Properties

Label 90.16.a.k
Level $90$
Weight $16$
Character orbit 90.a
Self dual yes
Analytic conductor $128.424$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [90,16,Mod(1,90)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("90.1"); S:= CuspForms(chi, 16); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(90, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 16, names="a")
 
Level: \( N \) \(=\) \( 90 = 2 \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 16 \)
Character orbit: \([\chi]\) \(=\) 90.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-256,0,32768,156250,0,-1761200] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(128.424154590\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\mathbb{Q}[x]/(x^{2} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 5168130 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 18\sqrt{20672521}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 128 q^{2} + 16384 q^{4} + 78125 q^{5} + ( - 7 \beta - 880600) q^{7} - 2097152 q^{8} - 10000000 q^{10} + ( - 627 \beta - 5990820) q^{11} + (286 \beta + 44464160) q^{13} + (896 \beta + 112716800) q^{14}+ \cdots + ( - 1578035200 \beta + 466420250438016) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 256 q^{2} + 32768 q^{4} + 156250 q^{5} - 1761200 q^{7} - 4194304 q^{8} - 20000000 q^{10} - 11981640 q^{11} + 88928320 q^{13} + 225433600 q^{14} + 536870912 q^{16} - 234312756 q^{17} + 3086064208 q^{19}+ \cdots + 932840500876032 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2273.85
−2272.85
−128.000 0 16384.0 78125.0 0 −1.45348e6 −2.09715e6 0 −1.00000e7
1.2 −128.000 0 16384.0 78125.0 0 −307715. −2.09715e6 0 −1.00000e7
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 90.16.a.k 2
3.b odd 2 1 90.16.a.m yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
90.16.a.k 2 1.a even 1 1 trivial
90.16.a.m yes 2 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{16}^{\mathrm{new}}(\Gamma_0(90))\):

\( T_{7}^{2} + 1761200T_{7} + 447259416604 \) Copy content Toggle raw display
\( T_{11}^{2} + 11981640T_{11} - 2597247548387316 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 128)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( (T - 78125)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + \cdots + 447259416604 \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots - 25\!\cdots\!16 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots + 14\!\cdots\!16 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots - 65\!\cdots\!16 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots + 21\!\cdots\!16 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots - 40\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 11\!\cdots\!16 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots - 53\!\cdots\!84 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 21\!\cdots\!96 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 11\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots - 66\!\cdots\!76 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 93\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 50\!\cdots\!04 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 75\!\cdots\!16 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 87\!\cdots\!56 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 22\!\cdots\!64 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 26\!\cdots\!04 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 24\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 10\!\cdots\!64 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 29\!\cdots\!76 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 18\!\cdots\!84 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 19\!\cdots\!16 \) Copy content Toggle raw display
show more
show less