Properties

Label 90.20.a.k
Level $90$
Weight $20$
Character orbit 90.a
Self dual yes
Analytic conductor $205.935$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [90,20,Mod(1,90)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("90.1"); S:= CuspForms(chi, 20); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(90, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 20, names="a")
 
Level: \( N \) \(=\) \( 90 = 2 \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 20 \)
Character orbit: \([\chi]\) \(=\) 90.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,1024,0,524288,-3906250,0,36481864] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(205.935026901\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\mathbb{Q}[x]/(x^{2} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 61051860 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{3}\cdot 5 \)
Twist minimal: no (minimal twist has level 30)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 540\sqrt{244207441}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 512 q^{2} + 262144 q^{4} - 1953125 q^{5} + ( - \beta + 18240932) q^{7} + 134217728 q^{8} - 1000000000 q^{10} + ( - 1026 \beta - 488662140) q^{11} + ( - 7199 \beta - 11517752614) q^{13} + ( - 512 \beta + 9339357184) q^{14}+ \cdots + ( - 18678714368 \beta - 56\!\cdots\!28) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 1024 q^{2} + 524288 q^{4} - 3906250 q^{5} + 36481864 q^{7} + 268435456 q^{8} - 2000000000 q^{10} - 977324280 q^{11} - 23035505228 q^{13} + 18678714368 q^{14} + 137438953472 q^{16} - 352236449244 q^{17}+ \cdots - 11\!\cdots\!56 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
7814.07
−7813.07
512.000 0 262144. −1.95312e6 0 9.80228e6 1.34218e8 0 −1.00000e9
1.2 512.000 0 262144. −1.95312e6 0 2.66796e7 1.34218e8 0 −1.00000e9
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 90.20.a.k 2
3.b odd 2 1 30.20.a.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
30.20.a.e 2 3.b odd 2 1
90.20.a.k 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{20}^{\mathrm{new}}(\Gamma_0(90))\):

\( T_{7}^{2} - 36481864T_{7} + 261520710433024 \) Copy content Toggle raw display
\( T_{11}^{2} + 977324280T_{11} - 74723203939403646000 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 512)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( (T + 1953125)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + \cdots + 261520710433024 \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots - 74\!\cdots\!00 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots - 35\!\cdots\!04 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots - 35\!\cdots\!16 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots + 64\!\cdots\!56 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots + 72\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 75\!\cdots\!44 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots - 55\!\cdots\!56 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 10\!\cdots\!04 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 18\!\cdots\!04 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots - 65\!\cdots\!56 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 76\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots - 92\!\cdots\!36 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 11\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 26\!\cdots\!00 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 20\!\cdots\!64 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 20\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 55\!\cdots\!76 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 50\!\cdots\!84 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 20\!\cdots\!04 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 40\!\cdots\!76 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 25\!\cdots\!44 \) Copy content Toggle raw display
show more
show less