Properties

Label 90.16.a.k.1.2
Level $90$
Weight $16$
Character 90.1
Self dual yes
Analytic conductor $128.424$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [90,16,Mod(1,90)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("90.1"); S:= CuspForms(chi, 16); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(90, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 16, names="a")
 
Level: \( N \) \(=\) \( 90 = 2 \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 16 \)
Character orbit: \([\chi]\) \(=\) 90.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-256,0,32768,156250,0,-1761200] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(128.424154590\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\mathbb{Q}[x]/(x^{2} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 5168130 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-2272.85\) of defining polynomial
Character \(\chi\) \(=\) 90.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-128.000 q^{2} +16384.0 q^{4} +78125.0 q^{5} -307715. q^{7} -2.09715e6 q^{8} -1.00000e7 q^{10} +4.53233e7 q^{11} +2.10577e7 q^{13} +3.93876e7 q^{14} +2.68435e8 q^{16} -2.68450e9 q^{17} +2.06108e9 q^{19} +1.28000e9 q^{20} -5.80138e9 q^{22} +2.41078e10 q^{23} +6.10352e9 q^{25} -2.69539e9 q^{26} -5.04161e9 q^{28} -1.07547e11 q^{29} -1.24013e11 q^{31} -3.43597e10 q^{32} +3.43616e11 q^{34} -2.40403e10 q^{35} -9.96531e11 q^{37} -2.63819e11 q^{38} -1.63840e11 q^{40} -4.04851e11 q^{41} +2.24675e12 q^{43} +7.42577e11 q^{44} -3.08580e12 q^{46} +7.03758e11 q^{47} -4.65287e12 q^{49} -7.81250e11 q^{50} +3.45010e11 q^{52} +1.16581e13 q^{53} +3.54088e12 q^{55} +6.45326e11 q^{56} +1.37660e13 q^{58} -3.16978e12 q^{59} -2.64345e13 q^{61} +1.58737e13 q^{62} +4.39805e12 q^{64} +1.64513e12 q^{65} +5.89869e13 q^{67} -4.39828e13 q^{68} +3.07715e12 q^{70} +8.13879e13 q^{71} -7.13459e13 q^{73} +1.27556e14 q^{74} +3.37688e13 q^{76} -1.39467e13 q^{77} +5.66091e13 q^{79} +2.09715e13 q^{80} +5.18209e13 q^{82} +2.41022e14 q^{83} -2.09726e14 q^{85} -2.87584e14 q^{86} -9.50498e13 q^{88} -4.96924e13 q^{89} -6.47978e12 q^{91} +3.94983e14 q^{92} -9.00810e13 q^{94} +1.61022e14 q^{95} +1.22347e14 q^{97} +5.95568e14 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 256 q^{2} + 32768 q^{4} + 156250 q^{5} - 1761200 q^{7} - 4194304 q^{8} - 20000000 q^{10} - 11981640 q^{11} + 88928320 q^{13} + 225433600 q^{14} + 536870912 q^{16} - 234312756 q^{17} + 3086064208 q^{19}+ \cdots + 932840500876032 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −128.000 −0.707107
\(3\) 0 0
\(4\) 16384.0 0.500000
\(5\) 78125.0 0.447214
\(6\) 0 0
\(7\) −307715. −0.141226 −0.0706128 0.997504i \(-0.522495\pi\)
−0.0706128 + 0.997504i \(0.522495\pi\)
\(8\) −2.09715e6 −0.353553
\(9\) 0 0
\(10\) −1.00000e7 −0.316228
\(11\) 4.53233e7 0.701255 0.350628 0.936515i \(-0.385968\pi\)
0.350628 + 0.936515i \(0.385968\pi\)
\(12\) 0 0
\(13\) 2.10577e7 0.0930757 0.0465379 0.998917i \(-0.485181\pi\)
0.0465379 + 0.998917i \(0.485181\pi\)
\(14\) 3.93876e7 0.0998616
\(15\) 0 0
\(16\) 2.68435e8 0.250000
\(17\) −2.68450e9 −1.58671 −0.793353 0.608762i \(-0.791666\pi\)
−0.793353 + 0.608762i \(0.791666\pi\)
\(18\) 0 0
\(19\) 2.06108e9 0.528985 0.264493 0.964388i \(-0.414796\pi\)
0.264493 + 0.964388i \(0.414796\pi\)
\(20\) 1.28000e9 0.223607
\(21\) 0 0
\(22\) −5.80138e9 −0.495862
\(23\) 2.41078e10 1.47639 0.738193 0.674590i \(-0.235680\pi\)
0.738193 + 0.674590i \(0.235680\pi\)
\(24\) 0 0
\(25\) 6.10352e9 0.200000
\(26\) −2.69539e9 −0.0658145
\(27\) 0 0
\(28\) −5.04161e9 −0.0706128
\(29\) −1.07547e11 −1.15775 −0.578874 0.815417i \(-0.696508\pi\)
−0.578874 + 0.815417i \(0.696508\pi\)
\(30\) 0 0
\(31\) −1.24013e11 −0.809570 −0.404785 0.914412i \(-0.632654\pi\)
−0.404785 + 0.914412i \(0.632654\pi\)
\(32\) −3.43597e10 −0.176777
\(33\) 0 0
\(34\) 3.43616e11 1.12197
\(35\) −2.40403e10 −0.0631580
\(36\) 0 0
\(37\) −9.96531e11 −1.72575 −0.862875 0.505417i \(-0.831339\pi\)
−0.862875 + 0.505417i \(0.831339\pi\)
\(38\) −2.63819e11 −0.374049
\(39\) 0 0
\(40\) −1.63840e11 −0.158114
\(41\) −4.04851e11 −0.324651 −0.162325 0.986737i \(-0.551899\pi\)
−0.162325 + 0.986737i \(0.551899\pi\)
\(42\) 0 0
\(43\) 2.24675e12 1.26050 0.630249 0.776393i \(-0.282953\pi\)
0.630249 + 0.776393i \(0.282953\pi\)
\(44\) 7.42577e11 0.350628
\(45\) 0 0
\(46\) −3.08580e12 −1.04396
\(47\) 7.03758e11 0.202623 0.101312 0.994855i \(-0.467696\pi\)
0.101312 + 0.994855i \(0.467696\pi\)
\(48\) 0 0
\(49\) −4.65287e12 −0.980055
\(50\) −7.81250e11 −0.141421
\(51\) 0 0
\(52\) 3.45010e11 0.0465379
\(53\) 1.16581e13 1.36319 0.681596 0.731729i \(-0.261286\pi\)
0.681596 + 0.731729i \(0.261286\pi\)
\(54\) 0 0
\(55\) 3.54088e12 0.313611
\(56\) 6.45326e11 0.0499308
\(57\) 0 0
\(58\) 1.37660e13 0.818652
\(59\) −3.16978e12 −0.165821 −0.0829104 0.996557i \(-0.526422\pi\)
−0.0829104 + 0.996557i \(0.526422\pi\)
\(60\) 0 0
\(61\) −2.64345e13 −1.07695 −0.538477 0.842640i \(-0.681000\pi\)
−0.538477 + 0.842640i \(0.681000\pi\)
\(62\) 1.58737e13 0.572452
\(63\) 0 0
\(64\) 4.39805e12 0.125000
\(65\) 1.64513e12 0.0416247
\(66\) 0 0
\(67\) 5.89869e13 1.18904 0.594518 0.804083i \(-0.297343\pi\)
0.594518 + 0.804083i \(0.297343\pi\)
\(68\) −4.39828e13 −0.793353
\(69\) 0 0
\(70\) 3.07715e12 0.0446595
\(71\) 8.13879e13 1.06199 0.530997 0.847374i \(-0.321818\pi\)
0.530997 + 0.847374i \(0.321818\pi\)
\(72\) 0 0
\(73\) −7.13459e13 −0.755871 −0.377936 0.925832i \(-0.623366\pi\)
−0.377936 + 0.925832i \(0.623366\pi\)
\(74\) 1.27556e14 1.22029
\(75\) 0 0
\(76\) 3.37688e13 0.264493
\(77\) −1.39467e13 −0.0990353
\(78\) 0 0
\(79\) 5.66091e13 0.331652 0.165826 0.986155i \(-0.446971\pi\)
0.165826 + 0.986155i \(0.446971\pi\)
\(80\) 2.09715e13 0.111803
\(81\) 0 0
\(82\) 5.18209e13 0.229563
\(83\) 2.41022e14 0.974923 0.487461 0.873145i \(-0.337923\pi\)
0.487461 + 0.873145i \(0.337923\pi\)
\(84\) 0 0
\(85\) −2.09726e14 −0.709596
\(86\) −2.87584e14 −0.891306
\(87\) 0 0
\(88\) −9.50498e13 −0.247931
\(89\) −4.96924e13 −0.119087 −0.0595435 0.998226i \(-0.518965\pi\)
−0.0595435 + 0.998226i \(0.518965\pi\)
\(90\) 0 0
\(91\) −6.47978e12 −0.0131447
\(92\) 3.94983e14 0.738193
\(93\) 0 0
\(94\) −9.00810e13 −0.143276
\(95\) 1.61022e14 0.236569
\(96\) 0 0
\(97\) 1.22347e14 0.153747 0.0768735 0.997041i \(-0.475506\pi\)
0.0768735 + 0.997041i \(0.475506\pi\)
\(98\) 5.95568e14 0.693004
\(99\) 0 0
\(100\) 1.00000e14 0.100000
\(101\) 1.74588e15 1.62034 0.810168 0.586197i \(-0.199376\pi\)
0.810168 + 0.586197i \(0.199376\pi\)
\(102\) 0 0
\(103\) −7.70102e14 −0.616977 −0.308489 0.951228i \(-0.599823\pi\)
−0.308489 + 0.951228i \(0.599823\pi\)
\(104\) −4.41613e13 −0.0329072
\(105\) 0 0
\(106\) −1.49223e15 −0.963922
\(107\) −6.55977e14 −0.394921 −0.197460 0.980311i \(-0.563269\pi\)
−0.197460 + 0.980311i \(0.563269\pi\)
\(108\) 0 0
\(109\) −1.91917e15 −1.00558 −0.502789 0.864409i \(-0.667693\pi\)
−0.502789 + 0.864409i \(0.667693\pi\)
\(110\) −4.53233e14 −0.221756
\(111\) 0 0
\(112\) −8.26017e13 −0.0353064
\(113\) −3.28069e14 −0.131183 −0.0655913 0.997847i \(-0.520893\pi\)
−0.0655913 + 0.997847i \(0.520893\pi\)
\(114\) 0 0
\(115\) 1.88343e15 0.660259
\(116\) −1.76205e15 −0.578874
\(117\) 0 0
\(118\) 4.05732e14 0.117253
\(119\) 8.26061e14 0.224084
\(120\) 0 0
\(121\) −2.12305e15 −0.508241
\(122\) 3.38361e15 0.761521
\(123\) 0 0
\(124\) −2.03183e15 −0.404785
\(125\) 4.76837e14 0.0894427
\(126\) 0 0
\(127\) −3.92241e15 −0.653168 −0.326584 0.945168i \(-0.605898\pi\)
−0.326584 + 0.945168i \(0.605898\pi\)
\(128\) −5.62950e14 −0.0883883
\(129\) 0 0
\(130\) −2.10577e14 −0.0294331
\(131\) −7.79661e15 −1.02890 −0.514448 0.857522i \(-0.672003\pi\)
−0.514448 + 0.857522i \(0.672003\pi\)
\(132\) 0 0
\(133\) −6.34227e14 −0.0747063
\(134\) −7.55033e15 −0.840775
\(135\) 0 0
\(136\) 5.62980e15 0.560985
\(137\) −1.16822e16 −1.10185 −0.550923 0.834556i \(-0.685724\pi\)
−0.550923 + 0.834556i \(0.685724\pi\)
\(138\) 0 0
\(139\) −9.74490e15 −0.824454 −0.412227 0.911081i \(-0.635249\pi\)
−0.412227 + 0.911081i \(0.635249\pi\)
\(140\) −3.93876e14 −0.0315790
\(141\) 0 0
\(142\) −1.04176e16 −0.750943
\(143\) 9.54405e14 0.0652698
\(144\) 0 0
\(145\) −8.40213e15 −0.517761
\(146\) 9.13228e15 0.534482
\(147\) 0 0
\(148\) −1.63272e16 −0.862875
\(149\) −4.23840e15 −0.212963 −0.106482 0.994315i \(-0.533959\pi\)
−0.106482 + 0.994315i \(0.533959\pi\)
\(150\) 0 0
\(151\) −1.07118e16 −0.487006 −0.243503 0.969900i \(-0.578297\pi\)
−0.243503 + 0.969900i \(0.578297\pi\)
\(152\) −4.32241e15 −0.187025
\(153\) 0 0
\(154\) 1.78517e15 0.0700285
\(155\) −9.68851e15 −0.362051
\(156\) 0 0
\(157\) −3.38094e16 −1.14760 −0.573799 0.818996i \(-0.694531\pi\)
−0.573799 + 0.818996i \(0.694531\pi\)
\(158\) −7.24596e15 −0.234514
\(159\) 0 0
\(160\) −2.68435e15 −0.0790569
\(161\) −7.41835e15 −0.208504
\(162\) 0 0
\(163\) −7.17509e16 −1.83832 −0.919158 0.393888i \(-0.871130\pi\)
−0.919158 + 0.393888i \(0.871130\pi\)
\(164\) −6.63308e15 −0.162325
\(165\) 0 0
\(166\) −3.08508e16 −0.689375
\(167\) 1.45005e16 0.309748 0.154874 0.987934i \(-0.450503\pi\)
0.154874 + 0.987934i \(0.450503\pi\)
\(168\) 0 0
\(169\) −5.07425e16 −0.991337
\(170\) 2.68450e16 0.501760
\(171\) 0 0
\(172\) 3.68108e16 0.630249
\(173\) 5.47606e16 0.897681 0.448841 0.893612i \(-0.351837\pi\)
0.448841 + 0.893612i \(0.351837\pi\)
\(174\) 0 0
\(175\) −1.87814e15 −0.0282451
\(176\) 1.21664e16 0.175314
\(177\) 0 0
\(178\) 6.36062e15 0.0842073
\(179\) −5.63459e16 −0.715262 −0.357631 0.933863i \(-0.616415\pi\)
−0.357631 + 0.933863i \(0.616415\pi\)
\(180\) 0 0
\(181\) −1.41337e17 −1.65069 −0.825345 0.564629i \(-0.809019\pi\)
−0.825345 + 0.564629i \(0.809019\pi\)
\(182\) 8.29412e14 0.00929469
\(183\) 0 0
\(184\) −5.05578e16 −0.521981
\(185\) −7.78540e16 −0.771779
\(186\) 0 0
\(187\) −1.21670e17 −1.11269
\(188\) 1.15304e16 0.101312
\(189\) 0 0
\(190\) −2.06108e16 −0.167280
\(191\) 8.48396e16 0.661985 0.330993 0.943633i \(-0.392616\pi\)
0.330993 + 0.943633i \(0.392616\pi\)
\(192\) 0 0
\(193\) 1.16613e17 0.841523 0.420761 0.907171i \(-0.361763\pi\)
0.420761 + 0.907171i \(0.361763\pi\)
\(194\) −1.56605e16 −0.108716
\(195\) 0 0
\(196\) −7.62327e16 −0.490028
\(197\) 6.60040e16 0.408388 0.204194 0.978930i \(-0.434543\pi\)
0.204194 + 0.978930i \(0.434543\pi\)
\(198\) 0 0
\(199\) 1.27765e16 0.0732847 0.0366424 0.999328i \(-0.488334\pi\)
0.0366424 + 0.999328i \(0.488334\pi\)
\(200\) −1.28000e16 −0.0707107
\(201\) 0 0
\(202\) −2.23473e17 −1.14575
\(203\) 3.30939e16 0.163504
\(204\) 0 0
\(205\) −3.16290e16 −0.145188
\(206\) 9.85731e16 0.436269
\(207\) 0 0
\(208\) 5.65264e15 0.0232689
\(209\) 9.34151e16 0.370954
\(210\) 0 0
\(211\) −4.41097e16 −0.163086 −0.0815428 0.996670i \(-0.525985\pi\)
−0.0815428 + 0.996670i \(0.525985\pi\)
\(212\) 1.91006e17 0.681596
\(213\) 0 0
\(214\) 8.39650e16 0.279251
\(215\) 1.75528e17 0.563712
\(216\) 0 0
\(217\) 3.81607e16 0.114332
\(218\) 2.45654e17 0.711051
\(219\) 0 0
\(220\) 5.80138e16 0.156805
\(221\) −5.65294e16 −0.147684
\(222\) 0 0
\(223\) −6.09182e17 −1.48751 −0.743756 0.668451i \(-0.766958\pi\)
−0.743756 + 0.668451i \(0.766958\pi\)
\(224\) 1.05730e16 0.0249654
\(225\) 0 0
\(226\) 4.19928e16 0.0927601
\(227\) −2.89704e17 −0.619100 −0.309550 0.950883i \(-0.600178\pi\)
−0.309550 + 0.950883i \(0.600178\pi\)
\(228\) 0 0
\(229\) −3.51449e17 −0.703229 −0.351614 0.936145i \(-0.614367\pi\)
−0.351614 + 0.936145i \(0.614367\pi\)
\(230\) −2.41078e17 −0.466874
\(231\) 0 0
\(232\) 2.25543e17 0.409326
\(233\) 1.34334e17 0.236056 0.118028 0.993010i \(-0.462343\pi\)
0.118028 + 0.993010i \(0.462343\pi\)
\(234\) 0 0
\(235\) 5.49811e16 0.0906159
\(236\) −5.19337e16 −0.0829104
\(237\) 0 0
\(238\) −1.05736e17 −0.158451
\(239\) −1.18373e18 −1.71896 −0.859482 0.511166i \(-0.829214\pi\)
−0.859482 + 0.511166i \(0.829214\pi\)
\(240\) 0 0
\(241\) 7.96597e17 1.08670 0.543351 0.839505i \(-0.317155\pi\)
0.543351 + 0.839505i \(0.317155\pi\)
\(242\) 2.71750e17 0.359381
\(243\) 0 0
\(244\) −4.33103e17 −0.538477
\(245\) −3.63506e17 −0.438294
\(246\) 0 0
\(247\) 4.34017e16 0.0492357
\(248\) 2.60074e17 0.286226
\(249\) 0 0
\(250\) −6.10352e16 −0.0632456
\(251\) 4.79038e17 0.481745 0.240872 0.970557i \(-0.422566\pi\)
0.240872 + 0.970557i \(0.422566\pi\)
\(252\) 0 0
\(253\) 1.09265e18 1.03532
\(254\) 5.02069e17 0.461860
\(255\) 0 0
\(256\) 7.20576e16 0.0625000
\(257\) −5.68024e17 −0.478485 −0.239242 0.970960i \(-0.576899\pi\)
−0.239242 + 0.970960i \(0.576899\pi\)
\(258\) 0 0
\(259\) 3.06648e17 0.243720
\(260\) 2.69539e16 0.0208124
\(261\) 0 0
\(262\) 9.97966e17 0.727539
\(263\) −1.56846e18 −1.11124 −0.555618 0.831438i \(-0.687518\pi\)
−0.555618 + 0.831438i \(0.687518\pi\)
\(264\) 0 0
\(265\) 9.10785e17 0.609638
\(266\) 8.11810e16 0.0528253
\(267\) 0 0
\(268\) 9.66442e17 0.594518
\(269\) −1.70035e18 −1.01718 −0.508588 0.861010i \(-0.669832\pi\)
−0.508588 + 0.861010i \(0.669832\pi\)
\(270\) 0 0
\(271\) −8.21525e17 −0.464891 −0.232445 0.972609i \(-0.574673\pi\)
−0.232445 + 0.972609i \(0.574673\pi\)
\(272\) −7.20615e17 −0.396676
\(273\) 0 0
\(274\) 1.49532e18 0.779123
\(275\) 2.76631e17 0.140251
\(276\) 0 0
\(277\) 1.32628e17 0.0636849 0.0318425 0.999493i \(-0.489863\pi\)
0.0318425 + 0.999493i \(0.489863\pi\)
\(278\) 1.24735e18 0.582977
\(279\) 0 0
\(280\) 5.04161e16 0.0223297
\(281\) −2.95888e18 −1.27594 −0.637969 0.770062i \(-0.720225\pi\)
−0.637969 + 0.770062i \(0.720225\pi\)
\(282\) 0 0
\(283\) 4.78871e18 1.95803 0.979017 0.203778i \(-0.0653220\pi\)
0.979017 + 0.203778i \(0.0653220\pi\)
\(284\) 1.33346e18 0.530997
\(285\) 0 0
\(286\) −1.22164e17 −0.0461527
\(287\) 1.24579e17 0.0458490
\(288\) 0 0
\(289\) 4.34411e18 1.51763
\(290\) 1.07547e18 0.366112
\(291\) 0 0
\(292\) −1.16893e18 −0.377936
\(293\) 1.76126e18 0.555031 0.277515 0.960721i \(-0.410489\pi\)
0.277515 + 0.960721i \(0.410489\pi\)
\(294\) 0 0
\(295\) −2.47639e17 −0.0741573
\(296\) 2.08988e18 0.610145
\(297\) 0 0
\(298\) 5.42515e17 0.150588
\(299\) 5.07656e17 0.137416
\(300\) 0 0
\(301\) −6.91360e17 −0.178015
\(302\) 1.37111e18 0.344365
\(303\) 0 0
\(304\) 5.53268e17 0.132246
\(305\) −2.06519e18 −0.481628
\(306\) 0 0
\(307\) 6.60778e18 1.46730 0.733648 0.679530i \(-0.237816\pi\)
0.733648 + 0.679530i \(0.237816\pi\)
\(308\) −2.28502e17 −0.0495176
\(309\) 0 0
\(310\) 1.24013e18 0.256009
\(311\) −2.80316e18 −0.564864 −0.282432 0.959287i \(-0.591141\pi\)
−0.282432 + 0.959287i \(0.591141\pi\)
\(312\) 0 0
\(313\) 9.39821e17 0.180494 0.0902470 0.995919i \(-0.471234\pi\)
0.0902470 + 0.995919i \(0.471234\pi\)
\(314\) 4.32760e18 0.811475
\(315\) 0 0
\(316\) 9.27483e17 0.165826
\(317\) 3.03729e18 0.530324 0.265162 0.964204i \(-0.414575\pi\)
0.265162 + 0.964204i \(0.414575\pi\)
\(318\) 0 0
\(319\) −4.87439e18 −0.811877
\(320\) 3.43597e17 0.0559017
\(321\) 0 0
\(322\) 9.49549e17 0.147434
\(323\) −5.53298e18 −0.839344
\(324\) 0 0
\(325\) 1.28526e17 0.0186151
\(326\) 9.18412e18 1.29989
\(327\) 0 0
\(328\) 8.49034e17 0.114781
\(329\) −2.16557e17 −0.0286156
\(330\) 0 0
\(331\) 4.36555e18 0.551225 0.275612 0.961269i \(-0.411119\pi\)
0.275612 + 0.961269i \(0.411119\pi\)
\(332\) 3.94890e18 0.487461
\(333\) 0 0
\(334\) −1.85606e18 −0.219025
\(335\) 4.60835e18 0.531753
\(336\) 0 0
\(337\) −8.62580e18 −0.951864 −0.475932 0.879482i \(-0.657889\pi\)
−0.475932 + 0.879482i \(0.657889\pi\)
\(338\) 6.49504e18 0.700981
\(339\) 0 0
\(340\) −3.43616e18 −0.354798
\(341\) −5.62068e18 −0.567715
\(342\) 0 0
\(343\) 2.89266e18 0.279635
\(344\) −4.71178e18 −0.445653
\(345\) 0 0
\(346\) −7.00935e18 −0.634756
\(347\) −1.87129e19 −1.65833 −0.829165 0.559004i \(-0.811184\pi\)
−0.829165 + 0.559004i \(0.811184\pi\)
\(348\) 0 0
\(349\) 1.00815e19 0.855722 0.427861 0.903845i \(-0.359267\pi\)
0.427861 + 0.903845i \(0.359267\pi\)
\(350\) 2.40403e17 0.0199723
\(351\) 0 0
\(352\) −1.55730e18 −0.123966
\(353\) −7.56297e18 −0.589362 −0.294681 0.955596i \(-0.595213\pi\)
−0.294681 + 0.955596i \(0.595213\pi\)
\(354\) 0 0
\(355\) 6.35843e18 0.474938
\(356\) −8.14160e17 −0.0595435
\(357\) 0 0
\(358\) 7.21228e18 0.505766
\(359\) 1.93700e19 1.33021 0.665106 0.746749i \(-0.268386\pi\)
0.665106 + 0.746749i \(0.268386\pi\)
\(360\) 0 0
\(361\) −1.09331e19 −0.720175
\(362\) 1.80911e19 1.16721
\(363\) 0 0
\(364\) −1.06165e17 −0.00657234
\(365\) −5.57390e18 −0.338036
\(366\) 0 0
\(367\) −2.98418e19 −1.73712 −0.868561 0.495583i \(-0.834955\pi\)
−0.868561 + 0.495583i \(0.834955\pi\)
\(368\) 6.47140e18 0.369096
\(369\) 0 0
\(370\) 9.96531e18 0.545730
\(371\) −3.58736e18 −0.192518
\(372\) 0 0
\(373\) 2.01374e19 1.03797 0.518987 0.854782i \(-0.326309\pi\)
0.518987 + 0.854782i \(0.326309\pi\)
\(374\) 1.55738e19 0.786788
\(375\) 0 0
\(376\) −1.47589e18 −0.0716381
\(377\) −2.26470e18 −0.107758
\(378\) 0 0
\(379\) −2.46205e19 −1.12591 −0.562954 0.826488i \(-0.690335\pi\)
−0.562954 + 0.826488i \(0.690335\pi\)
\(380\) 2.63819e18 0.118285
\(381\) 0 0
\(382\) −1.08595e19 −0.468094
\(383\) −3.18081e19 −1.34446 −0.672229 0.740343i \(-0.734663\pi\)
−0.672229 + 0.740343i \(0.734663\pi\)
\(384\) 0 0
\(385\) −1.08958e18 −0.0442899
\(386\) −1.49264e19 −0.595047
\(387\) 0 0
\(388\) 2.00454e18 0.0768735
\(389\) −4.33625e19 −1.63114 −0.815572 0.578655i \(-0.803578\pi\)
−0.815572 + 0.578655i \(0.803578\pi\)
\(390\) 0 0
\(391\) −6.47175e19 −2.34259
\(392\) 9.75778e18 0.346502
\(393\) 0 0
\(394\) −8.44851e18 −0.288774
\(395\) 4.42258e18 0.148319
\(396\) 0 0
\(397\) 8.12402e18 0.262326 0.131163 0.991361i \(-0.458129\pi\)
0.131163 + 0.991361i \(0.458129\pi\)
\(398\) −1.63539e18 −0.0518201
\(399\) 0 0
\(400\) 1.63840e18 0.0500000
\(401\) −3.51406e18 −0.105251 −0.0526255 0.998614i \(-0.516759\pi\)
−0.0526255 + 0.998614i \(0.516759\pi\)
\(402\) 0 0
\(403\) −2.61143e18 −0.0753513
\(404\) 2.86046e19 0.810168
\(405\) 0 0
\(406\) −4.23602e18 −0.115615
\(407\) −4.51661e19 −1.21019
\(408\) 0 0
\(409\) −6.44296e19 −1.66403 −0.832014 0.554755i \(-0.812812\pi\)
−0.832014 + 0.554755i \(0.812812\pi\)
\(410\) 4.04851e18 0.102664
\(411\) 0 0
\(412\) −1.26174e19 −0.308489
\(413\) 9.75389e17 0.0234182
\(414\) 0 0
\(415\) 1.88298e19 0.435999
\(416\) −7.23538e17 −0.0164536
\(417\) 0 0
\(418\) −1.19571e19 −0.262304
\(419\) 1.12676e19 0.242788 0.121394 0.992604i \(-0.461263\pi\)
0.121394 + 0.992604i \(0.461263\pi\)
\(420\) 0 0
\(421\) −4.80962e19 −0.999990 −0.499995 0.866028i \(-0.666665\pi\)
−0.499995 + 0.866028i \(0.666665\pi\)
\(422\) 5.64604e18 0.115319
\(423\) 0 0
\(424\) −2.44487e19 −0.481961
\(425\) −1.63849e19 −0.317341
\(426\) 0 0
\(427\) 8.13430e18 0.152094
\(428\) −1.07475e19 −0.197460
\(429\) 0 0
\(430\) −2.24675e19 −0.398604
\(431\) −6.89397e19 −1.20196 −0.600980 0.799264i \(-0.705223\pi\)
−0.600980 + 0.799264i \(0.705223\pi\)
\(432\) 0 0
\(433\) −1.39468e19 −0.234863 −0.117432 0.993081i \(-0.537466\pi\)
−0.117432 + 0.993081i \(0.537466\pi\)
\(434\) −4.88457e18 −0.0808450
\(435\) 0 0
\(436\) −3.14438e19 −0.502789
\(437\) 4.96883e19 0.780986
\(438\) 0 0
\(439\) 8.36739e19 1.27088 0.635442 0.772148i \(-0.280818\pi\)
0.635442 + 0.772148i \(0.280818\pi\)
\(440\) −7.42577e18 −0.110878
\(441\) 0 0
\(442\) 7.23577e18 0.104428
\(443\) 2.44887e19 0.347486 0.173743 0.984791i \(-0.444414\pi\)
0.173743 + 0.984791i \(0.444414\pi\)
\(444\) 0 0
\(445\) −3.88222e18 −0.0532573
\(446\) 7.79753e19 1.05183
\(447\) 0 0
\(448\) −1.35335e18 −0.0176532
\(449\) −5.82526e19 −0.747253 −0.373626 0.927579i \(-0.621886\pi\)
−0.373626 + 0.927579i \(0.621886\pi\)
\(450\) 0 0
\(451\) −1.83492e19 −0.227663
\(452\) −5.37507e18 −0.0655913
\(453\) 0 0
\(454\) 3.70821e19 0.437770
\(455\) −5.06233e17 −0.00587848
\(456\) 0 0
\(457\) −1.31249e20 −1.47477 −0.737385 0.675473i \(-0.763940\pi\)
−0.737385 + 0.675473i \(0.763940\pi\)
\(458\) 4.49855e19 0.497258
\(459\) 0 0
\(460\) 3.08580e19 0.330130
\(461\) 5.80642e19 0.611156 0.305578 0.952167i \(-0.401150\pi\)
0.305578 + 0.952167i \(0.401150\pi\)
\(462\) 0 0
\(463\) 1.59608e20 1.62629 0.813144 0.582062i \(-0.197754\pi\)
0.813144 + 0.582062i \(0.197754\pi\)
\(464\) −2.88695e19 −0.289437
\(465\) 0 0
\(466\) −1.71947e19 −0.166917
\(467\) 1.51070e20 1.44311 0.721556 0.692356i \(-0.243427\pi\)
0.721556 + 0.692356i \(0.243427\pi\)
\(468\) 0 0
\(469\) −1.81512e19 −0.167922
\(470\) −7.03758e18 −0.0640751
\(471\) 0 0
\(472\) 6.64751e18 0.0586265
\(473\) 1.01830e20 0.883931
\(474\) 0 0
\(475\) 1.25799e19 0.105797
\(476\) 1.35342e19 0.112042
\(477\) 0 0
\(478\) 1.51517e20 1.21549
\(479\) 1.63356e20 1.29009 0.645045 0.764145i \(-0.276839\pi\)
0.645045 + 0.764145i \(0.276839\pi\)
\(480\) 0 0
\(481\) −2.09847e19 −0.160625
\(482\) −1.01964e20 −0.768415
\(483\) 0 0
\(484\) −3.47840e19 −0.254120
\(485\) 9.55839e18 0.0687577
\(486\) 0 0
\(487\) 9.23983e19 0.644461 0.322231 0.946661i \(-0.395567\pi\)
0.322231 + 0.946661i \(0.395567\pi\)
\(488\) 5.54371e19 0.380761
\(489\) 0 0
\(490\) 4.65287e19 0.309921
\(491\) −1.96658e20 −1.29003 −0.645017 0.764168i \(-0.723150\pi\)
−0.645017 + 0.764168i \(0.723150\pi\)
\(492\) 0 0
\(493\) 2.88710e20 1.83701
\(494\) −5.55542e18 −0.0348149
\(495\) 0 0
\(496\) −3.32895e19 −0.202392
\(497\) −2.50443e19 −0.149981
\(498\) 0 0
\(499\) −4.51305e19 −0.262250 −0.131125 0.991366i \(-0.541859\pi\)
−0.131125 + 0.991366i \(0.541859\pi\)
\(500\) 7.81250e18 0.0447214
\(501\) 0 0
\(502\) −6.13169e19 −0.340645
\(503\) −3.11342e19 −0.170403 −0.0852017 0.996364i \(-0.527153\pi\)
−0.0852017 + 0.996364i \(0.527153\pi\)
\(504\) 0 0
\(505\) 1.36397e20 0.724637
\(506\) −1.39859e20 −0.732084
\(507\) 0 0
\(508\) −6.42648e19 −0.326584
\(509\) −5.95101e19 −0.297994 −0.148997 0.988838i \(-0.547604\pi\)
−0.148997 + 0.988838i \(0.547604\pi\)
\(510\) 0 0
\(511\) 2.19542e19 0.106748
\(512\) −9.22337e18 −0.0441942
\(513\) 0 0
\(514\) 7.27071e19 0.338340
\(515\) −6.01642e19 −0.275921
\(516\) 0 0
\(517\) 3.18966e19 0.142091
\(518\) −3.92509e19 −0.172336
\(519\) 0 0
\(520\) −3.45010e18 −0.0147166
\(521\) 3.23934e20 1.36199 0.680994 0.732289i \(-0.261548\pi\)
0.680994 + 0.732289i \(0.261548\pi\)
\(522\) 0 0
\(523\) −6.55328e19 −0.267729 −0.133865 0.991000i \(-0.542739\pi\)
−0.133865 + 0.991000i \(0.542739\pi\)
\(524\) −1.27740e20 −0.514448
\(525\) 0 0
\(526\) 2.00763e20 0.785763
\(527\) 3.32913e20 1.28455
\(528\) 0 0
\(529\) 3.14553e20 1.17971
\(530\) −1.16581e20 −0.431079
\(531\) 0 0
\(532\) −1.03912e19 −0.0373532
\(533\) −8.52524e18 −0.0302171
\(534\) 0 0
\(535\) −5.12482e19 −0.176614
\(536\) −1.23705e20 −0.420387
\(537\) 0 0
\(538\) 2.17645e20 0.719252
\(539\) −2.10883e20 −0.687269
\(540\) 0 0
\(541\) 8.37496e19 0.265463 0.132731 0.991152i \(-0.457625\pi\)
0.132731 + 0.991152i \(0.457625\pi\)
\(542\) 1.05155e20 0.328728
\(543\) 0 0
\(544\) 9.22387e19 0.280493
\(545\) −1.49936e20 −0.449708
\(546\) 0 0
\(547\) −1.80363e19 −0.0526311 −0.0263156 0.999654i \(-0.508377\pi\)
−0.0263156 + 0.999654i \(0.508377\pi\)
\(548\) −1.91401e20 −0.550923
\(549\) 0 0
\(550\) −3.54088e19 −0.0991725
\(551\) −2.21664e20 −0.612432
\(552\) 0 0
\(553\) −1.74195e19 −0.0468378
\(554\) −1.69764e19 −0.0450320
\(555\) 0 0
\(556\) −1.59660e20 −0.412227
\(557\) −1.41919e20 −0.361515 −0.180757 0.983528i \(-0.557855\pi\)
−0.180757 + 0.983528i \(0.557855\pi\)
\(558\) 0 0
\(559\) 4.73115e19 0.117322
\(560\) −6.45326e18 −0.0157895
\(561\) 0 0
\(562\) 3.78736e20 0.902225
\(563\) 6.76140e20 1.58937 0.794683 0.607025i \(-0.207637\pi\)
0.794683 + 0.607025i \(0.207637\pi\)
\(564\) 0 0
\(565\) −2.56304e19 −0.0586666
\(566\) −6.12955e20 −1.38454
\(567\) 0 0
\(568\) −1.70683e20 −0.375471
\(569\) 3.21183e20 0.697286 0.348643 0.937256i \(-0.386643\pi\)
0.348643 + 0.937256i \(0.386643\pi\)
\(570\) 0 0
\(571\) 4.14110e20 0.875679 0.437840 0.899053i \(-0.355744\pi\)
0.437840 + 0.899053i \(0.355744\pi\)
\(572\) 1.56370e19 0.0326349
\(573\) 0 0
\(574\) −1.59461e19 −0.0324201
\(575\) 1.47143e20 0.295277
\(576\) 0 0
\(577\) 3.54691e20 0.693476 0.346738 0.937962i \(-0.387289\pi\)
0.346738 + 0.937962i \(0.387289\pi\)
\(578\) −5.56046e20 −1.07313
\(579\) 0 0
\(580\) −1.37660e20 −0.258880
\(581\) −7.41660e19 −0.137684
\(582\) 0 0
\(583\) 5.28381e20 0.955946
\(584\) 1.49623e20 0.267241
\(585\) 0 0
\(586\) −2.25442e20 −0.392466
\(587\) −7.23865e19 −0.124415 −0.0622074 0.998063i \(-0.519814\pi\)
−0.0622074 + 0.998063i \(0.519814\pi\)
\(588\) 0 0
\(589\) −2.55601e20 −0.428251
\(590\) 3.16978e19 0.0524371
\(591\) 0 0
\(592\) −2.67504e20 −0.431438
\(593\) −1.85476e20 −0.295378 −0.147689 0.989034i \(-0.547183\pi\)
−0.147689 + 0.989034i \(0.547183\pi\)
\(594\) 0 0
\(595\) 6.45360e19 0.100213
\(596\) −6.94419e19 −0.106482
\(597\) 0 0
\(598\) −6.49800e19 −0.0971675
\(599\) 2.41908e20 0.357230 0.178615 0.983919i \(-0.442838\pi\)
0.178615 + 0.983919i \(0.442838\pi\)
\(600\) 0 0
\(601\) −6.49372e20 −0.935266 −0.467633 0.883923i \(-0.654893\pi\)
−0.467633 + 0.883923i \(0.654893\pi\)
\(602\) 8.84941e19 0.125875
\(603\) 0 0
\(604\) −1.75502e20 −0.243503
\(605\) −1.65863e20 −0.227292
\(606\) 0 0
\(607\) −1.78385e20 −0.238475 −0.119238 0.992866i \(-0.538045\pi\)
−0.119238 + 0.992866i \(0.538045\pi\)
\(608\) −7.08183e19 −0.0935123
\(609\) 0 0
\(610\) 2.64345e20 0.340563
\(611\) 1.48195e19 0.0188593
\(612\) 0 0
\(613\) −5.83650e20 −0.724768 −0.362384 0.932029i \(-0.618037\pi\)
−0.362384 + 0.932029i \(0.618037\pi\)
\(614\) −8.45796e20 −1.03753
\(615\) 0 0
\(616\) 2.92483e19 0.0350143
\(617\) 1.59816e21 1.89008 0.945041 0.326953i \(-0.106022\pi\)
0.945041 + 0.326953i \(0.106022\pi\)
\(618\) 0 0
\(619\) −5.07202e20 −0.585466 −0.292733 0.956194i \(-0.594565\pi\)
−0.292733 + 0.956194i \(0.594565\pi\)
\(620\) −1.58737e20 −0.181025
\(621\) 0 0
\(622\) 3.58804e20 0.399419
\(623\) 1.52911e19 0.0168181
\(624\) 0 0
\(625\) 3.72529e19 0.0400000
\(626\) −1.20297e20 −0.127628
\(627\) 0 0
\(628\) −5.53933e20 −0.573799
\(629\) 2.67519e21 2.73826
\(630\) 0 0
\(631\) −1.40119e21 −1.40048 −0.700241 0.713907i \(-0.746924\pi\)
−0.700241 + 0.713907i \(0.746924\pi\)
\(632\) −1.18718e20 −0.117257
\(633\) 0 0
\(634\) −3.88773e20 −0.374996
\(635\) −3.06438e20 −0.292106
\(636\) 0 0
\(637\) −9.79789e19 −0.0912193
\(638\) 6.23922e20 0.574084
\(639\) 0 0
\(640\) −4.39805e19 −0.0395285
\(641\) −2.06369e21 −1.83319 −0.916597 0.399812i \(-0.869075\pi\)
−0.916597 + 0.399812i \(0.869075\pi\)
\(642\) 0 0
\(643\) −1.30785e21 −1.13494 −0.567472 0.823393i \(-0.692078\pi\)
−0.567472 + 0.823393i \(0.692078\pi\)
\(644\) −1.21542e20 −0.104252
\(645\) 0 0
\(646\) 7.08221e20 0.593506
\(647\) 1.07597e21 0.891286 0.445643 0.895211i \(-0.352975\pi\)
0.445643 + 0.895211i \(0.352975\pi\)
\(648\) 0 0
\(649\) −1.43665e20 −0.116283
\(650\) −1.64513e19 −0.0131629
\(651\) 0 0
\(652\) −1.17557e21 −0.919158
\(653\) −8.55859e20 −0.661536 −0.330768 0.943712i \(-0.607308\pi\)
−0.330768 + 0.943712i \(0.607308\pi\)
\(654\) 0 0
\(655\) −6.09110e20 −0.460136
\(656\) −1.08676e20 −0.0811626
\(657\) 0 0
\(658\) 2.77193e19 0.0202343
\(659\) 5.37776e20 0.388115 0.194058 0.980990i \(-0.437835\pi\)
0.194058 + 0.980990i \(0.437835\pi\)
\(660\) 0 0
\(661\) 1.96289e21 1.38479 0.692396 0.721517i \(-0.256555\pi\)
0.692396 + 0.721517i \(0.256555\pi\)
\(662\) −5.58790e20 −0.389775
\(663\) 0 0
\(664\) −5.05459e20 −0.344687
\(665\) −4.95490e19 −0.0334097
\(666\) 0 0
\(667\) −2.59273e21 −1.70928
\(668\) 2.37576e20 0.154874
\(669\) 0 0
\(670\) −5.89869e20 −0.376006
\(671\) −1.19810e21 −0.755220
\(672\) 0 0
\(673\) −2.82758e21 −1.74302 −0.871508 0.490382i \(-0.836857\pi\)
−0.871508 + 0.490382i \(0.836857\pi\)
\(674\) 1.10410e21 0.673069
\(675\) 0 0
\(676\) −8.31365e20 −0.495668
\(677\) 2.22141e21 1.30983 0.654914 0.755704i \(-0.272705\pi\)
0.654914 + 0.755704i \(0.272705\pi\)
\(678\) 0 0
\(679\) −3.76481e19 −0.0217130
\(680\) 4.39828e20 0.250880
\(681\) 0 0
\(682\) 7.19446e20 0.401435
\(683\) 2.75754e21 1.52183 0.760917 0.648849i \(-0.224749\pi\)
0.760917 + 0.648849i \(0.224749\pi\)
\(684\) 0 0
\(685\) −9.12673e20 −0.492761
\(686\) −3.70260e20 −0.197732
\(687\) 0 0
\(688\) 6.03108e20 0.315124
\(689\) 2.45492e20 0.126880
\(690\) 0 0
\(691\) 2.90151e21 1.46737 0.733684 0.679490i \(-0.237799\pi\)
0.733684 + 0.679490i \(0.237799\pi\)
\(692\) 8.97197e20 0.448841
\(693\) 0 0
\(694\) 2.39526e21 1.17262
\(695\) −7.61320e20 −0.368707
\(696\) 0 0
\(697\) 1.08682e21 0.515125
\(698\) −1.29043e21 −0.605087
\(699\) 0 0
\(700\) −3.07715e19 −0.0141226
\(701\) −1.75759e21 −0.798055 −0.399028 0.916939i \(-0.630652\pi\)
−0.399028 + 0.916939i \(0.630652\pi\)
\(702\) 0 0
\(703\) −2.05393e21 −0.912897
\(704\) 1.99334e20 0.0876569
\(705\) 0 0
\(706\) 9.68060e20 0.416742
\(707\) −5.37235e20 −0.228833
\(708\) 0 0
\(709\) −1.58801e21 −0.662227 −0.331114 0.943591i \(-0.607424\pi\)
−0.331114 + 0.943591i \(0.607424\pi\)
\(710\) −8.13879e20 −0.335832
\(711\) 0 0
\(712\) 1.04212e20 0.0421036
\(713\) −2.98969e21 −1.19524
\(714\) 0 0
\(715\) 7.45629e19 0.0291896
\(716\) −9.23172e20 −0.357631
\(717\) 0 0
\(718\) −2.47936e21 −0.940602
\(719\) −2.73391e21 −1.02640 −0.513201 0.858268i \(-0.671541\pi\)
−0.513201 + 0.858268i \(0.671541\pi\)
\(720\) 0 0
\(721\) 2.36972e20 0.0871331
\(722\) 1.39943e21 0.509240
\(723\) 0 0
\(724\) −2.31566e21 −0.825345
\(725\) −6.56416e20 −0.231550
\(726\) 0 0
\(727\) 4.66291e21 1.61120 0.805600 0.592460i \(-0.201843\pi\)
0.805600 + 0.592460i \(0.201843\pi\)
\(728\) 1.35891e19 0.00464735
\(729\) 0 0
\(730\) 7.13459e20 0.239027
\(731\) −6.03141e21 −2.00004
\(732\) 0 0
\(733\) 3.24219e21 1.05331 0.526657 0.850078i \(-0.323445\pi\)
0.526657 + 0.850078i \(0.323445\pi\)
\(734\) 3.81976e21 1.22833
\(735\) 0 0
\(736\) −8.28339e20 −0.260990
\(737\) 2.67348e21 0.833817
\(738\) 0 0
\(739\) 4.24307e21 1.29672 0.648362 0.761332i \(-0.275454\pi\)
0.648362 + 0.761332i \(0.275454\pi\)
\(740\) −1.27556e21 −0.385890
\(741\) 0 0
\(742\) 4.59182e20 0.136131
\(743\) 3.88685e20 0.114073 0.0570363 0.998372i \(-0.481835\pi\)
0.0570363 + 0.998372i \(0.481835\pi\)
\(744\) 0 0
\(745\) −3.31125e20 −0.0952401
\(746\) −2.57758e21 −0.733958
\(747\) 0 0
\(748\) −1.99345e21 −0.556343
\(749\) 2.01854e20 0.0557730
\(750\) 0 0
\(751\) −3.84496e21 −1.04134 −0.520669 0.853759i \(-0.674317\pi\)
−0.520669 + 0.853759i \(0.674317\pi\)
\(752\) 1.88914e20 0.0506558
\(753\) 0 0
\(754\) 2.89882e20 0.0761966
\(755\) −8.36857e20 −0.217796
\(756\) 0 0
\(757\) −2.23187e21 −0.569442 −0.284721 0.958610i \(-0.591901\pi\)
−0.284721 + 0.958610i \(0.591901\pi\)
\(758\) 3.15143e21 0.796138
\(759\) 0 0
\(760\) −3.37688e20 −0.0836399
\(761\) −4.03178e21 −0.988808 −0.494404 0.869232i \(-0.664614\pi\)
−0.494404 + 0.869232i \(0.664614\pi\)
\(762\) 0 0
\(763\) 5.90559e20 0.142013
\(764\) 1.39001e21 0.330993
\(765\) 0 0
\(766\) 4.07144e21 0.950675
\(767\) −6.67483e19 −0.0154339
\(768\) 0 0
\(769\) 2.90256e21 0.658163 0.329082 0.944301i \(-0.393261\pi\)
0.329082 + 0.944301i \(0.393261\pi\)
\(770\) 1.39467e20 0.0313177
\(771\) 0 0
\(772\) 1.91058e21 0.420761
\(773\) −1.01296e21 −0.220925 −0.110463 0.993880i \(-0.535233\pi\)
−0.110463 + 0.993880i \(0.535233\pi\)
\(774\) 0 0
\(775\) −7.56915e20 −0.161914
\(776\) −2.56581e20 −0.0543578
\(777\) 0 0
\(778\) 5.55040e21 1.15339
\(779\) −8.34432e20 −0.171735
\(780\) 0 0
\(781\) 3.68876e21 0.744729
\(782\) 8.28384e21 1.65646
\(783\) 0 0
\(784\) −1.24900e21 −0.245014
\(785\) −2.64136e21 −0.513222
\(786\) 0 0
\(787\) 5.06206e21 0.964978 0.482489 0.875902i \(-0.339733\pi\)
0.482489 + 0.875902i \(0.339733\pi\)
\(788\) 1.08141e21 0.204194
\(789\) 0 0
\(790\) −5.66091e20 −0.104878
\(791\) 1.00952e20 0.0185264
\(792\) 0 0
\(793\) −5.56650e20 −0.100238
\(794\) −1.03987e21 −0.185493
\(795\) 0 0
\(796\) 2.09330e20 0.0366424
\(797\) 7.43121e21 1.28861 0.644306 0.764768i \(-0.277146\pi\)
0.644306 + 0.764768i \(0.277146\pi\)
\(798\) 0 0
\(799\) −1.88924e21 −0.321503
\(800\) −2.09715e20 −0.0353553
\(801\) 0 0
\(802\) 4.49799e20 0.0744237
\(803\) −3.23363e21 −0.530059
\(804\) 0 0
\(805\) −5.79559e20 −0.0932456
\(806\) 3.34263e20 0.0532814
\(807\) 0 0
\(808\) −3.66139e21 −0.572876
\(809\) 3.66614e21 0.568323 0.284162 0.958776i \(-0.408285\pi\)
0.284162 + 0.958776i \(0.408285\pi\)
\(810\) 0 0
\(811\) 1.22030e22 1.85700 0.928500 0.371332i \(-0.121099\pi\)
0.928500 + 0.371332i \(0.121099\pi\)
\(812\) 5.42211e20 0.0817519
\(813\) 0 0
\(814\) 5.78126e21 0.855735
\(815\) −5.60554e21 −0.822120
\(816\) 0 0
\(817\) 4.63075e21 0.666785
\(818\) 8.24699e21 1.17665
\(819\) 0 0
\(820\) −5.18209e20 −0.0725941
\(821\) −1.23404e22 −1.71299 −0.856495 0.516156i \(-0.827363\pi\)
−0.856495 + 0.516156i \(0.827363\pi\)
\(822\) 0 0
\(823\) −1.61418e21 −0.220016 −0.110008 0.993931i \(-0.535088\pi\)
−0.110008 + 0.993931i \(0.535088\pi\)
\(824\) 1.61502e21 0.218134
\(825\) 0 0
\(826\) −1.24850e20 −0.0165591
\(827\) 7.51350e21 0.987532 0.493766 0.869595i \(-0.335620\pi\)
0.493766 + 0.869595i \(0.335620\pi\)
\(828\) 0 0
\(829\) 8.41217e21 1.08580 0.542899 0.839798i \(-0.317327\pi\)
0.542899 + 0.839798i \(0.317327\pi\)
\(830\) −2.41022e21 −0.308298
\(831\) 0 0
\(832\) 9.26129e19 0.0116345
\(833\) 1.24906e22 1.55506
\(834\) 0 0
\(835\) 1.13285e21 0.138523
\(836\) 1.53051e21 0.185477
\(837\) 0 0
\(838\) −1.44226e21 −0.171677
\(839\) 4.19252e21 0.494607 0.247304 0.968938i \(-0.420456\pi\)
0.247304 + 0.968938i \(0.420456\pi\)
\(840\) 0 0
\(841\) 2.93722e21 0.340381
\(842\) 6.15632e21 0.707099
\(843\) 0 0
\(844\) −7.22693e20 −0.0815428
\(845\) −3.96426e21 −0.443339
\(846\) 0 0
\(847\) 6.53294e20 0.0717767
\(848\) 3.12944e21 0.340798
\(849\) 0 0
\(850\) 2.09726e21 0.224394
\(851\) −2.40242e22 −2.54787
\(852\) 0 0
\(853\) −9.01594e21 −0.939493 −0.469746 0.882801i \(-0.655655\pi\)
−0.469746 + 0.882801i \(0.655655\pi\)
\(854\) −1.04119e21 −0.107546
\(855\) 0 0
\(856\) 1.37568e21 0.139626
\(857\) 3.51268e21 0.353413 0.176706 0.984264i \(-0.443456\pi\)
0.176706 + 0.984264i \(0.443456\pi\)
\(858\) 0 0
\(859\) −1.12764e22 −1.11486 −0.557430 0.830224i \(-0.688212\pi\)
−0.557430 + 0.830224i \(0.688212\pi\)
\(860\) 2.87584e21 0.281856
\(861\) 0 0
\(862\) 8.82428e21 0.849914
\(863\) −3.75344e21 −0.358384 −0.179192 0.983814i \(-0.557348\pi\)
−0.179192 + 0.983814i \(0.557348\pi\)
\(864\) 0 0
\(865\) 4.27817e21 0.401455
\(866\) 1.78519e21 0.166073
\(867\) 0 0
\(868\) 6.25225e20 0.0571660
\(869\) 2.56571e21 0.232573
\(870\) 0 0
\(871\) 1.24213e21 0.110670
\(872\) 4.02480e21 0.355526
\(873\) 0 0
\(874\) −6.36010e21 −0.552241
\(875\) −1.46730e20 −0.0126316
\(876\) 0 0
\(877\) −8.42140e21 −0.712669 −0.356334 0.934359i \(-0.615974\pi\)
−0.356334 + 0.934359i \(0.615974\pi\)
\(878\) −1.07103e22 −0.898651
\(879\) 0 0
\(880\) 9.50498e20 0.0784027
\(881\) −2.60636e21 −0.213164 −0.106582 0.994304i \(-0.533991\pi\)
−0.106582 + 0.994304i \(0.533991\pi\)
\(882\) 0 0
\(883\) 1.49967e22 1.20584 0.602919 0.797802i \(-0.294004\pi\)
0.602919 + 0.797802i \(0.294004\pi\)
\(884\) −9.26178e20 −0.0738419
\(885\) 0 0
\(886\) −3.13455e21 −0.245710
\(887\) 1.91564e22 1.48897 0.744486 0.667639i \(-0.232695\pi\)
0.744486 + 0.667639i \(0.232695\pi\)
\(888\) 0 0
\(889\) 1.20699e21 0.0922442
\(890\) 4.96924e20 0.0376586
\(891\) 0 0
\(892\) −9.98084e21 −0.743756
\(893\) 1.45050e21 0.107185
\(894\) 0 0
\(895\) −4.40203e21 −0.319875
\(896\) 1.73228e20 0.0124827
\(897\) 0 0
\(898\) 7.45633e21 0.528388
\(899\) 1.33373e22 0.937278
\(900\) 0 0
\(901\) −3.12960e22 −2.16298
\(902\) 2.34869e21 0.160982
\(903\) 0 0
\(904\) 6.88010e20 0.0463801
\(905\) −1.10419e22 −0.738211
\(906\) 0 0
\(907\) −2.49197e22 −1.63866 −0.819330 0.573323i \(-0.805654\pi\)
−0.819330 + 0.573323i \(0.805654\pi\)
\(908\) −4.74651e21 −0.309550
\(909\) 0 0
\(910\) 6.47978e19 0.00415671
\(911\) −2.98866e22 −1.90146 −0.950732 0.310014i \(-0.899666\pi\)
−0.950732 + 0.310014i \(0.899666\pi\)
\(912\) 0 0
\(913\) 1.09239e22 0.683670
\(914\) 1.67999e22 1.04282
\(915\) 0 0
\(916\) −5.75815e21 −0.351614
\(917\) 2.39914e21 0.145306
\(918\) 0 0
\(919\) 3.97706e21 0.236971 0.118486 0.992956i \(-0.462196\pi\)
0.118486 + 0.992956i \(0.462196\pi\)
\(920\) −3.94983e21 −0.233437
\(921\) 0 0
\(922\) −7.43222e21 −0.432152
\(923\) 1.71384e21 0.0988458
\(924\) 0 0
\(925\) −6.08234e21 −0.345150
\(926\) −2.04298e22 −1.14996
\(927\) 0 0
\(928\) 3.69529e21 0.204663
\(929\) −1.39808e22 −0.768092 −0.384046 0.923314i \(-0.625470\pi\)
−0.384046 + 0.923314i \(0.625470\pi\)
\(930\) 0 0
\(931\) −9.58996e21 −0.518435
\(932\) 2.20092e21 0.118028
\(933\) 0 0
\(934\) −1.93369e22 −1.02043
\(935\) −9.50549e21 −0.497608
\(936\) 0 0
\(937\) −6.98884e21 −0.360046 −0.180023 0.983662i \(-0.557617\pi\)
−0.180023 + 0.983662i \(0.557617\pi\)
\(938\) 2.32335e21 0.118739
\(939\) 0 0
\(940\) 9.00810e20 0.0453079
\(941\) 1.61505e21 0.0805868 0.0402934 0.999188i \(-0.487171\pi\)
0.0402934 + 0.999188i \(0.487171\pi\)
\(942\) 0 0
\(943\) −9.76008e21 −0.479309
\(944\) −8.50881e20 −0.0414552
\(945\) 0 0
\(946\) −1.30343e22 −0.625033
\(947\) 1.59416e22 0.758414 0.379207 0.925312i \(-0.376197\pi\)
0.379207 + 0.925312i \(0.376197\pi\)
\(948\) 0 0
\(949\) −1.50238e21 −0.0703532
\(950\) −1.61022e21 −0.0748098
\(951\) 0 0
\(952\) −1.73238e21 −0.0792255
\(953\) 2.14420e22 0.972899 0.486449 0.873709i \(-0.338292\pi\)
0.486449 + 0.873709i \(0.338292\pi\)
\(954\) 0 0
\(955\) 6.62809e21 0.296049
\(956\) −1.93942e22 −0.859482
\(957\) 0 0
\(958\) −2.09096e22 −0.912231
\(959\) 3.59480e21 0.155609
\(960\) 0 0
\(961\) −8.08605e21 −0.344596
\(962\) 2.68604e21 0.113579
\(963\) 0 0
\(964\) 1.30514e22 0.543351
\(965\) 9.11037e21 0.376340
\(966\) 0 0
\(967\) 3.74044e21 0.152133 0.0760667 0.997103i \(-0.475764\pi\)
0.0760667 + 0.997103i \(0.475764\pi\)
\(968\) 4.45235e21 0.179690
\(969\) 0 0
\(970\) −1.22347e21 −0.0486191
\(971\) −4.76468e22 −1.87884 −0.939419 0.342771i \(-0.888635\pi\)
−0.939419 + 0.342771i \(0.888635\pi\)
\(972\) 0 0
\(973\) 2.99865e21 0.116434
\(974\) −1.18270e22 −0.455703
\(975\) 0 0
\(976\) −7.09595e21 −0.269239
\(977\) 1.91084e22 0.719475 0.359737 0.933054i \(-0.382866\pi\)
0.359737 + 0.933054i \(0.382866\pi\)
\(978\) 0 0
\(979\) −2.25222e21 −0.0835104
\(980\) −5.95568e21 −0.219147
\(981\) 0 0
\(982\) 2.51723e22 0.912192
\(983\) −5.33757e22 −1.91952 −0.959759 0.280826i \(-0.909392\pi\)
−0.959759 + 0.280826i \(0.909392\pi\)
\(984\) 0 0
\(985\) 5.15656e21 0.182637
\(986\) −3.69549e22 −1.29896
\(987\) 0 0
\(988\) 7.11094e20 0.0246178
\(989\) 5.41644e22 1.86098
\(990\) 0 0
\(991\) −2.36848e22 −0.801526 −0.400763 0.916182i \(-0.631255\pi\)
−0.400763 + 0.916182i \(0.631255\pi\)
\(992\) 4.26105e21 0.143113
\(993\) 0 0
\(994\) 3.20567e21 0.106052
\(995\) 9.98163e20 0.0327739
\(996\) 0 0
\(997\) −2.47974e22 −0.802035 −0.401017 0.916070i \(-0.631343\pi\)
−0.401017 + 0.916070i \(0.631343\pi\)
\(998\) 5.77671e21 0.185439
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 90.16.a.k.1.2 2
3.2 odd 2 90.16.a.m.1.2 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.16.a.k.1.2 2 1.1 even 1 trivial
90.16.a.m.1.2 yes 2 3.2 odd 2