\(233\) 4.15335 4.15335i 0.272095 0.272095i −0.557848 0.829943i \(-0.688373\pi\)
0.829943 + 0.557848i \(0.188373\pi\)
\(234\) −1.54561 22.3251i −0.101040 1.45943i
\(235\) 0 0
\(236\) −12.8401 + 18.7999i −0.835822 + 1.22377i
\(237\) −11.3032 23.6304i −0.734222 1.53496i
\(238\) 5.14947 + 9.75295i 0.333791 + 0.632190i
\(239\) −1.28058 + 2.21802i −0.0828335 + 0.143472i −0.904466 0.426546i \(-0.859730\pi\)
0.821632 + 0.570018i \(0.193064\pi\)
\(240\) 0 0
\(241\) 6.89420 + 11.9411i 0.444094 + 0.769194i 0.997989 0.0633929i \(-0.0201921\pi\)
−0.553894 + 0.832587i \(0.686859\pi\)
\(242\) −0.861381 + 1.36963i −0.0553716 + 0.0880433i
\(243\) −14.4346 5.88572i −0.925981 0.377569i
\(244\) −8.00092 16.6490i −0.512206 1.06584i
\(245\) 0 0
\(246\) −11.8244 + 15.9198i −0.753895 + 1.01501i
\(247\) −5.30478 19.7977i −0.337535 1.25970i
\(248\) −4.90933 3.63258i −0.311743 0.230669i
\(249\) 8.94598 25.3517i 0.566929 1.60660i
\(250\) 0 0
\(251\) 11.4799i 0.724602i 0.932061 + 0.362301i \(0.118009\pi\)
−0.932061 + 0.362301i \(0.881991\pi\)
\(252\) 13.4752 + 7.22714i 0.848857 + 0.455267i
\(253\) −9.44382 + 9.44382i −0.593728 + 0.593728i
\(254\) −3.90515 + 3.62047i −0.245031 + 0.227169i
\(255\) 0 0
\(256\) 15.2736 + 4.76619i 0.954601 + 0.297887i
\(257\) −14.1728 + 3.79760i −0.884077 + 0.236888i −0.672165 0.740401i \(-0.734636\pi\)
−0.211912 + 0.977289i \(0.567969\pi\)
\(258\) −4.74525 + 11.9833i −0.295427 + 0.746049i
\(259\) −6.62330 11.4719i −0.411552 0.712829i
\(260\) 0 0
\(261\) 12.4442 4.80848i 0.770276 0.297638i
\(262\) 14.6772 + 9.23070i 0.906761 + 0.570274i
\(263\) −0.474777 + 1.77189i −0.0292760 + 0.109259i −0.979018 0.203775i \(-0.934679\pi\)
0.949742 + 0.313034i \(0.101346\pi\)
\(264\) −16.1358 + 5.57627i −0.993088 + 0.343196i
\(265\) 0 0
\(266\) 13.3808 + 4.13345i 0.820432 + 0.253438i
\(267\) −0.484351 + 6.24252i −0.0296418 + 0.382036i
\(268\) 0.275789 + 1.46415i 0.0168465 + 0.0894372i
\(269\) 13.4031i 0.817201i 0.912713 + 0.408600i \(0.133983\pi\)
−0.912713 + 0.408600i \(0.866017\pi\)
\(270\) 0 0
\(271\) 19.1919i 1.16582i −0.812536 0.582911i \(-0.801914\pi\)
0.812536 0.582911i \(-0.198086\pi\)
\(272\) −7.25243 9.86050i −0.439743 0.597880i
\(273\) 1.80109 23.2132i 0.109007 1.40493i
\(274\) 3.86120 12.4995i 0.233264 0.755123i
\(275\) 0 0
\(276\) −13.1977 + 1.44088i −0.794408 + 0.0867307i
\(277\) 1.93430 7.21889i 0.116221 0.433741i −0.883155 0.469082i \(-0.844585\pi\)
0.999375 + 0.0353406i \(0.0112516\pi\)
\(278\) −13.4838 + 21.4398i −0.808705 + 1.28588i
\(279\) 5.04305 + 4.06534i 0.301919 + 0.243386i
\(280\) 0 0
\(281\) −6.99536 12.1163i −0.417308 0.722799i 0.578360 0.815782i \(-0.303693\pi\)
−0.995668 + 0.0929831i \(0.970360\pi\)
\(282\) −0.545942 0.216186i −0.0325104 0.0128737i
\(283\) −1.79491 + 0.480944i −0.106696 + 0.0285891i −0.311772 0.950157i \(-0.600923\pi\)
0.205076 + 0.978746i \(0.434256\pi\)
\(284\) −0.312737 + 4.12777i −0.0185575 + 0.244938i
\(285\) 0 0
\(286\) 17.6734 + 19.0630i 1.04505 + 1.12722i
\(287\) −14.5891 + 14.5891i −0.861170 + 0.861170i
\(288\) −15.9768 5.72209i −0.941441 0.337177i
\(289\) 7.63580i 0.449165i
\(290\) 0 0
\(291\) −1.82381 + 5.16844i −0.106914 + 0.302979i
\(292\) −19.2537 + 16.5417i −1.12674 + 0.968029i
\(293\) 6.82756 + 25.4808i 0.398870 + 1.48860i 0.815087 + 0.579339i \(0.196689\pi\)
−0.416217 + 0.909266i \(0.636644\pi\)
\(294\) −0.993456 0.737886i −0.0579396 0.0430344i
\(295\) 0 0
\(296\) 9.15221 + 11.5055i 0.531961 + 0.668744i
\(297\) 17.3449 5.20045i 1.00645 0.301761i
\(298\) 3.31419 + 2.08434i 0.191986 + 0.120742i
\(299\) 10.1075 + 17.5068i 0.584534 + 1.01244i
\(300\) 0 0
\(301\) −6.70478 + 11.6130i −0.386457 + 0.669363i
\(302\) 9.41051 4.96867i 0.541514 0.285915i
\(303\) −3.22828 6.74902i −0.185460 0.387721i
\(304\) −15.3657 2.34177i −0.881280 0.134310i
\(305\) 0 0
\(306\) 7.25250 + 10.7683i 0.414598 + 0.615584i
\(307\) −13.9421 + 13.9421i −0.795717 + 0.795717i −0.982417 0.186700i \(-0.940221\pi\)
0.186700 + 0.982417i \(0.440221\pi\)
\(308\) −17.4552 + 3.28788i −0.994601 + 0.187344i
\(309\) −2.32577 + 0.433717i −0.132308 + 0.0246733i
\(310\) 0 0
\(311\) −0.701482 0.405001i −0.0397774 0.0229655i 0.479979 0.877280i \(-0.340644\pi\)
−0.519757 + 0.854314i \(0.673977\pi\)
\(312\) 1.83148 + 25.7755i 0.103687 + 1.45925i
\(313\) −6.11329 1.63805i −0.345544 0.0925882i 0.0818732 0.996643i \(-0.473910\pi\)
−0.427417 + 0.904055i \(0.640576\pi\)
\(314\) −5.16400 + 1.17642i −0.291421 + 0.0663893i
\(315\) 0 0
\(316\) 13.1013 + 27.2623i 0.737005 + 1.53362i
\(317\) 5.23297 19.5297i 0.293913 1.09690i −0.648164 0.761501i \(-0.724463\pi\)
0.942077 0.335397i \(-0.108871\pi\)
\(318\) −0.721670 + 0.571927i −0.0404692 + 0.0320721i
\(319\) −7.74847 + 13.4207i −0.433831 + 0.751418i
\(320\) 0 0
\(321\) 9.91424 8.48654i 0.553359 0.473672i
\(322\) −13.8028 0.522130i −0.769200 0.0290972i
\(323\) 8.40809 + 8.40809i 0.467838 + 0.467838i
\(324\) 16.6800 + 6.76599i 0.926665 + 0.375888i
\(325\) 0 0
\(326\) −9.20458 9.92834i −0.509795 0.549880i
\(327\) 1.90060 24.4957i 0.105103 1.35462i
\(328\) 13.6202 18.4073i 0.752052 1.01638i
\(329\) −0.529071 0.305459i −0.0291686 0.0168405i
\(330\) 0 0
\(331\) 16.9166 9.76680i 0.929821 0.536832i 0.0430657 0.999072i \(-0.486288\pi\)
0.886755 + 0.462240i \(0.152954\pi\)
\(332\) −10.2768 + 29.2924i −0.564013 + 1.60763i
\(333\) −9.19350 12.5951i −0.503801 0.690207i
\(334\) −1.16202 5.10077i −0.0635828 0.279102i
\(335\) 0 0
\(336\) −15.5749 8.31694i −0.849682 0.453726i
\(337\) −9.77024 + 2.61793i −0.532219 + 0.142608i −0.514913 0.857243i \(-0.672176\pi\)
−0.0173061 + 0.999850i \(0.505509\pi\)
\(338\) 18.5365 9.78708i 1.00825 0.532347i
\(339\) −0.143834 0.771299i −0.00781201 0.0418912i
\(340\) 0 0
\(341\) −7.52446 −0.407472
\(342\) 16.1808 + 3.15685i 0.874960 + 0.170703i
\(343\) −13.5248 13.5248i −0.730270 0.730270i
\(344\) 5.45423 13.8471i 0.294073 0.746584i
\(345\) 0 0
\(346\) −31.3328 9.67897i −1.68446 0.520345i
\(347\) −6.50347 24.2713i −0.349125 1.30295i −0.887719 0.460386i \(-0.847711\pi\)
0.538594 0.842565i \(-0.318956\pi\)
\(348\) −14.3592 + 5.57842i −0.769735 + 0.299035i
\(349\) −15.0315 + 8.67844i −0.804617 + 0.464546i −0.845083 0.534635i \(-0.820449\pi\)
0.0404658 + 0.999181i \(0.487116\pi\)
\(350\) 0 0
\(351\) −0.808354 27.3960i −0.0431467 1.46229i
\(352\) 18.6203 6.47271i 0.992464 0.344997i
\(353\) 28.8445 + 7.72886i 1.53524 + 0.411366i 0.924723 0.380640i \(-0.124296\pi\)
0.610514 + 0.792006i \(0.290963\pi\)
\(354\) −16.6257 + 22.3840i −0.883644 + 1.18970i
\(355\) 0 0
\(356\) 0.546201 7.20924i 0.0289486 0.382089i
\(357\) 5.82865 + 12.1853i 0.308485 + 0.644916i
\(358\) 14.1582 + 0.535574i 0.748284 + 0.0283060i
\(359\) 26.1394 1.37959 0.689794 0.724006i \(-0.257701\pi\)
0.689794 + 0.724006i \(0.257701\pi\)
\(360\) 0 0
\(361\) −3.90081 −0.205306
\(362\) 28.2373 + 1.06816i 1.48412 + 0.0561410i
\(363\) −1.12059 + 1.63434i −0.0588159 + 0.0857807i
\(364\) −2.03108 + 26.8080i −0.106458 + 1.40512i
\(365\) 0 0
\(366\) −8.98364 20.7629i −0.469582 1.08530i
\(367\) 22.2128 + 5.95191i 1.15950 + 0.310687i 0.786766 0.617251i \(-0.211754\pi\)
0.372734 + 0.927938i \(0.378420\pi\)
\(368\) 15.2363 1.69143i 0.794249 0.0881718i
\(369\) −15.2429 + 18.9087i −0.793511 + 0.984348i
\(370\) 0 0
\(371\) −0.829682 + 0.479017i −0.0430750 + 0.0248693i
\(372\) −5.83172 4.68368i −0.302360 0.242838i
\(373\) 3.44016 + 12.8388i 0.178125 + 0.664770i 0.995998 + 0.0893722i \(0.0284861\pi\)
−0.817874 + 0.575398i \(0.804847\pi\)
\(374\) −14.4093 4.45114i −0.745085 0.230163i
\(375\) 0 0
\(376\) 0.630851 + 0.248486i 0.0325337 + 0.0128147i
\(377\) 16.5861 + 16.5861i 0.854226 + 0.854226i
\(378\) 16.1401 + 9.49823i 0.830156 + 0.488536i
\(379\) −12.7657 −0.655730 −0.327865 0.944725i \(-0.606329\pi\)
−0.327865 + 0.944725i \(0.606329\pi\)
\(380\) 0 0
\(381\) −4.95471 + 4.24121i −0.253838 + 0.217284i
\(382\) −19.5966 + 10.3469i −1.00265 + 0.529391i
\(383\) −33.9365 + 9.09327i −1.73408 + 0.464644i −0.981116 0.193422i \(-0.938041\pi\)
−0.752960 + 0.658066i \(0.771375\pi\)
\(384\) 18.4604 + 6.57381i 0.942051 + 0.335469i
\(385\) 0 0
\(386\) 6.77959 + 29.7596i 0.345072 + 1.51472i
\(387\) −6.38856 + 14.4348i −0.324749 + 0.733761i
\(388\) 2.09512 5.97181i 0.106364 0.303173i
\(389\) 15.4675 8.93019i 0.784236 0.452779i −0.0536937 0.998557i \(-0.517099\pi\)
0.837929 + 0.545779i \(0.183766\pi\)
\(390\) 0 0
\(391\) −10.1566 5.86389i −0.513639 0.296550i
\(392\) 1.14869 + 0.849955i 0.0580175 + 0.0429292i
\(393\) 17.5139 + 12.0085i 0.883459 + 0.605747i
\(394\) −12.8446 13.8545i −0.647099 0.697981i
\(395\) 0 0
\(396\) −20.0172 + 6.04129i −1.00590 + 0.303586i
\(397\) −22.9050 22.9050i −1.14957 1.14957i −0.986637 0.162934i \(-0.947904\pi\)
−0.162934 0.986637i \(-0.552096\pi\)
\(398\) 2.91231 + 0.110166i 0.145981 + 0.00552215i
\(399\) 16.1747 + 5.70764i 0.809748 + 0.285739i
\(400\) 0 0
\(401\) −15.2608 + 26.4324i −0.762087 + 1.31997i 0.179686 + 0.983724i \(0.442492\pi\)
−0.941773 + 0.336249i \(0.890841\pi\)
\(402\) 0.266471 + 1.80518i 0.0132903 + 0.0900344i
\(403\) −2.94770 + 11.0010i −0.146836 + 0.547998i
\(404\) 3.74183 + 7.78632i 0.186163 + 0.387384i
\(405\) 0 0
\(406\) −15.6270 + 3.56001i −0.775553 + 0.176680i
\(407\) 17.4964 + 4.68814i 0.867263 + 0.232383i
\(408\) −8.39701 12.4190i −0.415714 0.614831i
\(409\) 14.2191 + 8.20942i 0.703091 + 0.405930i 0.808498 0.588499i \(-0.200281\pi\)
−0.105407 + 0.994429i \(0.533614\pi\)
\(410\) 0 0
\(411\) 5.33171 15.1094i 0.262994 0.745290i
\(412\) 2.68465 0.505684i 0.132263 0.0249133i
\(413\) −20.5130 + 20.5130i −1.00938 + 1.00938i
\(414\) −16.2210 + 1.12302i −0.797220 + 0.0551932i
\(415\) 0 0
\(416\) −2.16881 29.7591i −0.106335 1.45906i
\(417\) −17.5414 + 25.5835i −0.859008 + 1.25283i
\(418\) −16.9347 + 8.94137i −0.828303 + 0.437337i
\(419\) 5.01036 8.67820i 0.244772 0.423958i −0.717295 0.696769i \(-0.754620\pi\)
0.962068 + 0.272811i \(0.0879535\pi\)
\(420\) 0 0
\(421\) −3.68335 6.37975i −0.179515 0.310930i 0.762199 0.647342i \(-0.224120\pi\)
−0.941715 + 0.336413i \(0.890786\pi\)
\(422\) 2.75719 + 1.73403i 0.134218 + 0.0844115i
\(423\) −0.657626 0.291053i −0.0319749 0.0141515i
\(424\) 0.832113 0.661915i 0.0404110 0.0321455i
\(425\) 0 0
\(426\) −0.582987 + 5.03632i −0.0282458 + 0.244010i
\(427\) −6.09194 22.7354i −0.294810 1.10024i
\(428\) −11.4302 + 9.82017i −0.552499 + 0.474676i
\(429\) 20.7035 + 24.1865i 0.999575 + 1.16773i
\(430\) 0 0
\(431\) 16.4473i 0.792237i −0.918199 0.396119i \(-0.870357\pi\)
0.918199 0.396119i \(-0.129643\pi\)
\(432\) −19.2745 7.77774i −0.927345 0.374206i
\(433\) 3.78112 3.78112i 0.181709 0.181709i −0.610391 0.792100i \(-0.708988\pi\)
0.792100 + 0.610391i \(0.208988\pi\)
\(434\) −5.29076 5.70677i −0.253964 0.273934i
\(435\) 0 0
\(436\) −2.14330 + 28.2892i −0.102646 + 1.35481i
\(437\) −14.3847 + 3.85437i −0.688114 + 0.184380i
\(438\) −24.3649 + 19.3093i −1.16420 + 0.922635i
\(439\) 18.4104 + 31.8878i 0.878683 + 1.52192i 0.852787 + 0.522258i \(0.174910\pi\)
0.0258954 + 0.999665i \(0.491756\pi\)
\(440\) 0 0
\(441\) −1.17998 0.951212i −0.0561893 0.0452958i
\(442\) −12.1525 + 19.3230i −0.578036 + 0.919102i
\(443\) 3.13302 11.6926i 0.148854 0.555532i −0.850699 0.525653i \(-0.823821\pi\)
0.999554 0.0298790i \(-0.00951219\pi\)
\(444\) 10.6421 + 14.5243i 0.505052 + 0.689292i
\(445\) 0 0
\(446\) −6.96695 + 22.5535i −0.329895 + 1.06794i
\(447\) 3.95472 + 2.71157i 0.187052 + 0.128253i
\(448\) 18.0018 + 9.57093i 0.850504 + 0.452184i
\(449\) 1.04828i 0.0494715i −0.999694 0.0247357i \(-0.992126\pi\)
0.999694 0.0247357i \(-0.00787443\pi\)
\(450\) 0 0
\(451\) 28.2127i 1.32848i
\(452\) 0.167701 + 0.890317i 0.00788800 + 0.0418770i
\(453\) 11.7575 5.62401i 0.552415 0.264239i
\(454\) −6.81160 2.10416i −0.319684 0.0987530i
\(455\) 0 0
\(456\) −18.6906 3.61131i −0.875268 0.169115i
\(457\) −3.52188 + 13.1438i −0.164747 + 0.614843i 0.833326 + 0.552782i \(0.186434\pi\)
−0.998072 + 0.0620609i \(0.980233\pi\)
\(458\) −9.28746 5.84101i −0.433974 0.272932i
\(459\) 8.35305 + 13.5300i 0.389887 + 0.631525i
\(460\) 0 0
\(461\) 5.72422 + 9.91464i 0.266604 + 0.461771i 0.967983 0.251018i \(-0.0807652\pi\)
−0.701379 + 0.712789i \(0.747432\pi\)
\(462\) −21.5209 + 3.17678i −1.00124 + 0.147797i
\(463\) 4.53841 1.21606i 0.210918 0.0565153i −0.151813 0.988409i \(-0.548511\pi\)
0.362731 + 0.931894i \(0.381844\pi\)
\(464\) 16.5689 6.47148i 0.769191 0.300431i
\(465\) 0 0
\(466\) −6.09155 + 5.64749i −0.282186 + 0.261615i
\(467\) 25.5411 25.5411i 1.18190 1.18190i 0.202651 0.979251i \(-0.435044\pi\)
0.979251 0.202651i \(-0.0649557\pi\)
\(468\) 0.990798 + 31.6325i 0.0457997 + 1.46221i
\(469\) 1.89849i 0.0876643i
\(470\) 0 0
\(471\) −6.37669 + 1.18915i −0.293822 + 0.0547929i
\(472\) 19.1507 25.8816i 0.881484 1.19130i
\(473\) −4.74581 17.7116i −0.218213 0.814381i
\(474\) 14.7105 + 33.9987i 0.675674 + 1.56161i
\(475\) 0 0
\(476\) −6.75587 14.0582i −0.309655 0.644355i
\(477\) −0.910915 + 0.664902i −0.0417080 + 0.0304438i
\(478\) 1.92828 3.06606i 0.0881977 0.140238i
\(479\) −6.06234 10.5003i −0.276995 0.479770i 0.693641 0.720321i \(-0.256005\pi\)
−0.970637 + 0.240551i \(0.922672\pi\)
\(480\) 0 0
\(481\) 13.7084 23.7436i 0.625049 1.08262i
\(482\) −9.10455 17.2438i −0.414701 0.785431i
\(483\) −16.8663 1.30864i −0.767444 0.0595452i
\(484\) 1.29052 1.88952i 0.0586602 0.0858873i
\(485\) 0 0
\(486\) 20.0844 + 9.08936i 0.911047 + 0.412302i
\(487\) −12.5621 + 12.5621i −0.569243 + 0.569243i −0.931916 0.362673i \(-0.881864\pi\)
0.362673 + 0.931916i \(0.381864\pi\)
\(488\) 10.4169 + 23.9561i 0.471551 + 1.08444i
\(489\) −10.7827 12.5967i −0.487612 0.569643i
\(490\) 0 0
\(491\) 0.109289 + 0.0630982i 0.00493215 + 0.00284758i 0.502464 0.864598i \(-0.332427\pi\)
−0.497532 + 0.867446i \(0.665760\pi\)
\(492\) 17.5613 21.8658i 0.791724 0.985786i
\(493\) −13.1445 3.52205i −0.591997 0.158625i
\(494\) 6.43838 + 28.2618i 0.289677 + 1.27156i
\(495\) 0 0
\(496\) 6.74369 + 5.39602i 0.302800 + 0.242289i
\(497\) −1.36523 + 5.09512i −0.0612391 + 0.228547i
\(498\) −13.9978 + 35.3489i −0.627254 + 1.58402i
\(499\) 20.2868 35.1377i 0.908161 1.57298i 0.0915430 0.995801i \(-0.470820\pi\)
0.816618 0.577179i \(-0.195847\pi\)
\(500\) 0 0
\(501\) −1.17459 6.29862i −0.0524766 0.281401i
\(502\) 0.613695 16.2234i 0.0273905 0.724084i
\(503\) −6.97397 6.97397i −0.310954 0.310954i 0.534325 0.845279i \(-0.320566\pi\)
−0.845279 + 0.534325i \(0.820566\pi\)
\(504\) −18.6568 10.9338i −0.831041 0.487029i
\(505\) 0 0
\(506\) 13.8509 12.8412i 0.615747 0.570860i
\(507\) 23.1594 11.0779i 1.02855 0.491989i
\(508\) 5.71231 4.90770i 0.253443 0.217744i
\(509\) 27.6387 + 15.9572i 1.22507 + 0.707292i 0.965994 0.258566i \(-0.0832499\pi\)
0.259072 + 0.965858i \(0.416583\pi\)
\(510\) 0 0
\(511\) −28.0116 + 16.1725i −1.23916 + 0.715430i
\(512\) −21.3299 7.55210i −0.942658 0.333759i
\(513\) 19.6487 + 4.64834i 0.867511 + 0.205229i
\(514\) 20.2321 4.60912i 0.892400 0.203300i
\(515\) 0 0
\(516\) 7.34662 16.6812i 0.323417 0.734349i
\(517\) 0.806914 0.216212i 0.0354880 0.00950899i
\(518\) 8.74680 + 16.5662i 0.384312 + 0.727876i
\(519\) −37.8750 13.3651i −1.66253 0.586664i
\(520\) 0 0
\(521\) 34.5815 1.51504 0.757521 0.652811i \(-0.226410\pi\)
0.757521 + 0.652811i \(0.226410\pi\)
\(522\) −17.8432 + 6.13012i −0.780977 + 0.268308i
\(523\) −31.6445 31.6445i −1.38372 1.38372i −0.837915 0.545801i \(-0.816225\pi\)
−0.545801 0.837915i \(-0.683775\pi\)
\(524\) −20.2484 13.8295i −0.884556 0.604143i
\(525\) 0 0
\(526\) 0.765678 2.47866i 0.0333851 0.108075i
\(527\) −1.71011 6.38222i −0.0744936 0.278014i
\(528\) 23.1012 7.01780i 1.00535 0.305411i
\(529\) −7.19846 + 4.15603i −0.312976 + 0.180697i
\(530\) 0 0
\(531\) −21.4322 + 26.5866i −0.930078 + 1.15376i
\(532\) −18.6889 6.55672i −0.810265 0.284270i
\(533\) −41.2478 11.0523i −1.78664 0.478729i
\(534\) 1.01820 8.79605i 0.0440619 0.380642i
\(535\) 0 0
\(536\) −0.311475 2.08389i −0.0134537 0.0900101i
\(537\) 17.3006 + 1.34234i 0.746575 + 0.0579261i
\(538\) 0.716508 18.9413i 0.0308908 0.816617i
\(539\) 1.76058 0.0758335
\(540\) 0 0
\(541\) 35.6814 1.53407 0.767033 0.641608i \(-0.221732\pi\)
0.767033 + 0.641608i \(0.221732\pi\)
\(542\) −1.02597 + 27.1220i −0.0440690 + 1.16499i
\(543\) 34.5045 + 2.67717i 1.48073 + 0.114888i
\(544\) 9.72203 + 14.3226i 0.416829 + 0.614076i
\(545\) 0 0
\(546\) −3.78624 + 32.7086i −0.162036 + 1.39980i
\(547\) −15.9487 4.27345i −0.681919 0.182720i −0.0988010 0.995107i \(-0.531501\pi\)
−0.583118 + 0.812388i \(0.698167\pi\)
\(548\) −6.12487 + 17.4579i −0.261641 + 0.745766i
\(549\) −9.98668 25.8452i −0.426221 1.10305i
\(550\) 0 0
\(551\) −14.9648 + 8.63994i −0.637522 + 0.368074i
\(552\) 18.7280 1.33073i 0.797119 0.0566395i
\(553\) 9.97538 + 37.2286i 0.424197 + 1.58312i
\(554\) −3.11946 + 10.0984i −0.132533 + 0.429038i
\(555\) 0 0
\(556\) 20.2015 29.5780i 0.856734 1.25439i
\(557\) −1.96120 1.96120i −0.0830989 0.0830989i 0.664336 0.747434i \(-0.268715\pi\)
−0.747434 + 0.664336i \(0.768715\pi\)
\(558\) −6.90952 6.01475i −0.292503 0.254625i
\(559\) −27.7541 −1.17387
\(560\) 0 0
\(561\) −17.4179 6.14632i −0.735383 0.259498i
\(562\) 9.23814 + 17.4968i 0.389687 + 0.738057i
\(563\) 12.8024 3.43039i 0.539557 0.144574i 0.0212589 0.999774i \(-0.493233\pi\)
0.518298 + 0.855200i \(0.326566\pi\)
\(564\) 0.759969 + 0.334700i 0.0320005 + 0.0140934i
\(565\) 0 0
\(566\) 2.56228 0.583718i 0.107701 0.0245355i
\(567\) 19.2911 + 12.4068i 0.810152 + 0.521038i
\(568\) 0.662624 5.81665i 0.0278031 0.244061i
\(569\) −9.89594 + 5.71342i −0.414859 + 0.239519i −0.692876 0.721057i \(-0.743656\pi\)
0.278016 + 0.960576i \(0.410323\pi\)
\(570\) 0 0
\(571\) 32.2228 + 18.6038i 1.34848 + 0.778546i 0.988034 0.154234i \(-0.0492908\pi\)
0.360447 + 0.932780i \(0.382624\pi\)
\(572\) −23.9570 27.8847i −1.00169 1.16592i
\(573\) −24.4840 + 11.7115i −1.02284 + 0.489257i
\(574\) 21.3973 19.8375i 0.893107 0.828001i
\(575\) 0 0
\(576\) 22.2725 + 8.94056i 0.928023 + 0.372523i
\(577\) 8.63696 + 8.63696i 0.359561 + 0.359561i 0.863651 0.504090i \(-0.168172\pi\)
−0.504090 + 0.863651i \(0.668172\pi\)
\(578\) −0.408198 + 10.7909i −0.0169788 + 0.448844i
\(579\) 6.85292 + 36.7482i 0.284798 + 1.52720i
\(580\) 0 0
\(581\) −19.7780 + 34.2566i −0.820532 + 1.42120i
\(582\) 2.85371 7.20655i 0.118290 0.298721i
\(583\) 0.339061 1.26539i 0.0140425 0.0524072i
\(584\) 28.0937 22.3475i 1.16252 0.924745i
\(585\) 0 0
\(586\) −8.28656 36.3745i −0.342315 1.50262i
\(587\) −7.66180 2.05297i −0.316236 0.0847352i 0.0972097 0.995264i \(-0.469008\pi\)
−0.413446 + 0.910529i \(0.635675\pi\)
\(588\) 1.36451 + 1.09589i 0.0562714 + 0.0451938i
\(589\) −7.26609 4.19508i −0.299394 0.172855i
\(590\) 0 0
\(591\) −15.0468 17.5781i −0.618942 0.723067i
\(592\) −12.3189 16.7489i −0.506302 0.688374i
\(593\) 17.4824 17.4824i 0.717918 0.717918i −0.250261 0.968178i \(-0.580516\pi\)
0.968178 + 0.250261i \(0.0805164\pi\)
\(594\) −24.7899 + 6.42206i −1.01714 + 0.263500i
\(595\) 0 0
\(596\) −4.57219 3.12276i −0.187284 0.127913i
\(597\) 3.55869 + 0.276116i 0.145648 + 0.0113007i
\(598\) −13.3481 25.2809i −0.545845 1.03381i
\(599\) 15.1365 26.2172i 0.618461 1.07121i −0.371305 0.928511i \(-0.621090\pi\)
0.989767 0.142696i \(-0.0455770\pi\)
\(600\) 0 0
\(601\) −1.15030 1.99238i −0.0469219 0.0812710i 0.841611 0.540085i \(-0.181608\pi\)
−0.888532 + 0.458814i \(0.848275\pi\)
\(602\) 10.0960 16.0531i 0.411483 0.654277i
\(603\) 0.238521 + 2.22208i 0.00971331 + 0.0904902i
\(604\) −13.5646 + 6.51866i −0.551935 + 0.265241i
\(605\) 0 0
\(606\) 4.20143 + 9.71031i 0.170671 + 0.394455i
\(607\) 11.3362 + 42.3071i 0.460120 + 1.71719i 0.672581 + 0.740023i \(0.265185\pi\)
−0.212461 + 0.977170i \(0.568148\pi\)
\(608\) 21.5896 + 4.13082i 0.875574 + 0.167527i
\(609\) −19.2967 + 3.59851i −0.781943 + 0.145819i
\(610\) 0 0
\(611\) 1.26443i 0.0511535i
\(612\) −9.67360 15.6055i −0.391032 0.630816i
\(613\) −5.01756 + 5.01756i −0.202657 + 0.202657i −0.801138 0.598480i \(-0.795772\pi\)
0.598480 + 0.801138i \(0.295772\pi\)
\(614\) 20.4483 18.9577i 0.825227 0.765070i
\(615\) 0 0
\(616\) 24.8435 3.71331i 1.00097 0.149614i
\(617\) 6.92773 1.85628i 0.278900 0.0747310i −0.116658 0.993172i \(-0.537218\pi\)
0.395558 + 0.918441i \(0.370551\pi\)
\(618\) 3.30997 0.488598i 0.133146 0.0196543i
\(619\) −6.11352 10.5889i −0.245723 0.425605i 0.716612 0.697473i \(-0.245692\pi\)
−0.962335 + 0.271868i \(0.912359\pi\)
\(620\) 0 0
\(621\) −19.9055 + 0.587337i −0.798781 + 0.0235690i
\(622\) 0.969686 + 0.609848i 0.0388809 + 0.0244527i
\(623\) 2.38441 8.89874i 0.0955294 0.356521i
\(624\) −1.21034 36.5239i −0.0484524 1.46213i
\(625\) 0 0
\(626\) 8.55176 + 2.64171i 0.341797 + 0.105584i
\(627\) −21.1582 + 10.1207i −0.844977 + 0.404181i
\(628\) 7.36066 1.38646i 0.293723 0.0553259i
\(629\) 15.9059i 0.634208i
\(630\) 0 0
\(631\) 8.53598i 0.339812i −0.985460 0.169906i \(-0.945654\pi\)
0.985460 0.169906i \(-0.0543464\pi\)
\(632\) −17.0574 39.2275i −0.678506 1.56039i
\(633\) 3.29008 + 2.25585i 0.130769 + 0.0896621i
\(634\) −8.43928 + 27.3197i −0.335167 + 1.08500i
\(635\) 0 0
\(636\) 1.05044 0.769670i 0.0416527 0.0305194i
\(637\) 0.689706 2.57402i 0.0273272 0.101986i
\(638\) 11.6676 18.5520i 0.461925 0.734481i
\(639\) −0.957796 + 6.13508i −0.0378898 + 0.242700i
\(640\) 0 0
\(641\) 5.32828 + 9.22886i 0.210454 + 0.364518i 0.951857 0.306543i \(-0.0991723\pi\)
−0.741402 + 0.671061i \(0.765839\pi\)
\(642\) −14.4645 + 11.4632i −0.570869 + 0.452416i
\(643\) −0.317383 + 0.0850425i −0.0125164 + 0.00335375i −0.265072 0.964229i \(-0.585396\pi\)
0.252555 + 0.967582i \(0.418729\pi\)
\(644\) 19.4783 + 1.47575i 0.767551 + 0.0581528i
\(645\) 0 0
\(646\) −11.4328 12.3318i −0.449819 0.485189i
\(647\) 1.08970 1.08970i 0.0428405 0.0428405i −0.685362 0.728203i \(-0.740356\pi\)
0.728203 + 0.685362i \(0.240356\pi\)
\(648\) −23.2105 10.4534i −0.911794 0.410648i
\(649\) 39.6684i 1.55712i
\(650\) 0 0
\(651\) −6.19787 7.24054i −0.242914 0.283779i
\(652\) 12.4772 + 14.5228i 0.488644 + 0.568758i
\(653\) −5.92931 22.1285i −0.232032 0.865954i −0.979465 0.201617i \(-0.935380\pi\)
0.747433 0.664337i \(-0.231286\pi\)
\(654\) −3.99544 + 34.5158i −0.156234 + 1.34968i
\(655\) 0 0
\(656\) −20.2322 + 25.2852i −0.789934 + 0.987221i
\(657\) −30.7542 + 22.4483i −1.19983 + 0.875792i
\(658\) 0.731356 + 0.459959i 0.0285112 + 0.0179311i
\(659\) 6.24819 + 10.8222i 0.243395 + 0.421572i 0.961679 0.274177i \(-0.0884055\pi\)
−0.718284 + 0.695750i \(0.755072\pi\)
\(660\) 0 0
\(661\) −2.84081 + 4.92043i −0.110495 + 0.191382i −0.915970 0.401247i \(-0.868577\pi\)
0.805475 + 0.592630i \(0.201910\pi\)
\(662\) −24.4287 + 12.8981i −0.949449 + 0.501300i
\(663\) −15.8095 + 23.0576i −0.613991 + 0.895483i
\(664\) 16.0891 40.8467i 0.624379 1.58516i
\(665\) 0 0
\(666\) 12.3190 + 18.2909i 0.477350 + 0.708758i
\(667\) 12.0512 12.0512i 0.466623 0.466623i
\(668\) 1.36949 + 7.27054i 0.0529871 + 0.281306i
\(669\) −9.62026 + 27.2625i −0.371941 + 1.05403i
\(670\) 0 0
\(671\) 27.8734 + 16.0927i 1.07604 + 0.621252i
\(672\) 21.5659 + 12.5861i 0.831924 + 0.485521i
\(673\) 28.9286 + 7.75138i 1.11511 + 0.298794i 0.768905 0.639363i \(-0.220802\pi\)
0.346209 + 0.938157i \(0.387469\pi\)
\(674\) 13.9473 3.17736i 0.537229 0.122387i
\(675\) 0 0
\(676\) −26.7190 + 12.8402i −1.02765 + 0.493854i
\(677\) 0.688499 2.56951i 0.0264612 0.0987544i −0.951432 0.307858i \(-0.900388\pi\)
0.977894 + 0.209103i \(0.0670545\pi\)
\(678\) 0.162035 + 1.09769i 0.00622290 + 0.0421566i
\(679\) 4.03213 6.98386i 0.154739 0.268016i
\(680\) 0 0
\(681\) −8.23384 2.90551i −0.315521 0.111339i
\(682\) 10.6336 + 0.402246i 0.407181 + 0.0154028i
\(683\) 31.3443 + 31.3443i 1.19936 + 1.19936i 0.974359 + 0.224999i \(0.0722379\pi\)
0.224999 + 0.974359i \(0.427762\pi\)
\(684\) −22.6981 5.32627i −0.867882 0.203655i
\(685\) 0 0
\(686\) 18.3903 + 19.8363i 0.702143 + 0.757353i
\(687\) −11.0825 7.59873i −0.422822 0.289909i
\(688\) −8.44818 + 19.2771i −0.322084 + 0.734934i
\(689\) −1.71721 0.991433i −0.0654206 0.0377706i
\(690\) 0 0
\(691\) −1.44150 + 0.832251i −0.0548373 + 0.0316603i −0.527168 0.849761i \(-0.676746\pi\)
0.472331 + 0.881421i \(0.343413\pi\)
\(692\) 43.7622 + 15.3534i 1.66359 + 0.583647i
\(693\) −26.4910 + 2.84357i −1.00631 + 0.108018i
\(694\) 7.89322 + 34.6479i 0.299623 + 1.31522i
\(695\) 0 0
\(696\) 20.5907 7.11582i 0.780488 0.269724i
\(697\) 23.9299 6.41200i 0.906410 0.242872i
\(698\) 21.7065 11.4608i 0.821603 0.433799i
\(699\) −7.72874 + 6.61576i −0.292328 + 0.250231i
\(700\) 0 0
\(701\) −6.95642 −0.262740 −0.131370 0.991333i \(-0.541938\pi\)
−0.131370 + 0.991333i \(0.541938\pi\)
\(702\) −0.322180 + 38.7594i −0.0121599 + 1.46288i
\(703\) 14.2818 + 14.2818i 0.538649 + 0.538649i
\(704\) −26.6603 + 8.15185i −1.00480 + 0.307234i
\(705\) 0 0
\(706\) −40.3499 12.4644i −1.51859 0.469105i
\(707\) 2.84905 + 10.6328i 0.107150 + 0.399888i
\(708\) 24.6920 30.7444i 0.927984 1.15545i
\(709\) 41.5369 23.9814i 1.55995 0.900639i 0.562693 0.826666i \(-0.309765\pi\)
0.997260 0.0739729i \(-0.0235678\pi\)
\(710\) 0 0
\(711\) 16.3529 + 42.3208i 0.613283 + 1.58715i
\(712\) −1.15729 + 10.1589i −0.0433712 + 0.380722i
\(713\) 7.99314 + 2.14175i 0.299345 + 0.0802093i
\(714\) −7.58566 17.5319i −0.283886 0.656116i
\(715\) 0 0
\(716\) −19.9798 1.51375i −0.746679 0.0565715i
\(717\) 2.50856 3.65864i 0.0936838 0.136634i
\(718\) −36.9403 1.39737i −1.37860 0.0521495i
\(719\) −27.9555 −1.04257 −0.521283 0.853384i \(-0.674546\pi\)
−0.521283 + 0.853384i \(0.674546\pi\)
\(720\) 0 0
\(721\) 3.48106 0.129641
\(722\) 5.51263 + 0.208531i 0.205159 + 0.00776072i
\(723\) −10.3054 21.5443i −0.383261 0.801243i
\(724\) −39.8479 3.01904i −1.48094 0.112202i
\(725\) 0 0
\(726\) 1.67100 2.24975i 0.0620164 0.0834961i
\(727\) −32.2018 8.62843i −1.19430 0.320011i −0.393714 0.919233i \(-0.628810\pi\)
−0.800583 + 0.599222i \(0.795477\pi\)
\(728\) 4.30345 37.7766i 0.159496 1.40009i
\(729\) 24.1380 + 12.0978i 0.893999 + 0.448068i
\(730\) 0 0
\(731\) 13.9443 8.05077i 0.515750 0.297768i
\(732\) 11.5858 + 29.8225i 0.428222 + 1.10227i
\(733\) 0.439391 + 1.63983i 0.0162293 + 0.0605685i 0.973566 0.228408i \(-0.0733519\pi\)
−0.957336 + 0.288976i \(0.906685\pi\)
\(734\) −31.0731 9.59872i −1.14693 0.354295i
\(735\) 0 0
\(736\) −21.6225 + 1.57582i −0.797014 + 0.0580856i
\(737\) −1.83567 1.83567i −0.0676177 0.0676177i
\(738\) 22.5521 25.9070i 0.830153 0.953650i
\(739\) −48.7588 −1.79362 −0.896811 0.442414i \(-0.854122\pi\)
−0.896811 + 0.442414i \(0.854122\pi\)
\(740\) 0 0
\(741\) 6.50802 + 34.8987i 0.239078 + 1.28204i
\(742\) 1.19812 0.632595i 0.0439843 0.0232233i
\(743\) 20.5756 5.51322i 0.754846 0.202260i 0.139179 0.990267i \(-0.455554\pi\)
0.615667 + 0.788007i \(0.288887\pi\)
\(744\) 7.99101 + 6.93074i 0.292965 + 0.254093i
\(745\) 0 0
\(746\) −4.17530 18.3278i −0.152868 0.671028i
\(747\) −18.8452 + 42.5803i −0.689511 + 1.55793i
\(748\) 20.1253 + 7.06065i 0.735852 + 0.258163i
\(749\) −16.6294 + 9.60100i −0.607626 + 0.350813i
\(750\) 0 0
\(751\) 30.0558 + 17.3527i 1.09675 + 0.633209i 0.935366 0.353682i \(-0.115071\pi\)
0.161385 + 0.986892i \(0.448404\pi\)
\(752\) −0.878237 0.384886i −0.0320260 0.0140354i
\(753\) 1.53813 19.8241i 0.0560527 0.722431i
\(754\) −22.5528 24.3261i −0.821325 0.885906i
\(755\) 0 0
\(756\) −22.3015 14.2857i −0.811096 0.519567i
\(757\) −21.6732 21.6732i −0.787727 0.787727i 0.193394 0.981121i \(-0.438050\pi\)
−0.981121 + 0.193394i \(0.938050\pi\)
\(758\) 18.0405 + 0.682434i 0.655262 + 0.0247871i
\(759\) 17.5735 15.0428i 0.637878 0.546020i
\(760\) 0 0
\(761\) 13.2539 22.9564i 0.480452 0.832167i −0.519297 0.854594i \(-0.673806\pi\)
0.999748 + 0.0224270i \(0.00713933\pi\)
\(762\) 7.22874 5.72882i 0.261870 0.207533i
\(763\) −9.35647 + 34.9188i −0.338727 + 1.26415i
\(764\) 28.2472 13.5746i 1.02195 0.491112i
\(765\) 0 0
\(766\) 48.4453 11.0364i 1.75040 0.398763i
\(767\) −57.9964 15.5401i −2.09413 0.561120i
\(768\) −25.7368 10.2770i −0.928697 0.370839i
\(769\) 10.2142 + 5.89716i 0.368333 + 0.212657i 0.672730 0.739888i \(-0.265122\pi\)
−0.304397 + 0.952545i \(0.598455\pi\)
\(770\) 0 0
\(771\) 24.9833 4.65897i 0.899753 0.167789i
\(772\) −7.99004 42.4187i −0.287568 1.52668i
\(773\) −7.36402 + 7.36402i −0.264865 + 0.264865i −0.827027 0.562162i \(-0.809970\pi\)
0.562162 + 0.827027i \(0.309970\pi\)
\(774\) 9.79998 20.0577i 0.352253 0.720960i
\(775\) 0 0
\(776\) −3.28008 + 8.32738i −0.117748 + 0.298935i
\(777\) 9.90045 + 20.6978i 0.355177 + 0.742529i
\(778\) −22.3362 + 11.7933i −0.800791 + 0.422810i
\(779\) 15.7293 27.2439i 0.563560 0.976115i
\(780\) 0 0
\(781\) −3.60645 6.24656i −0.129049 0.223520i
\(782\) 14.0398 + 8.82982i 0.502062 + 0.315754i
\(783\) −22.1337 + 6.63624i −0.790992 + 0.237160i
\(784\) −1.57789 1.26257i −0.0563533 0.0450916i
\(785\) 0 0
\(786\) −24.1087 17.9067i −0.859929 0.638709i
\(787\) −7.95656 29.6943i −0.283621 1.05849i −0.949841 0.312733i \(-0.898756\pi\)
0.666220 0.745755i \(-0.267911\pi\)
\(788\) 17.4113 + 20.2659i 0.620253 + 0.721943i
\(789\) 1.05728 2.99619i 0.0376402 0.106667i
\(790\) 0 0
\(791\) 1.15443i 0.0410468i
\(792\) 28.6114 7.46748i 1.01666 0.265345i
\(793\) 34.4474 34.4474i 1.22326 1.22326i
\(794\) 31.1450 + 33.5939i 1.10529 + 1.19220i
\(795\) 0 0
\(796\) −4.10980 0.311375i −0.145668 0.0110364i
\(797\) 17.8210 4.77511i 0.631251 0.169143i 0.0710135 0.997475i \(-0.477377\pi\)
0.560237 + 0.828332i \(0.310710\pi\)
\(798\) −22.5530 8.93073i −0.798368 0.316144i
\(799\) 0.366781 + 0.635283i 0.0129758 + 0.0224747i
\(800\) 0 0
\(801\) 1.67281 10.7151i 0.0591059 0.378598i
\(802\) 22.9796 36.5386i 0.811438 1.29022i
\(803\) 11.4473 42.7219i 0.403967 1.50762i
\(804\) −0.280075 2.56534i −0.00987747 0.0904724i
\(805\) 0 0
\(806\) 4.75380 15.3890i 0.167445 0.542056i
\(807\) 1.79582 23.1453i 0.0632158 0.814752i
\(808\) −4.87173 11.2037i −0.171387 0.394144i
\(809\) 45.3459i 1.59428i −0.603798 0.797138i \(-0.706347\pi\)
0.603798 0.797138i \(-0.293653\pi\)
\(810\) 0 0
\(811\) 32.6505i 1.14652i −0.819375 0.573258i \(-0.805679\pi\)
0.819375 0.573258i \(-0.194321\pi\)
\(812\) 22.2744 4.19563i 0.781677 0.147238i
\(813\) −2.57143 + 33.1417i −0.0901840 + 1.16233i
\(814\) −24.4753 7.56062i −0.857859 0.265000i
\(815\) 0 0
\(816\) 11.2028 + 17.9994i 0.392176 + 0.630106i
\(817\) 5.29182 19.7493i 0.185137 0.690942i
\(818\) −19.6557 12.3617i −0.687244 0.432217i
\(819\) −6.22045 + 39.8446i −0.217360 + 1.39228i
\(820\) 0 0
\(821\) −14.0278 24.2968i −0.489572 0.847964i 0.510356 0.859963i \(-0.329514\pi\)
−0.999928 + 0.0119995i \(0.996180\pi\)
\(822\) −8.34251 + 21.0676i −0.290978 + 0.734816i
\(823\) 33.5290 8.98407i 1.16875 0.313165i 0.378293 0.925686i \(-0.376511\pi\)
0.790454 + 0.612521i \(0.209844\pi\)
\(824\) −3.82099 + 0.571117i −0.133111 + 0.0198958i
\(825\) 0 0
\(826\) 30.0857 27.8925i 1.04682 0.970504i
\(827\) 0.244245 0.244245i 0.00849323 0.00849323i −0.702847 0.711341i \(-0.748088\pi\)
0.711341 + 0.702847i \(0.248088\pi\)
\(828\) 22.9836 0.719898i 0.798737 0.0250182i
\(829\) 24.5821i 0.853771i 0.904306 + 0.426885i \(0.140389\pi\)
−0.904306 + 0.426885i \(0.859611\pi\)
\(830\) 0 0
\(831\) −4.30749 + 12.2069i −0.149425 + 0.423451i
\(832\) 1.47409 + 42.1715i 0.0511050 + 1.46204i
\(833\) 0.400133 + 1.49332i 0.0138638 + 0.0517404i
\(834\) 26.1573 35.2170i 0.905752 1.21946i
\(835\) 0 0
\(836\) 24.4101 11.7307i 0.844243 0.405713i
\(837\) −8.16394 7.69597i −0.282187 0.266012i
\(838\) −7.54458 + 11.9962i −0.260623 + 0.414402i
\(839\) 4.08967 + 7.08351i 0.141191 + 0.244550i 0.927945 0.372716i \(-0.121574\pi\)
−0.786754 + 0.617266i \(0.788240\pi\)
\(840\) 0 0
\(841\) −4.61225 + 7.98866i −0.159043 + 0.275471i
\(842\) 4.86427 + 9.21278i 0.167634 + 0.317493i
\(843\) 10.4566 + 21.8605i 0.360144 + 0.752914i
\(844\) −3.80377 2.59794i −0.130931 0.0894247i
\(845\) 0 0
\(846\) 0.913799 + 0.446472i 0.0314171 + 0.0153500i
\(847\) 2.06171 2.06171i 0.0708410 0.0708410i
\(848\) −1.21133 + 0.890937i −0.0415972 + 0.0305949i
\(849\) 3.16399 0.590032i 0.108588 0.0202498i
\(850\) 0 0
\(851\) −17.2517 9.96030i −0.591382 0.341435i
\(852\) 1.09311 7.08618i 0.0374494 0.242768i
\(853\) −26.9342 7.21700i −0.922210 0.247105i −0.233680 0.972314i \(-0.575077\pi\)
−0.688530 + 0.725208i \(0.741743\pi\)
\(854\) 7.39374 + 32.4554i 0.253009 + 1.11060i
\(855\) 0 0
\(856\) 16.6781 13.2668i 0.570047 0.453451i
\(857\) 11.3944 42.5245i 0.389226 1.45261i −0.442171 0.896931i \(-0.645792\pi\)
0.831397 0.555679i \(-0.187542\pi\)
\(858\) −27.9653 35.2872i −0.954719 1.20468i
\(859\) 1.47011 2.54630i 0.0501593 0.0868785i −0.839856 0.542810i \(-0.817360\pi\)
0.890015 + 0.455931i \(0.150694\pi\)
\(860\) 0 0
\(861\) 27.1481 23.2387i 0.925206 0.791972i
\(862\) −0.879245 + 23.2433i −0.0299472 + 0.791671i
\(863\) 7.13386 + 7.13386i 0.242839 + 0.242839i 0.818024 0.575184i \(-0.195070\pi\)
−0.575184 + 0.818024i \(0.695070\pi\)
\(864\) 26.8230 + 12.0219i 0.912537 + 0.408993i
\(865\) 0 0
\(866\) −5.54562 + 5.14136i −0.188448 + 0.174710i
\(867\) −1.02309 + 13.1860i −0.0347458 + 0.447819i
\(868\) 7.17184 + 8.34766i 0.243428 + 0.283338i
\(869\) −45.6419 26.3514i −1.54830 0.893909i
\(870\) 0 0
\(871\) −3.40292 + 1.96468i −0.115304 + 0.0665706i
\(872\) 4.54122 39.8638i 0.153785 1.34996i
\(873\) 3.84196 8.68081i 0.130031 0.293801i
\(874\) 20.5346 4.67802i 0.694592 0.158237i
\(875\) 0 0
\(876\) 35.4648 25.9855i 1.19824 0.877968i
\(877\) 22.5386 6.03921i 0.761076 0.203930i 0.142650 0.989773i \(-0.454438\pi\)
0.618426 + 0.785843i \(0.287771\pi\)
\(878\) −24.3130 46.0482i −0.820525 1.55405i
\(879\) −8.37619 44.9166i −0.282522 1.51500i
\(880\) 0 0
\(881\) −42.4590 −1.43048 −0.715241 0.698878i \(-0.753683\pi\)
−0.715241 + 0.698878i \(0.753683\pi\)
\(882\) 1.61669 + 1.40734i 0.0544370 + 0.0473874i
\(883\) 7.64008 + 7.64008i 0.257109 + 0.257109i 0.823877 0.566768i \(-0.191807\pi\)
−0.566768 + 0.823877i \(0.691807\pi\)
\(884\) 18.2069 26.6577i 0.612366 0.896595i
\(885\) 0 0
\(886\) −5.05266 + 16.3565i −0.169747 + 0.549508i
\(887\) 1.25685 + 4.69064i 0.0422010 + 0.157496i 0.983811 0.179209i \(-0.0573539\pi\)
−0.941610 + 0.336706i \(0.890687\pi\)
\(888\) −14.2630 21.0947i −0.478636 0.707890i
\(889\) 8.31067 4.79817i 0.278731 0.160925i
\(890\) 0 0
\(891\) −30.6490 + 6.65649i −1.02678 + 0.223001i
\(892\) 11.0514 31.5002i 0.370028 1.05470i
\(893\) 0.899750 + 0.241087i 0.0301090 + 0.00806768i
\(894\) −5.44387 4.04341i −0.182070 0.135232i
\(895\) 0 0
\(896\) −24.9285 14.4880i −0.832803 0.484010i
\(897\) −15.1086 31.5860i −0.504463 1.05463i
\(898\) −0.0560395 + 1.48143i −0.00187006 + 0.0494361i
\(899\) 9.60189 0.320241
\(900\) 0 0
\(901\) 1.15036 0.0383241
\(902\) −1.50821 + 39.8703i −0.0502178 + 1.32753i
\(903\) 13.1342 19.1557i 0.437079 0.637463i
\(904\) −0.189401 1.26716i −0.00629938 0.0421452i
\(905\) 0 0
\(906\) −16.9164 + 7.31932i −0.562009 + 0.243168i
\(907\) 58.1113 + 15.5709i 1.92955 + 0.517022i 0.977399 + 0.211402i \(0.0678030\pi\)
0.952154 + 0.305620i \(0.0988636\pi\)
\(908\) 9.51369 + 3.33774i 0.315723 + 0.110767i
\(909\) 4.67053 + 12.0872i 0.154912 + 0.400906i
\(910\) 0 0
\(911\) −2.72513 + 1.57335i −0.0902875 + 0.0521275i −0.544464 0.838784i \(-0.683267\pi\)
0.454176 + 0.890912i \(0.349934\pi\)
\(912\) 26.2206 + 6.10269i 0.868250 + 0.202080i
\(913\) −13.9994 52.2465i −0.463313 1.72911i
\(914\) 5.67979 18.3867i 0.187871 0.608176i
\(915\) 0 0
\(916\) 12.8128 + 8.75102i 0.423347 + 0.289142i
\(917\) −22.0936 22.0936i −0.729594 0.729594i
\(918\) −11.0813 19.5671i −0.365736 0.645811i
\(919\) 31.3326 1.03357 0.516783 0.856116i \(-0.327129\pi\)
0.516783 + 0.856116i \(0.327129\pi\)
\(920\) 0 0
\(921\) 25.9441 22.2080i 0.854887 0.731779i
\(922\) −7.55947 14.3174i −0.248958 0.471519i
\(923\) −10.5455 + 2.82565i −0.347109 + 0.0930075i
\(924\) 30.5832 3.33897i 1.00611 0.109844i
\(925\) 0 0
\(926\) −6.47871 + 1.47593i −0.212904 + 0.0485020i
\(927\) 4.07439 0.437349i 0.133820 0.0143644i
\(928\) −23.7611 + 8.25976i −0.779998 + 0.271140i
\(929\) −10.8495 + 6.26399i −0.355962 + 0.205515i −0.667308 0.744782i \(-0.732554\pi\)
0.311346 + 0.950297i \(0.399220\pi\)
\(930\) 0 0
\(931\) 1.70012 + 0.981567i 0.0557193 + 0.0321696i
\(932\) 8.91050 7.65540i 0.291873 0.250761i
\(933\) 1.15710 + 0.793368i 0.0378817 + 0.0259737i
\(934\) −37.4602 + 34.7294i −1.22573 + 1.13638i
\(935\) 0 0
\(936\) 0.290822 44.7561i 0.00950583 1.46290i
\(937\) 27.1824 + 27.1824i 0.888011 + 0.888011i 0.994332 0.106321i \(-0.0339070\pi\)
−0.106321 + 0.994332i \(0.533907\pi\)
\(938\) 0.101490 2.68296i 0.00331378 0.0876016i
\(939\) 10.3373 + 3.64778i 0.337346 + 0.119041i
\(940\) 0 0
\(941\) 12.5030 21.6558i 0.407585 0.705957i −0.587034 0.809562i \(-0.699704\pi\)
0.994619 + 0.103605i \(0.0330378\pi\)
\(942\) 9.07513 1.33962i 0.295684 0.0436471i
\(943\) −8.03043 + 29.9700i −0.261507 + 0.975956i
\(944\) −28.4475 + 35.5522i −0.925886 + 1.15713i
\(945\) 0 0
\(946\) 5.75996 + 25.2838i 0.187273 + 0.822048i
\(947\) 58.2038 + 15.5957i 1.89137 + 0.506791i 0.998392 + 0.0566928i \(0.0180556\pi\)
0.892979 + 0.450098i \(0.148611\pi\)
\(948\) −18.9714 48.8335i −0.616161 1.58604i
\(949\) −57.9762 33.4726i −1.88199 1.08657i
\(950\) 0 0
\(951\) −11.6533 + 33.0240i −0.377885 + 1.07088i
\(952\) 8.79588 + 20.2282i 0.285076 + 0.655600i
\(953\) −7.86673 + 7.86673i −0.254828 + 0.254828i −0.822947 0.568118i \(-0.807672\pi\)
0.568118 + 0.822947i \(0.307672\pi\)
\(954\) 1.32285 0.890945i 0.0428289 0.0288454i
\(955\) 0 0
\(956\) −2.88896 + 4.22988i −0.0934357 + 0.136804i
\(957\) 15.1787 22.1376i 0.490658 0.715606i
\(958\) 8.00599 + 15.1631i 0.258662 + 0.489898i
\(959\) −11.7875 + 20.4166i −0.380638 + 0.659285i
\(960\) 0 0
\(961\) −13.1689 22.8092i −0.424804 0.735782i
\(962\) −20.6420 + 32.8218i −0.665526 + 1.05822i
\(963\) −18.2576 + 13.3267i −0.588342 + 0.429447i
\(964\) 11.9448 + 24.8556i 0.384715 + 0.800546i
\(965\) 0 0
\(966\) 23.7656 + 2.75102i 0.764645 + 0.0885127i
\(967\) 4.17163 + 15.5687i 0.134151 + 0.500657i 1.00000 0.000352232i \(0.000112119\pi\)
−0.865849 + 0.500305i \(0.833221\pi\)
\(968\) −1.92478 + 2.60129i −0.0618649 + 0.0836085i
\(969\) −13.3930 15.6462i −0.430246 0.502627i
\(970\) 0 0
\(971\) 51.3038i 1.64642i 0.567739 + 0.823209i \(0.307818\pi\)
−0.567739 + 0.823209i \(0.692182\pi\)
\(972\) −27.8974 13.9188i −0.894811 0.446446i
\(973\) 32.2733 32.2733i 1.03464 1.03464i
\(974\) 18.4243 17.0812i 0.590354 0.547318i
\(975\) 0 0
\(976\) −13.4405 34.4117i −0.430221 1.10149i
\(977\) −1.37730 + 0.369048i −0.0440639 + 0.0118069i −0.280784 0.959771i \(-0.590594\pi\)
0.236720 + 0.971578i \(0.423928\pi\)
\(978\) 14.5648 + 18.3781i 0.465730 + 0.587668i
\(979\) 6.29876 + 10.9098i 0.201309 + 0.348678i
\(980\) 0 0
\(981\) −6.56414 + 42.0461i −0.209577 + 1.34243i
\(982\) −0.151075 0.0950129i −0.00482099 0.00303198i
\(983\) −11.8993 + 44.4088i −0.379529 + 1.41642i 0.467085 + 0.884212i \(0.345304\pi\)
−0.846614 + 0.532208i \(0.821362\pi\)
\(984\) −25.9866 + 29.9620i −0.828422 + 0.955154i
\(985\) 0 0
\(986\) 18.3875 + 5.68005i 0.585577 + 0.180890i
\(987\) 0.872705 + 0.598374i 0.0277785 + 0.0190464i
\(988\) −7.58791 40.2838i −0.241404 1.28160i
\(989\) 20.1657i 0.641231i
\(990\) 0 0
\(991\) 47.4822i 1.50832i 0.656689 + 0.754161i \(0.271956\pi\)
−0.656689 + 0.754161i \(0.728044\pi\)
\(992\) −9.24173 7.98618i −0.293425 0.253561i
\(993\) −30.5212 + 14.5993i −0.968562 + 0.463296i
\(994\) 2.20173 7.12745i 0.0698346 0.226069i
\(995\) 0 0
\(996\) 21.6714 49.2069i 0.686683 1.55918i
\(997\) −14.6874 + 54.8142i −0.465156 + 1.73598i 0.191218 + 0.981548i \(0.438756\pi\)
−0.656373 + 0.754436i \(0.727910\pi\)
\(998\) −30.5477 + 48.5722i −0.966971 + 1.53753i
\(999\) 14.1883 + 22.9818i 0.448899 + 0.727111i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 900.2.bf.e.607.1 128
4.3 odd 2 inner 900.2.bf.e.607.28 128
5.2 odd 4 180.2.x.a.103.18 yes 128
5.3 odd 4 inner 900.2.bf.e.643.15 128
5.4 even 2 180.2.x.a.67.32 yes 128
9.7 even 3 inner 900.2.bf.e.7.21 128
15.2 even 4 540.2.y.a.523.15 128
15.14 odd 2 540.2.y.a.307.1 128
20.3 even 4 inner 900.2.bf.e.643.21 128
20.7 even 4 180.2.x.a.103.12 yes 128
20.19 odd 2 180.2.x.a.67.5 yes 128
36.7 odd 6 inner 900.2.bf.e.7.15 128
45.2 even 12 540.2.y.a.343.28 128
45.7 odd 12 180.2.x.a.43.5 yes 128
45.29 odd 6 540.2.y.a.127.21 128
45.34 even 6 180.2.x.a.7.12 128
45.43 odd 12 inner 900.2.bf.e.43.28 128
60.47 odd 4 540.2.y.a.523.21 128
60.59 even 2 540.2.y.a.307.28 128
180.7 even 12 180.2.x.a.43.32 yes 128
180.43 even 12 inner 900.2.bf.e.43.1 128
180.47 odd 12 540.2.y.a.343.1 128
180.79 odd 6 180.2.x.a.7.18 yes 128
180.119 even 6 540.2.y.a.127.15 128
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.2.x.a.7.12 128 45.34 even 6
180.2.x.a.7.18 yes 128 180.79 odd 6
180.2.x.a.43.5 yes 128 45.7 odd 12
180.2.x.a.43.32 yes 128 180.7 even 12
180.2.x.a.67.5 yes 128 20.19 odd 2
180.2.x.a.67.32 yes 128 5.4 even 2
180.2.x.a.103.12 yes 128 20.7 even 4
180.2.x.a.103.18 yes 128 5.2 odd 4
540.2.y.a.127.15 128 180.119 even 6
540.2.y.a.127.21 128 45.29 odd 6
540.2.y.a.307.1 128 15.14 odd 2
540.2.y.a.307.28 128 60.59 even 2
540.2.y.a.343.1 128 180.47 odd 12
540.2.y.a.343.28 128 45.2 even 12
540.2.y.a.523.15 128 15.2 even 4
540.2.y.a.523.21 128 60.47 odd 4
900.2.bf.e.7.15 128 36.7 odd 6 inner
900.2.bf.e.7.21 128 9.7 even 3 inner
900.2.bf.e.43.1 128 180.43 even 12 inner
900.2.bf.e.43.28 128 45.43 odd 12 inner
900.2.bf.e.607.1 128 1.1 even 1 trivial
900.2.bf.e.607.28 128 4.3 odd 2 inner
900.2.bf.e.643.15 128 5.3 odd 4 inner
900.2.bf.e.643.21 128 20.3 even 4 inner