Properties

Label 891.2.bb.a.413.18
Level $891$
Weight $2$
Character 891.413
Analytic conductor $7.115$
Analytic rank $0$
Dimension $816$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [891,2,Mod(8,891)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("891.8"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(891, base_ring=CyclotomicField(90)) chi = DirichletCharacter(H, H._module([5, 27])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.bb (of order \(90\), degree \(24\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(816\)
Relative dimension: \(34\) over \(\Q(\zeta_{90})\)
Twist minimal: no (minimal twist has level 297)
Sato-Tate group: $\mathrm{SU}(2)[C_{90}]$

Embedding invariants

Embedding label 413.18
Character \(\chi\) \(=\) 891.413
Dual form 891.2.bb.a.233.18

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.302038 - 0.0424487i) q^{2} +(-1.83310 + 0.525632i) q^{4} +(-3.15888 + 1.27627i) q^{5} +(1.84008 + 1.24115i) q^{7} +(-1.08863 + 0.484688i) q^{8} +(-0.899926 + 0.519573i) q^{10} +(1.31416 + 3.04516i) q^{11} +(-1.20476 - 2.26582i) q^{13} +(0.608459 + 0.296765i) q^{14} +(2.92617 - 1.82848i) q^{16} +(-2.81623 + 0.598608i) q^{17} +(-2.67981 - 6.01896i) q^{19} +(5.11969 - 3.99994i) q^{20} +(0.526190 + 0.863968i) q^{22} +(-0.985887 + 2.70870i) q^{23} +(4.75296 - 4.58988i) q^{25} +(-0.460065 - 0.633225i) q^{26} +(-4.02544 - 1.30794i) q^{28} +(-1.94578 - 3.98943i) q^{29} +(0.190149 - 5.44515i) q^{31} +(2.63191 - 2.20844i) q^{32} +(-0.825198 + 0.300348i) q^{34} +(-7.39664 - 1.57220i) q^{35} +(0.930097 + 0.414106i) q^{37} +(-1.06490 - 1.70420i) q^{38} +(2.82025 - 2.92045i) q^{40} +(2.66661 - 5.46737i) q^{41} +(-5.75703 + 6.86096i) q^{43} +(-4.00962 - 4.89130i) q^{44} +(-0.182795 + 0.859981i) q^{46} +(1.46895 - 5.12285i) q^{47} +(-0.776804 - 1.92266i) q^{49} +(1.24074 - 1.58808i) q^{50} +(3.39944 + 3.52022i) q^{52} +(-1.93503 + 0.628729i) q^{53} +(-8.03773 - 7.94206i) q^{55} +(-2.60473 - 0.459284i) q^{56} +(-0.757044 - 1.12236i) q^{58} +(-13.9361 - 3.47466i) q^{59} +(6.83291 - 0.238610i) q^{61} +(-0.173707 - 1.65271i) q^{62} +(-3.91645 + 4.34966i) q^{64} +(6.69750 + 5.61987i) q^{65} +(-1.83491 - 10.4063i) q^{67} +(4.84778 - 2.57761i) q^{68} +(-2.30080 - 0.160888i) q^{70} +(-0.919525 - 4.32602i) q^{71} +(8.57160 - 0.900912i) q^{73} +(0.298503 + 0.0855943i) q^{74} +(8.07612 + 9.62475i) q^{76} +(-1.36133 + 7.23440i) q^{77} +(1.14946 + 8.17884i) q^{79} +(-6.90981 + 9.51053i) q^{80} +(0.573336 - 1.76455i) q^{82} +(-2.96787 - 1.57805i) q^{83} +(8.13215 - 5.48521i) q^{85} +(-1.44760 + 2.31665i) q^{86} +(-2.90658 - 2.67808i) q^{88} +(5.11538 + 2.95336i) q^{89} +(0.595372 - 5.66459i) q^{91} +(0.383446 - 5.48353i) q^{92} +(0.226222 - 1.60965i) q^{94} +(16.1470 + 15.5930i) q^{95} +(-6.84359 + 16.9385i) q^{97} +(-0.316238 - 0.547741i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 816 q + 30 q^{2} - 18 q^{4} + 21 q^{5} - 30 q^{7} + 45 q^{8} + 33 q^{11} - 30 q^{13} + 18 q^{14} - 30 q^{16} + 45 q^{17} - 15 q^{19} + 60 q^{20} - 15 q^{22} + 84 q^{23} - 27 q^{25} - 60 q^{28} - 60 q^{29}+ \cdots - 81 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{1}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.302038 0.0424487i 0.213573 0.0300157i −0.0315750 0.999501i \(-0.510052\pi\)
0.245148 + 0.969486i \(0.421163\pi\)
\(3\) 0 0
\(4\) −1.83310 + 0.525632i −0.916549 + 0.262816i
\(5\) −3.15888 + 1.27627i −1.41269 + 0.570766i −0.949013 0.315236i \(-0.897916\pi\)
−0.463681 + 0.886002i \(0.653472\pi\)
\(6\) 0 0
\(7\) 1.84008 + 1.24115i 0.695485 + 0.469111i 0.855365 0.518026i \(-0.173333\pi\)
−0.159880 + 0.987136i \(0.551111\pi\)
\(8\) −1.08863 + 0.484688i −0.384888 + 0.171363i
\(9\) 0 0
\(10\) −0.899926 + 0.519573i −0.284582 + 0.164303i
\(11\) 1.31416 + 3.04516i 0.396235 + 0.918149i
\(12\) 0 0
\(13\) −1.20476 2.26582i −0.334140 0.628427i 0.658076 0.752951i \(-0.271371\pi\)
−0.992217 + 0.124525i \(0.960259\pi\)
\(14\) 0.608459 + 0.296765i 0.162618 + 0.0793139i
\(15\) 0 0
\(16\) 2.92617 1.82848i 0.731544 0.457119i
\(17\) −2.81623 + 0.598608i −0.683036 + 0.145184i −0.536345 0.843999i \(-0.680196\pi\)
−0.146691 + 0.989182i \(0.546862\pi\)
\(18\) 0 0
\(19\) −2.67981 6.01896i −0.614792 1.38084i −0.905629 0.424072i \(-0.860600\pi\)
0.290837 0.956773i \(-0.406066\pi\)
\(20\) 5.11969 3.99994i 1.14480 0.894414i
\(21\) 0 0
\(22\) 0.526190 + 0.863968i 0.112184 + 0.184199i
\(23\) −0.985887 + 2.70870i −0.205572 + 0.564804i −0.999040 0.0438080i \(-0.986051\pi\)
0.793468 + 0.608612i \(0.208273\pi\)
\(24\) 0 0
\(25\) 4.75296 4.58988i 0.950593 0.917977i
\(26\) −0.460065 0.633225i −0.0902261 0.124186i
\(27\) 0 0
\(28\) −4.02544 1.30794i −0.760736 0.247178i
\(29\) −1.94578 3.98943i −0.361321 0.740819i 0.638258 0.769823i \(-0.279655\pi\)
−0.999579 + 0.0290039i \(0.990766\pi\)
\(30\) 0 0
\(31\) 0.190149 5.44515i 0.0341517 0.977978i −0.854516 0.519426i \(-0.826146\pi\)
0.888667 0.458552i \(-0.151632\pi\)
\(32\) 2.63191 2.20844i 0.465261 0.390400i
\(33\) 0 0
\(34\) −0.825198 + 0.300348i −0.141520 + 0.0515092i
\(35\) −7.39664 1.57220i −1.25026 0.265751i
\(36\) 0 0
\(37\) 0.930097 + 0.414106i 0.152907 + 0.0680786i 0.481763 0.876301i \(-0.339997\pi\)
−0.328856 + 0.944380i \(0.606663\pi\)
\(38\) −1.06490 1.70420i −0.172750 0.276458i
\(39\) 0 0
\(40\) 2.82025 2.92045i 0.445921 0.461764i
\(41\) 2.66661 5.46737i 0.416455 0.853859i −0.582697 0.812689i \(-0.698003\pi\)
0.999152 0.0411698i \(-0.0131084\pi\)
\(42\) 0 0
\(43\) −5.75703 + 6.86096i −0.877939 + 1.04629i 0.120624 + 0.992698i \(0.461510\pi\)
−0.998563 + 0.0535888i \(0.982934\pi\)
\(44\) −4.00962 4.89130i −0.604473 0.737392i
\(45\) 0 0
\(46\) −0.182795 + 0.859981i −0.0269516 + 0.126797i
\(47\) 1.46895 5.12285i 0.214269 0.747245i −0.778546 0.627587i \(-0.784043\pi\)
0.992815 0.119657i \(-0.0381796\pi\)
\(48\) 0 0
\(49\) −0.776804 1.92266i −0.110972 0.274665i
\(50\) 1.24074 1.58808i 0.175467 0.224588i
\(51\) 0 0
\(52\) 3.39944 + 3.52022i 0.471417 + 0.488166i
\(53\) −1.93503 + 0.628729i −0.265797 + 0.0863625i −0.438883 0.898544i \(-0.644626\pi\)
0.173087 + 0.984907i \(0.444626\pi\)
\(54\) 0 0
\(55\) −8.03773 7.94206i −1.08381 1.07091i
\(56\) −2.60473 0.459284i −0.348072 0.0613745i
\(57\) 0 0
\(58\) −0.757044 1.12236i −0.0994048 0.147374i
\(59\) −13.9361 3.47466i −1.81433 0.452363i −0.821325 0.570460i \(-0.806765\pi\)
−0.993002 + 0.118097i \(0.962321\pi\)
\(60\) 0 0
\(61\) 6.83291 0.238610i 0.874865 0.0305509i 0.406053 0.913849i \(-0.366905\pi\)
0.468811 + 0.883298i \(0.344682\pi\)
\(62\) −0.173707 1.65271i −0.0220608 0.209895i
\(63\) 0 0
\(64\) −3.91645 + 4.34966i −0.489557 + 0.543708i
\(65\) 6.69750 + 5.61987i 0.830723 + 0.697059i
\(66\) 0 0
\(67\) −1.83491 10.4063i −0.224170 1.27133i −0.864265 0.503037i \(-0.832216\pi\)
0.640095 0.768296i \(-0.278895\pi\)
\(68\) 4.84778 2.57761i 0.587880 0.312581i
\(69\) 0 0
\(70\) −2.30080 0.160888i −0.274999 0.0192298i
\(71\) −0.919525 4.32602i −0.109128 0.513405i −0.998426 0.0560781i \(-0.982140\pi\)
0.889299 0.457326i \(-0.151193\pi\)
\(72\) 0 0
\(73\) 8.57160 0.900912i 1.00323 0.105444i 0.411357 0.911475i \(-0.365055\pi\)
0.591874 + 0.806031i \(0.298388\pi\)
\(74\) 0.298503 + 0.0855943i 0.0347002 + 0.00995014i
\(75\) 0 0
\(76\) 8.07612 + 9.62475i 0.926395 + 1.10403i
\(77\) −1.36133 + 7.23440i −0.155138 + 0.824437i
\(78\) 0 0
\(79\) 1.14946 + 8.17884i 0.129324 + 0.920192i 0.941556 + 0.336856i \(0.109364\pi\)
−0.812232 + 0.583335i \(0.801747\pi\)
\(80\) −6.90981 + 9.51053i −0.772540 + 1.06331i
\(81\) 0 0
\(82\) 0.573336 1.76455i 0.0633143 0.194862i
\(83\) −2.96787 1.57805i −0.325766 0.173213i 0.298531 0.954400i \(-0.403503\pi\)
−0.624297 + 0.781187i \(0.714615\pi\)
\(84\) 0 0
\(85\) 8.13215 5.48521i 0.882056 0.594954i
\(86\) −1.44760 + 2.31665i −0.156099 + 0.249811i
\(87\) 0 0
\(88\) −2.90658 2.67808i −0.309843 0.285484i
\(89\) 5.11538 + 2.95336i 0.542229 + 0.313056i 0.745982 0.665966i \(-0.231981\pi\)
−0.203753 + 0.979022i \(0.565314\pi\)
\(90\) 0 0
\(91\) 0.595372 5.66459i 0.0624120 0.593810i
\(92\) 0.383446 5.48353i 0.0399770 0.571698i
\(93\) 0 0
\(94\) 0.226222 1.60965i 0.0233330 0.166023i
\(95\) 16.1470 + 15.5930i 1.65665 + 1.59981i
\(96\) 0 0
\(97\) −6.84359 + 16.9385i −0.694862 + 1.71984i −0.000724419 1.00000i \(0.500231\pi\)
−0.694137 + 0.719843i \(0.744214\pi\)
\(98\) −0.316238 0.547741i −0.0319449 0.0553302i
\(99\) 0 0
\(100\) −6.30006 + 10.9120i −0.630006 + 1.09120i
\(101\) −11.7084 14.9861i −1.16503 1.49118i −0.837585 0.546307i \(-0.816033\pi\)
−0.327449 0.944869i \(-0.606189\pi\)
\(102\) 0 0
\(103\) 0.0186645 0.0748594i 0.00183907 0.00737611i −0.969369 0.245608i \(-0.921012\pi\)
0.971208 + 0.238232i \(0.0765679\pi\)
\(104\) 2.40975 + 1.88271i 0.236296 + 0.184614i
\(105\) 0 0
\(106\) −0.557763 + 0.272039i −0.0541748 + 0.0264228i
\(107\) 7.68879 + 5.58623i 0.743304 + 0.540042i 0.893744 0.448577i \(-0.148069\pi\)
−0.150440 + 0.988619i \(0.548069\pi\)
\(108\) 0 0
\(109\) 9.97796i 0.955715i 0.878437 + 0.477858i \(0.158587\pi\)
−0.878437 + 0.477858i \(0.841413\pi\)
\(110\) −2.76483 2.05761i −0.263616 0.196186i
\(111\) 0 0
\(112\) 7.65381 + 0.267277i 0.723217 + 0.0252553i
\(113\) 0.678656 + 9.70524i 0.0638426 + 0.912992i 0.918908 + 0.394472i \(0.129072\pi\)
−0.855065 + 0.518520i \(0.826483\pi\)
\(114\) 0 0
\(115\) −0.342738 9.81473i −0.0319605 0.915228i
\(116\) 5.66377 + 6.29026i 0.525868 + 0.584036i
\(117\) 0 0
\(118\) −4.35673 0.457911i −0.401070 0.0421541i
\(119\) −5.92505 2.39388i −0.543149 0.219446i
\(120\) 0 0
\(121\) −7.54595 + 8.00366i −0.685996 + 0.727606i
\(122\) 2.05367 0.362117i 0.185931 0.0327846i
\(123\) 0 0
\(124\) 2.51359 + 10.0814i 0.225727 + 0.905340i
\(125\) −2.22743 + 5.00289i −0.199227 + 0.447472i
\(126\) 0 0
\(127\) −10.1294 + 9.12060i −0.898843 + 0.809322i −0.982324 0.187187i \(-0.940063\pi\)
0.0834810 + 0.996509i \(0.473396\pi\)
\(128\) −4.84074 + 7.17669i −0.427865 + 0.634336i
\(129\) 0 0
\(130\) 2.26146 + 1.41311i 0.198343 + 0.123938i
\(131\) 12.3014 + 4.47733i 1.07478 + 0.391186i 0.817960 0.575275i \(-0.195105\pi\)
0.256815 + 0.966461i \(0.417327\pi\)
\(132\) 0 0
\(133\) 2.53936 14.4014i 0.220190 1.24876i
\(134\) −0.995947 3.06521i −0.0860367 0.264794i
\(135\) 0 0
\(136\) 2.77569 2.01665i 0.238013 0.172927i
\(137\) 6.15858 11.5826i 0.526163 0.989568i −0.468209 0.883618i \(-0.655101\pi\)
0.994371 0.105950i \(-0.0337884\pi\)
\(138\) 0 0
\(139\) −1.11795 3.89874i −0.0948230 0.330687i 0.899523 0.436873i \(-0.143914\pi\)
−0.994346 + 0.106186i \(0.966136\pi\)
\(140\) 14.3852 1.00591i 1.21577 0.0850148i
\(141\) 0 0
\(142\) −0.461365 1.26759i −0.0387169 0.106374i
\(143\) 5.31654 6.64635i 0.444591 0.555795i
\(144\) 0 0
\(145\) 11.2381 + 10.1188i 0.933271 + 0.840321i
\(146\) 2.55071 0.635963i 0.211098 0.0526326i
\(147\) 0 0
\(148\) −1.92263 0.270208i −0.158039 0.0222109i
\(149\) −13.6037 1.91187i −1.11445 0.156626i −0.442179 0.896927i \(-0.645794\pi\)
−0.672276 + 0.740301i \(0.734683\pi\)
\(150\) 0 0
\(151\) −4.48939 + 1.11933i −0.365341 + 0.0910898i −0.420267 0.907401i \(-0.638063\pi\)
0.0549253 + 0.998490i \(0.482508\pi\)
\(152\) 5.83464 + 5.25353i 0.473252 + 0.426118i
\(153\) 0 0
\(154\) −0.104083 + 2.24285i −0.00838722 + 0.180734i
\(155\) 6.34883 + 17.4433i 0.509950 + 1.40108i
\(156\) 0 0
\(157\) 8.91996 0.623744i 0.711890 0.0497802i 0.290780 0.956790i \(-0.406085\pi\)
0.421110 + 0.907010i \(0.361641\pi\)
\(158\) 0.694362 + 2.42153i 0.0552405 + 0.192646i
\(159\) 0 0
\(160\) −5.49534 + 10.3352i −0.434445 + 0.817072i
\(161\) −5.17602 + 3.76060i −0.407927 + 0.296377i
\(162\) 0 0
\(163\) −4.74287 14.5971i −0.371490 1.14333i −0.945816 0.324703i \(-0.894736\pi\)
0.574326 0.818627i \(-0.305264\pi\)
\(164\) −2.01434 + 11.4239i −0.157293 + 0.892055i
\(165\) 0 0
\(166\) −0.963396 0.350647i −0.0747740 0.0272155i
\(167\) −8.01659 5.00932i −0.620343 0.387633i 0.183032 0.983107i \(-0.441409\pi\)
−0.803375 + 0.595474i \(0.796964\pi\)
\(168\) 0 0
\(169\) 3.58699 5.31794i 0.275923 0.409072i
\(170\) 2.22338 2.00194i 0.170525 0.153542i
\(171\) 0 0
\(172\) 6.94686 15.6029i 0.529693 1.18971i
\(173\) −3.84488 15.4210i −0.292321 1.17244i −0.919350 0.393440i \(-0.871285\pi\)
0.627029 0.778996i \(-0.284271\pi\)
\(174\) 0 0
\(175\) 14.4426 2.54661i 1.09176 0.192506i
\(176\) 9.41347 + 6.50774i 0.709567 + 0.490540i
\(177\) 0 0
\(178\) 1.67040 + 0.674887i 0.125202 + 0.0505849i
\(179\) −13.2331 1.39086i −0.989090 0.103958i −0.403857 0.914822i \(-0.632331\pi\)
−0.585234 + 0.810865i \(0.698997\pi\)
\(180\) 0 0
\(181\) −10.2776 11.4145i −0.763931 0.848431i 0.228203 0.973614i \(-0.426715\pi\)
−0.992134 + 0.125183i \(0.960048\pi\)
\(182\) −0.0606292 1.73619i −0.00449414 0.128695i
\(183\) 0 0
\(184\) −0.239612 3.42661i −0.0176645 0.252613i
\(185\) −3.46658 0.121056i −0.254868 0.00890018i
\(186\) 0 0
\(187\) −5.52384 7.78919i −0.403943 0.569602i
\(188\) 10.1628i 0.741200i
\(189\) 0 0
\(190\) 5.53892 + 4.02426i 0.401836 + 0.291951i
\(191\) 3.39738 1.65701i 0.245826 0.119897i −0.311340 0.950299i \(-0.600778\pi\)
0.557166 + 0.830401i \(0.311889\pi\)
\(192\) 0 0
\(193\) −16.6747 13.0277i −1.20027 0.937755i −0.201146 0.979561i \(-0.564467\pi\)
−0.999126 + 0.0418060i \(0.986689\pi\)
\(194\) −1.34801 + 5.40657i −0.0967814 + 0.388169i
\(195\) 0 0
\(196\) 2.43457 + 3.11611i 0.173898 + 0.222579i
\(197\) −5.44528 + 9.43151i −0.387960 + 0.671967i −0.992175 0.124855i \(-0.960154\pi\)
0.604215 + 0.796822i \(0.293487\pi\)
\(198\) 0 0
\(199\) 3.50306 + 6.06748i 0.248325 + 0.430112i 0.963061 0.269282i \(-0.0867865\pi\)
−0.714736 + 0.699394i \(0.753453\pi\)
\(200\) −2.94954 + 7.30038i −0.208564 + 0.516215i
\(201\) 0 0
\(202\) −4.17254 4.02937i −0.293579 0.283506i
\(203\) 1.37110 9.75587i 0.0962322 0.684728i
\(204\) 0 0
\(205\) −1.44567 + 20.6741i −0.100970 + 1.44394i
\(206\) 0.00245972 0.0234027i 0.000171377 0.00163054i
\(207\) 0 0
\(208\) −7.66835 4.42732i −0.531704 0.306980i
\(209\) 14.8070 16.0703i 1.02422 1.11161i
\(210\) 0 0
\(211\) −10.4368 + 16.7024i −0.718499 + 1.14984i 0.264171 + 0.964476i \(0.414902\pi\)
−0.982670 + 0.185363i \(0.940654\pi\)
\(212\) 3.21662 2.16964i 0.220918 0.149011i
\(213\) 0 0
\(214\) 2.55944 + 1.36088i 0.174959 + 0.0930276i
\(215\) 9.42933 29.0205i 0.643075 1.97918i
\(216\) 0 0
\(217\) 7.10814 9.78351i 0.482532 0.664148i
\(218\) 0.423551 + 3.01372i 0.0286865 + 0.204115i
\(219\) 0 0
\(220\) 18.9085 + 10.3337i 1.27481 + 0.696697i
\(221\) 4.74922 + 5.65991i 0.319467 + 0.380726i
\(222\) 0 0
\(223\) −22.7733 6.53013i −1.52501 0.437290i −0.594665 0.803973i \(-0.702715\pi\)
−0.930346 + 0.366683i \(0.880493\pi\)
\(224\) 7.58394 0.797104i 0.506723 0.0532587i
\(225\) 0 0
\(226\) 0.616954 + 2.90254i 0.0410392 + 0.193074i
\(227\) 14.9265 + 1.04376i 0.990704 + 0.0692768i 0.555901 0.831249i \(-0.312374\pi\)
0.434803 + 0.900526i \(0.356818\pi\)
\(228\) 0 0
\(229\) −5.79529 + 3.08141i −0.382963 + 0.203625i −0.649780 0.760122i \(-0.725139\pi\)
0.266817 + 0.963747i \(0.414028\pi\)
\(230\) −0.520142 2.94987i −0.0342972 0.194509i
\(231\) 0 0
\(232\) 4.05185 + 3.39991i 0.266017 + 0.223215i
\(233\) −0.605101 + 0.672033i −0.0396415 + 0.0440264i −0.762639 0.646824i \(-0.776097\pi\)
0.722998 + 0.690850i \(0.242764\pi\)
\(234\) 0 0
\(235\) 1.89789 + 18.0573i 0.123805 + 1.17793i
\(236\) 27.3727 0.955874i 1.78181 0.0622221i
\(237\) 0 0
\(238\) −1.89121 0.471531i −0.122589 0.0305648i
\(239\) −12.7654 18.9256i −0.825728 1.22419i −0.972008 0.234949i \(-0.924508\pi\)
0.146279 0.989243i \(-0.453270\pi\)
\(240\) 0 0
\(241\) 12.0594 + 2.12641i 0.776817 + 0.136974i 0.547981 0.836491i \(-0.315397\pi\)
0.228837 + 0.973465i \(0.426508\pi\)
\(242\) −1.93942 + 2.73773i −0.124671 + 0.175988i
\(243\) 0 0
\(244\) −12.4000 + 4.02900i −0.793827 + 0.257930i
\(245\) 4.90766 + 5.08203i 0.313539 + 0.324679i
\(246\) 0 0
\(247\) −10.4094 + 13.3234i −0.662333 + 0.847747i
\(248\) 2.43220 + 6.01990i 0.154445 + 0.382264i
\(249\) 0 0
\(250\) −0.460402 + 1.60561i −0.0291184 + 0.101548i
\(251\) −3.35914 + 15.8035i −0.212027 + 0.997509i 0.735424 + 0.677607i \(0.236983\pi\)
−0.947451 + 0.319901i \(0.896350\pi\)
\(252\) 0 0
\(253\) −9.54404 + 0.557495i −0.600029 + 0.0350494i
\(254\) −2.67232 + 3.18475i −0.167676 + 0.199829i
\(255\) 0 0
\(256\) 3.97417 8.14825i 0.248385 0.509266i
\(257\) −3.19806 + 3.31169i −0.199490 + 0.206578i −0.811630 0.584171i \(-0.801420\pi\)
0.612141 + 0.790749i \(0.290309\pi\)
\(258\) 0 0
\(259\) 1.19749 + 1.91638i 0.0744081 + 0.119078i
\(260\) −15.2312 6.78135i −0.944597 0.420562i
\(261\) 0 0
\(262\) 3.90554 + 0.830147i 0.241285 + 0.0512867i
\(263\) −19.6449 + 7.15016i −1.21136 + 0.440898i −0.867174 0.498005i \(-0.834066\pi\)
−0.344182 + 0.938903i \(0.611844\pi\)
\(264\) 0 0
\(265\) 5.31010 4.45570i 0.326197 0.273711i
\(266\) 0.155662 4.45757i 0.00954423 0.273311i
\(267\) 0 0
\(268\) 8.83347 + 18.1113i 0.539590 + 1.10632i
\(269\) −22.4817 7.30475i −1.37073 0.445379i −0.471122 0.882068i \(-0.656151\pi\)
−0.899612 + 0.436689i \(0.856151\pi\)
\(270\) 0 0
\(271\) 17.8113 + 24.5151i 1.08196 + 1.48919i 0.857347 + 0.514739i \(0.172111\pi\)
0.224611 + 0.974449i \(0.427889\pi\)
\(272\) −7.14624 + 6.90104i −0.433304 + 0.418437i
\(273\) 0 0
\(274\) 1.36846 3.75981i 0.0826716 0.227138i
\(275\) 20.2231 + 8.44166i 1.21950 + 0.509052i
\(276\) 0 0
\(277\) −5.23126 + 4.08711i −0.314316 + 0.245570i −0.760451 0.649395i \(-0.775022\pi\)
0.446135 + 0.894965i \(0.352800\pi\)
\(278\) −0.503159 1.13011i −0.0301775 0.0677797i
\(279\) 0 0
\(280\) 8.81421 1.87352i 0.526750 0.111964i
\(281\) −8.19749 + 5.12236i −0.489021 + 0.305574i −0.751926 0.659247i \(-0.770875\pi\)
0.262905 + 0.964822i \(0.415319\pi\)
\(282\) 0 0
\(283\) 17.8769 + 8.71915i 1.06267 + 0.518299i 0.884904 0.465773i \(-0.154224\pi\)
0.177767 + 0.984073i \(0.443113\pi\)
\(284\) 3.95948 + 7.44670i 0.234952 + 0.441880i
\(285\) 0 0
\(286\) 1.32367 2.23313i 0.0782702 0.132048i
\(287\) 11.6926 6.75073i 0.690192 0.398483i
\(288\) 0 0
\(289\) −7.95745 + 3.54288i −0.468085 + 0.208405i
\(290\) 3.82385 + 2.57922i 0.224544 + 0.151457i
\(291\) 0 0
\(292\) −15.2390 + 6.15697i −0.891797 + 0.360310i
\(293\) −7.32992 + 2.10182i −0.428219 + 0.122790i −0.482822 0.875718i \(-0.660388\pi\)
0.0546036 + 0.998508i \(0.482610\pi\)
\(294\) 0 0
\(295\) 48.4571 6.81021i 2.82128 0.396506i
\(296\) −1.21324 −0.0705182
\(297\) 0 0
\(298\) −4.18998 −0.242719
\(299\) 7.32520 1.02949i 0.423627 0.0595370i
\(300\) 0 0
\(301\) −19.1089 + 5.47938i −1.10142 + 0.315826i
\(302\) −1.30845 + 0.528649i −0.0752930 + 0.0304203i
\(303\) 0 0
\(304\) −18.8471 12.7126i −1.08096 0.729115i
\(305\) −21.2798 + 9.47439i −1.21848 + 0.542502i
\(306\) 0 0
\(307\) −23.5248 + 13.5821i −1.34263 + 0.775169i −0.987193 0.159531i \(-0.949002\pi\)
−0.355439 + 0.934700i \(0.615669\pi\)
\(308\) −1.30719 13.9769i −0.0744838 0.796410i
\(309\) 0 0
\(310\) 2.65803 + 4.99903i 0.150966 + 0.283926i
\(311\) 3.64103 + 1.77585i 0.206464 + 0.100699i 0.538702 0.842496i \(-0.318915\pi\)
−0.332238 + 0.943195i \(0.607804\pi\)
\(312\) 0 0
\(313\) 15.7402 9.83557i 0.889689 0.555940i −0.00631747 0.999980i \(-0.502011\pi\)
0.896007 + 0.444041i \(0.146455\pi\)
\(314\) 2.66769 0.567035i 0.150546 0.0319996i
\(315\) 0 0
\(316\) −6.40614 14.3884i −0.360374 0.809412i
\(317\) −8.35593 + 6.52837i −0.469316 + 0.366670i −0.822389 0.568926i \(-0.807359\pi\)
0.353073 + 0.935596i \(0.385137\pi\)
\(318\) 0 0
\(319\) 9.59138 11.1680i 0.537014 0.625285i
\(320\) 6.82026 18.7385i 0.381264 1.04751i
\(321\) 0 0
\(322\) −1.40372 + 1.35556i −0.0782263 + 0.0755423i
\(323\) 11.1500 + 15.3466i 0.620401 + 0.853909i
\(324\) 0 0
\(325\) −16.1261 5.23967i −0.894513 0.290645i
\(326\) −2.05215 4.20754i −0.113658 0.233034i
\(327\) 0 0
\(328\) −0.252980 + 7.24440i −0.0139685 + 0.400005i
\(329\) 9.06122 7.60327i 0.499561 0.419182i
\(330\) 0 0
\(331\) 26.0174 9.46955i 1.43004 0.520494i 0.493101 0.869972i \(-0.335863\pi\)
0.936944 + 0.349479i \(0.113641\pi\)
\(332\) 6.26987 + 1.33270i 0.344104 + 0.0731415i
\(333\) 0 0
\(334\) −2.63395 1.17271i −0.144124 0.0641679i
\(335\) 19.0775 + 30.5304i 1.04232 + 1.66806i
\(336\) 0 0
\(337\) −2.94091 + 3.04540i −0.160202 + 0.165894i −0.794642 0.607078i \(-0.792342\pi\)
0.634441 + 0.772971i \(0.281230\pi\)
\(338\) 0.857669 1.75848i 0.0466510 0.0956488i
\(339\) 0 0
\(340\) −12.0238 + 14.3294i −0.652084 + 0.777123i
\(341\) 16.8312 6.57678i 0.911462 0.356153i
\(342\) 0 0
\(343\) 4.18720 19.6992i 0.226087 1.06366i
\(344\) 2.94183 10.2594i 0.158613 0.553149i
\(345\) 0 0
\(346\) −1.81590 4.49451i −0.0976234 0.241626i
\(347\) 10.4107 13.3251i 0.558878 0.715331i −0.422726 0.906257i \(-0.638927\pi\)
0.981604 + 0.190926i \(0.0611491\pi\)
\(348\) 0 0
\(349\) 7.52037 + 7.78757i 0.402556 + 0.416859i 0.889760 0.456429i \(-0.150872\pi\)
−0.487203 + 0.873288i \(0.661983\pi\)
\(350\) 4.25410 1.38224i 0.227391 0.0738840i
\(351\) 0 0
\(352\) 10.1838 + 5.11234i 0.542798 + 0.272489i
\(353\) 23.1039 + 4.07384i 1.22970 + 0.216829i 0.750495 0.660876i \(-0.229815\pi\)
0.479202 + 0.877705i \(0.340926\pi\)
\(354\) 0 0
\(355\) 8.42585 + 12.4918i 0.447198 + 0.662998i
\(356\) −10.9294 2.72500i −0.579256 0.144425i
\(357\) 0 0
\(358\) −4.05595 + 0.141637i −0.214363 + 0.00748574i
\(359\) −3.48845 33.1903i −0.184113 1.75172i −0.563166 0.826344i \(-0.690417\pi\)
0.379053 0.925375i \(-0.376250\pi\)
\(360\) 0 0
\(361\) −16.3330 + 18.1396i −0.859632 + 0.954718i
\(362\) −3.58876 3.01133i −0.188621 0.158272i
\(363\) 0 0
\(364\) 1.88612 + 10.6967i 0.0988593 + 0.560659i
\(365\) −25.9269 + 13.7856i −1.35707 + 0.721569i
\(366\) 0 0
\(367\) −23.8176 1.66549i −1.24327 0.0869379i −0.567078 0.823664i \(-0.691926\pi\)
−0.676191 + 0.736726i \(0.736371\pi\)
\(368\) 2.06792 + 9.72881i 0.107798 + 0.507149i
\(369\) 0 0
\(370\) −1.05218 + 0.110588i −0.0547000 + 0.00574921i
\(371\) −4.34095 1.24475i −0.225371 0.0646241i
\(372\) 0 0
\(373\) −16.5448 19.7173i −0.856658 1.02092i −0.999514 0.0311813i \(-0.990073\pi\)
0.142856 0.989743i \(-0.454371\pi\)
\(374\) −1.99905 2.11815i −0.103368 0.109527i
\(375\) 0 0
\(376\) 0.883842 + 6.28886i 0.0455806 + 0.324323i
\(377\) −6.69516 + 9.21510i −0.344818 + 0.474602i
\(378\) 0 0
\(379\) 4.42082 13.6059i 0.227082 0.698887i −0.770991 0.636846i \(-0.780239\pi\)
0.998074 0.0620417i \(-0.0197612\pi\)
\(380\) −37.7953 20.0961i −1.93886 1.03091i
\(381\) 0 0
\(382\) 0.955799 0.644695i 0.0489029 0.0329855i
\(383\) −1.79680 + 2.87547i −0.0918120 + 0.146930i −0.890766 0.454462i \(-0.849831\pi\)
0.798954 + 0.601392i \(0.205387\pi\)
\(384\) 0 0
\(385\) −4.93278 24.5901i −0.251398 1.25323i
\(386\) −5.58940 3.22704i −0.284493 0.164252i
\(387\) 0 0
\(388\) 3.64156 34.6471i 0.184872 1.75894i
\(389\) 0.385280 5.50976i 0.0195345 0.279356i −0.977970 0.208747i \(-0.933061\pi\)
0.997504 0.0706087i \(-0.0224942\pi\)
\(390\) 0 0
\(391\) 1.15503 8.21849i 0.0584126 0.415627i
\(392\) 1.77754 + 1.71655i 0.0897792 + 0.0866988i
\(393\) 0 0
\(394\) −1.24433 + 3.07982i −0.0626883 + 0.155159i
\(395\) −14.0694 24.3690i −0.707910 1.22614i
\(396\) 0 0
\(397\) 4.99126 8.64512i 0.250504 0.433886i −0.713160 0.701001i \(-0.752737\pi\)
0.963665 + 0.267115i \(0.0860702\pi\)
\(398\) 1.31561 + 1.68391i 0.0659457 + 0.0844067i
\(399\) 0 0
\(400\) 5.51551 22.1215i 0.275775 1.10607i
\(401\) −5.00054 3.90685i −0.249715 0.195099i 0.483027 0.875606i \(-0.339537\pi\)
−0.732742 + 0.680507i \(0.761760\pi\)
\(402\) 0 0
\(403\) −12.5668 + 6.12926i −0.625999 + 0.305320i
\(404\) 29.3399 + 21.3167i 1.45972 + 1.06055i
\(405\) 0 0
\(406\) 3.00485i 0.149128i
\(407\) −0.0387184 + 3.37649i −0.00191920 + 0.167367i
\(408\) 0 0
\(409\) −17.0505 0.595415i −0.843091 0.0294414i −0.389903 0.920856i \(-0.627491\pi\)
−0.453188 + 0.891415i \(0.649714\pi\)
\(410\) 0.440939 + 6.30572i 0.0217764 + 0.311417i
\(411\) 0 0
\(412\) 0.00513458 + 0.147035i 0.000252963 + 0.00724391i
\(413\) −21.3310 23.6905i −1.04963 1.16573i
\(414\) 0 0
\(415\) 11.3892 + 1.19705i 0.559072 + 0.0587609i
\(416\) −8.17476 3.30282i −0.400801 0.161934i
\(417\) 0 0
\(418\) 3.79010 5.48239i 0.185380 0.268152i
\(419\) −31.6188 + 5.57525i −1.54468 + 0.272369i −0.880078 0.474828i \(-0.842510\pi\)
−0.664602 + 0.747197i \(0.731399\pi\)
\(420\) 0 0
\(421\) −4.23366 16.9803i −0.206336 0.827569i −0.980810 0.194964i \(-0.937541\pi\)
0.774474 0.632605i \(-0.218014\pi\)
\(422\) −2.44332 + 5.48778i −0.118939 + 0.267141i
\(423\) 0 0
\(424\) 1.80179 1.62234i 0.0875025 0.0787876i
\(425\) −10.6379 + 15.7713i −0.516014 + 0.765022i
\(426\) 0 0
\(427\) 12.8693 + 8.04160i 0.622787 + 0.389160i
\(428\) −17.0306 6.19864i −0.823206 0.299622i
\(429\) 0 0
\(430\) 1.61613 9.16556i 0.0779369 0.442002i
\(431\) 7.74707 + 23.8430i 0.373163 + 1.14848i 0.944709 + 0.327909i \(0.106344\pi\)
−0.571546 + 0.820570i \(0.693656\pi\)
\(432\) 0 0
\(433\) 3.15629 2.29318i 0.151682 0.110203i −0.509356 0.860556i \(-0.670116\pi\)
0.661038 + 0.750353i \(0.270116\pi\)
\(434\) 1.73163 3.25672i 0.0831209 0.156328i
\(435\) 0 0
\(436\) −5.24474 18.2906i −0.251178 0.875960i
\(437\) 18.9456 1.32480i 0.906290 0.0633739i
\(438\) 0 0
\(439\) −10.3316 28.3859i −0.493101 1.35478i −0.897828 0.440346i \(-0.854856\pi\)
0.404727 0.914437i \(-0.367366\pi\)
\(440\) 12.5995 + 4.75015i 0.600658 + 0.226455i
\(441\) 0 0
\(442\) 1.67470 + 1.50791i 0.0796574 + 0.0717239i
\(443\) −3.14116 + 0.783178i −0.149241 + 0.0372099i −0.315826 0.948817i \(-0.602282\pi\)
0.166585 + 0.986027i \(0.446726\pi\)
\(444\) 0 0
\(445\) −19.9282 2.80072i −0.944686 0.132767i
\(446\) −7.15559 1.00565i −0.338827 0.0476190i
\(447\) 0 0
\(448\) −12.6052 + 3.14282i −0.595538 + 0.148484i
\(449\) 12.8614 + 11.5805i 0.606968 + 0.546516i 0.914275 0.405094i \(-0.132761\pi\)
−0.307307 + 0.951610i \(0.599428\pi\)
\(450\) 0 0
\(451\) 20.1533 + 0.935244i 0.948984 + 0.0440389i
\(452\) −6.34543 17.4339i −0.298464 0.820023i
\(453\) 0 0
\(454\) 4.55266 0.318353i 0.213667 0.0149411i
\(455\) 5.34884 + 18.6536i 0.250757 + 0.874495i
\(456\) 0 0
\(457\) 9.66995 18.1865i 0.452341 0.850730i −0.547561 0.836766i \(-0.684444\pi\)
0.999902 0.0139647i \(-0.00444525\pi\)
\(458\) −1.61959 + 1.17670i −0.0756787 + 0.0549838i
\(459\) 0 0
\(460\) 5.78721 + 17.8112i 0.269830 + 0.830452i
\(461\) −3.25208 + 18.4435i −0.151465 + 0.858998i 0.810483 + 0.585763i \(0.199205\pi\)
−0.961947 + 0.273235i \(0.911906\pi\)
\(462\) 0 0
\(463\) 9.69243 + 3.52776i 0.450446 + 0.163949i 0.557274 0.830329i \(-0.311847\pi\)
−0.106828 + 0.994277i \(0.534070\pi\)
\(464\) −12.9883 8.11597i −0.602965 0.376774i
\(465\) 0 0
\(466\) −0.154237 + 0.228665i −0.00714488 + 0.0105927i
\(467\) 11.9759 10.7831i 0.554177 0.498983i −0.343790 0.939047i \(-0.611711\pi\)
0.897967 + 0.440063i \(0.145044\pi\)
\(468\) 0 0
\(469\) 9.53940 21.4258i 0.440488 0.989353i
\(470\) 1.33974 + 5.37342i 0.0617977 + 0.247857i
\(471\) 0 0
\(472\) 16.8554 2.97205i 0.775831 0.136800i
\(473\) −28.4584 8.51464i −1.30852 0.391504i
\(474\) 0 0
\(475\) −40.3634 16.3079i −1.85200 0.748256i
\(476\) 12.1195 + 1.27381i 0.555497 + 0.0583850i
\(477\) 0 0
\(478\) −4.65902 5.17436i −0.213098 0.236670i
\(479\) 0.761724 + 21.8129i 0.0348041 + 0.996658i 0.883687 + 0.468077i \(0.155053\pi\)
−0.848883 + 0.528580i \(0.822725\pi\)
\(480\) 0 0
\(481\) −0.182253 2.60633i −0.00831001 0.118839i
\(482\) 3.73267 + 0.130348i 0.170019 + 0.00593718i
\(483\) 0 0
\(484\) 9.62549 18.6379i 0.437522 0.847177i
\(485\) 62.2409i 2.82622i
\(486\) 0 0
\(487\) 26.2512 + 19.0726i 1.18956 + 0.864263i 0.993217 0.116274i \(-0.0370950\pi\)
0.196338 + 0.980536i \(0.437095\pi\)
\(488\) −7.32284 + 3.57159i −0.331489 + 0.161678i
\(489\) 0 0
\(490\) 1.69803 + 1.32664i 0.0767090 + 0.0599316i
\(491\) 5.15606 20.6798i 0.232690 0.933268i −0.734376 0.678743i \(-0.762525\pi\)
0.967066 0.254526i \(-0.0819193\pi\)
\(492\) 0 0
\(493\) 7.86786 + 10.0704i 0.354351 + 0.453548i
\(494\) −2.57847 + 4.46604i −0.116011 + 0.200936i
\(495\) 0 0
\(496\) −9.39992 16.2811i −0.422069 0.731045i
\(497\) 3.67724 9.10150i 0.164947 0.408258i
\(498\) 0 0
\(499\) 17.3730 + 16.7769i 0.777723 + 0.751039i 0.973272 0.229655i \(-0.0737599\pi\)
−0.195549 + 0.980694i \(0.562649\pi\)
\(500\) 1.45342 10.3416i 0.0649988 0.462490i
\(501\) 0 0
\(502\) −0.343750 + 4.91585i −0.0153423 + 0.219405i
\(503\) −0.267072 + 2.54102i −0.0119082 + 0.113298i −0.998861 0.0477095i \(-0.984808\pi\)
0.986953 + 0.161008i \(0.0514745\pi\)
\(504\) 0 0
\(505\) 56.1120 + 32.3963i 2.49695 + 1.44161i
\(506\) −2.85900 + 0.573516i −0.127098 + 0.0254959i
\(507\) 0 0
\(508\) 13.7742 22.0433i 0.611131 0.978014i
\(509\) −14.8880 + 10.0421i −0.659898 + 0.445107i −0.842947 0.537997i \(-0.819181\pi\)
0.183048 + 0.983104i \(0.441403\pi\)
\(510\) 0 0
\(511\) 16.8906 + 8.98089i 0.747196 + 0.397291i
\(512\) 6.20457 19.0957i 0.274206 0.843919i
\(513\) 0 0
\(514\) −0.825360 + 1.13601i −0.0364051 + 0.0501073i
\(515\) 0.0365818 + 0.260293i 0.00161199 + 0.0114699i
\(516\) 0 0
\(517\) 17.5303 2.25907i 0.770983 0.0993536i
\(518\) 0.443034 + 0.527987i 0.0194658 + 0.0231984i
\(519\) 0 0
\(520\) −10.0150 2.87175i −0.439185 0.125934i
\(521\) 9.19009 0.965917i 0.402625 0.0423176i 0.0989480 0.995093i \(-0.468452\pi\)
0.303677 + 0.952775i \(0.401786\pi\)
\(522\) 0 0
\(523\) 2.80020 + 13.1739i 0.122444 + 0.576055i 0.996002 + 0.0893339i \(0.0284738\pi\)
−0.873558 + 0.486721i \(0.838193\pi\)
\(524\) −24.9030 1.74139i −1.08789 0.0760730i
\(525\) 0 0
\(526\) −5.62999 + 2.99352i −0.245479 + 0.130524i
\(527\) 2.72401 + 15.4486i 0.118660 + 0.672953i
\(528\) 0 0
\(529\) 11.2539 + 9.44316i 0.489301 + 0.410572i
\(530\) 1.41471 1.57120i 0.0614512 0.0682484i
\(531\) 0 0
\(532\) 2.91496 + 27.7340i 0.126380 + 1.20242i
\(533\) −15.6007 + 0.544789i −0.675742 + 0.0235974i
\(534\) 0 0
\(535\) −31.4175 7.83327i −1.35830 0.338662i
\(536\) 7.04135 + 10.4392i 0.304140 + 0.450906i
\(537\) 0 0
\(538\) −7.10041 1.25199i −0.306120 0.0539773i
\(539\) 4.83394 4.89217i 0.208213 0.210721i
\(540\) 0 0
\(541\) −39.1248 + 12.7124i −1.68211 + 0.546549i −0.985318 0.170729i \(-0.945388\pi\)
−0.696787 + 0.717278i \(0.745388\pi\)
\(542\) 6.42032 + 6.64843i 0.275776 + 0.285575i
\(543\) 0 0
\(544\) −6.09009 + 7.79496i −0.261110 + 0.334206i
\(545\) −12.7346 31.5192i −0.545490 1.35013i
\(546\) 0 0
\(547\) −0.119883 + 0.418083i −0.00512585 + 0.0178760i −0.963783 0.266687i \(-0.914071\pi\)
0.958657 + 0.284563i \(0.0918486\pi\)
\(548\) −5.20109 + 24.4692i −0.222179 + 1.04527i
\(549\) 0 0
\(550\) 6.46648 + 1.69126i 0.275731 + 0.0721156i
\(551\) −18.7979 + 22.4025i −0.800818 + 0.954378i
\(552\) 0 0
\(553\) −8.03607 + 16.4764i −0.341728 + 0.700647i
\(554\) −1.40655 + 1.45652i −0.0597584 + 0.0618817i
\(555\) 0 0
\(556\) 4.09861 + 6.55915i 0.173820 + 0.278170i
\(557\) 14.3252 + 6.37797i 0.606976 + 0.270243i 0.687124 0.726540i \(-0.258873\pi\)
−0.0801483 + 0.996783i \(0.525539\pi\)
\(558\) 0 0
\(559\) 22.4816 + 4.77861i 0.950870 + 0.202114i
\(560\) −24.5186 + 8.92404i −1.03610 + 0.377109i
\(561\) 0 0
\(562\) −2.25851 + 1.89512i −0.0952697 + 0.0799408i
\(563\) −0.660953 + 18.9272i −0.0278558 + 0.797687i 0.902427 + 0.430843i \(0.141784\pi\)
−0.930283 + 0.366844i \(0.880438\pi\)
\(564\) 0 0
\(565\) −14.5303 29.7915i −0.611295 1.25334i
\(566\) 5.76962 + 1.87466i 0.242515 + 0.0787979i
\(567\) 0 0
\(568\) 3.09779 + 4.26374i 0.129980 + 0.178903i
\(569\) 6.75833 6.52644i 0.283324 0.273603i −0.539393 0.842054i \(-0.681346\pi\)
0.822717 + 0.568451i \(0.192457\pi\)
\(570\) 0 0
\(571\) 1.45212 3.98968i 0.0607695 0.166963i −0.905592 0.424149i \(-0.860573\pi\)
0.966362 + 0.257186i \(0.0827954\pi\)
\(572\) −6.25220 + 14.9780i −0.261418 + 0.626260i
\(573\) 0 0
\(574\) 3.24505 2.53531i 0.135446 0.105822i
\(575\) 7.74675 + 17.3995i 0.323062 + 0.725608i
\(576\) 0 0
\(577\) −0.0135074 + 0.00287108i −0.000562319 + 0.000119525i −0.208193 0.978088i \(-0.566758\pi\)
0.207631 + 0.978207i \(0.433425\pi\)
\(578\) −2.25306 + 1.40787i −0.0937150 + 0.0585596i
\(579\) 0 0
\(580\) −25.9193 12.6417i −1.07624 0.524917i
\(581\) −3.50253 6.58730i −0.145309 0.273287i
\(582\) 0 0
\(583\) −4.45752 5.06621i −0.184612 0.209821i
\(584\) −8.89462 + 5.13531i −0.368062 + 0.212501i
\(585\) 0 0
\(586\) −2.12470 + 0.945975i −0.0877703 + 0.0390779i
\(587\) −6.90595 4.65812i −0.285039 0.192261i 0.408349 0.912826i \(-0.366105\pi\)
−0.693387 + 0.720565i \(0.743883\pi\)
\(588\) 0 0
\(589\) −33.2837 + 13.4475i −1.37143 + 0.554094i
\(590\) 14.3468 4.11388i 0.590649 0.169366i
\(591\) 0 0
\(592\) 3.47881 0.488915i 0.142978 0.0200943i
\(593\) 0.421935 0.0173268 0.00866341 0.999962i \(-0.497242\pi\)
0.00866341 + 0.999962i \(0.497242\pi\)
\(594\) 0 0
\(595\) 21.7718 0.892556
\(596\) 25.9418 3.64588i 1.06262 0.149341i
\(597\) 0 0
\(598\) 2.16879 0.621890i 0.0886884 0.0254310i
\(599\) 13.8835 5.60928i 0.567263 0.229189i −0.0730173 0.997331i \(-0.523263\pi\)
0.640280 + 0.768142i \(0.278818\pi\)
\(600\) 0 0
\(601\) −21.3136 14.3762i −0.869398 0.586417i 0.0414580 0.999140i \(-0.486800\pi\)
−0.910856 + 0.412724i \(0.864578\pi\)
\(602\) −5.53902 + 2.46613i −0.225753 + 0.100512i
\(603\) 0 0
\(604\) 7.64114 4.41161i 0.310913 0.179506i
\(605\) 13.6219 34.9133i 0.553810 1.41943i
\(606\) 0 0
\(607\) −0.731717 1.37616i −0.0296995 0.0558566i 0.867656 0.497165i \(-0.165626\pi\)
−0.897356 + 0.441308i \(0.854515\pi\)
\(608\) −20.3455 9.92318i −0.825121 0.402438i
\(609\) 0 0
\(610\) −6.02514 + 3.76492i −0.243951 + 0.152437i
\(611\) −13.3772 + 2.84342i −0.541184 + 0.115032i
\(612\) 0 0
\(613\) −16.1485 36.2700i −0.652230 1.46493i −0.872062 0.489395i \(-0.837218\pi\)
0.219832 0.975538i \(-0.429449\pi\)
\(614\) −6.52885 + 5.10089i −0.263483 + 0.205855i
\(615\) 0 0
\(616\) −2.02445 8.53539i −0.0815673 0.343901i
\(617\) −1.76882 + 4.85980i −0.0712101 + 0.195648i −0.970192 0.242338i \(-0.922086\pi\)
0.898982 + 0.437986i \(0.144308\pi\)
\(618\) 0 0
\(619\) 11.7676 11.3639i 0.472981 0.456753i −0.419554 0.907730i \(-0.637813\pi\)
0.892535 + 0.450978i \(0.148925\pi\)
\(620\) −20.8068 28.6381i −0.835620 1.15013i
\(621\) 0 0
\(622\) 1.17511 + 0.381816i 0.0471176 + 0.0153094i
\(623\) 5.74714 + 11.7834i 0.230254 + 0.472091i
\(624\) 0 0
\(625\) −0.501830 + 14.3705i −0.0200732 + 0.574821i
\(626\) 4.33663 3.63887i 0.173327 0.145438i
\(627\) 0 0
\(628\) −16.0233 + 5.83200i −0.639399 + 0.232722i
\(629\) −2.86725 0.609454i −0.114325 0.0243005i
\(630\) 0 0
\(631\) 11.3909 + 5.07157i 0.453466 + 0.201896i 0.620743 0.784014i \(-0.286831\pi\)
−0.167277 + 0.985910i \(0.553498\pi\)
\(632\) −5.21552 8.34658i −0.207462 0.332009i
\(633\) 0 0
\(634\) −2.24669 + 2.32651i −0.0892274 + 0.0923976i
\(635\) 20.3574 41.7388i 0.807858 1.65635i
\(636\) 0 0
\(637\) −3.42054 + 4.07644i −0.135527 + 0.161515i
\(638\) 2.42290 3.78029i 0.0959233 0.149663i
\(639\) 0 0
\(640\) 6.13192 28.8484i 0.242385 1.14033i
\(641\) 1.08016 3.76696i 0.0426637 0.148786i −0.937047 0.349204i \(-0.886452\pi\)
0.979711 + 0.200418i \(0.0642299\pi\)
\(642\) 0 0
\(643\) 11.0703 + 27.3999i 0.436569 + 1.08055i 0.971793 + 0.235835i \(0.0757826\pi\)
−0.535224 + 0.844710i \(0.679773\pi\)
\(644\) 7.51146 9.61423i 0.295993 0.378854i
\(645\) 0 0
\(646\) 4.01916 + 4.16196i 0.158132 + 0.163750i
\(647\) 20.9572 6.80940i 0.823911 0.267705i 0.133433 0.991058i \(-0.457400\pi\)
0.690478 + 0.723353i \(0.257400\pi\)
\(648\) 0 0
\(649\) −7.73343 47.0039i −0.303564 1.84507i
\(650\) −5.09310 0.898051i −0.199768 0.0352244i
\(651\) 0 0
\(652\) 16.3668 + 24.2648i 0.640975 + 0.950284i
\(653\) −17.0538 4.25200i −0.667369 0.166394i −0.106518 0.994311i \(-0.533970\pi\)
−0.560850 + 0.827917i \(0.689526\pi\)
\(654\) 0 0
\(655\) −44.5728 + 1.55652i −1.74160 + 0.0608182i
\(656\) −2.19398 20.8743i −0.0856604 0.815005i
\(657\) 0 0
\(658\) 2.41408 2.68111i 0.0941108 0.104521i
\(659\) −0.586973 0.492529i −0.0228652 0.0191862i 0.631283 0.775552i \(-0.282528\pi\)
−0.654149 + 0.756366i \(0.726973\pi\)
\(660\) 0 0
\(661\) 1.32631 + 7.52186i 0.0515874 + 0.292567i 0.999676 0.0254385i \(-0.00809821\pi\)
−0.948089 + 0.318005i \(0.896987\pi\)
\(662\) 7.45627 3.96457i 0.289796 0.154087i
\(663\) 0 0
\(664\) 3.99576 + 0.279411i 0.155066 + 0.0108433i
\(665\) 10.3586 + 48.7333i 0.401689 + 1.88980i
\(666\) 0 0
\(667\) 12.7245 1.33740i 0.492695 0.0517843i
\(668\) 17.3283 + 4.96880i 0.670451 + 0.192249i
\(669\) 0 0
\(670\) 7.05812 + 8.41154i 0.272679 + 0.324966i
\(671\) 9.70616 + 20.4937i 0.374702 + 0.791151i
\(672\) 0 0
\(673\) −0.761714 5.41988i −0.0293619 0.208921i 0.970062 0.242857i \(-0.0780846\pi\)
−0.999424 + 0.0339362i \(0.989196\pi\)
\(674\) −0.758993 + 1.04466i −0.0292353 + 0.0402390i
\(675\) 0 0
\(676\) −3.78003 + 11.6337i −0.145386 + 0.447452i
\(677\) 28.7025 + 15.2614i 1.10313 + 0.586543i 0.918163 0.396203i \(-0.129672\pi\)
0.184963 + 0.982745i \(0.440783\pi\)
\(678\) 0 0
\(679\) −33.6160 + 22.6742i −1.29006 + 0.870158i
\(680\) −6.19427 + 9.91290i −0.237539 + 0.380142i
\(681\) 0 0
\(682\) 4.80449 2.70090i 0.183973 0.103423i
\(683\) 27.4880 + 15.8702i 1.05180 + 0.607256i 0.923152 0.384434i \(-0.125603\pi\)
0.128646 + 0.991691i \(0.458937\pi\)
\(684\) 0 0
\(685\) −4.67168 + 44.4481i −0.178496 + 1.69827i
\(686\) 0.428487 6.12765i 0.0163597 0.233955i
\(687\) 0 0
\(688\) −4.30097 + 30.6030i −0.163973 + 1.16673i
\(689\) 3.75583 + 3.62697i 0.143086 + 0.138176i
\(690\) 0 0
\(691\) 9.16562 22.6857i 0.348677 0.863005i −0.646317 0.763069i \(-0.723692\pi\)
0.994994 0.0999362i \(-0.0318639\pi\)
\(692\) 15.1538 + 26.2472i 0.576062 + 0.997768i
\(693\) 0 0
\(694\) 2.57881 4.46662i 0.0978901 0.169551i
\(695\) 8.50731 + 10.8889i 0.322701 + 0.413038i
\(696\) 0 0
\(697\) −4.23699 + 16.9936i −0.160487 + 0.643679i
\(698\) 2.60201 + 2.03291i 0.0984875 + 0.0769469i
\(699\) 0 0
\(700\) −25.1361 + 12.2597i −0.950054 + 0.463372i
\(701\) −20.4382 14.8492i −0.771941 0.560848i 0.130608 0.991434i \(-0.458307\pi\)
−0.902550 + 0.430586i \(0.858307\pi\)
\(702\) 0 0
\(703\) 6.70794i 0.252995i
\(704\) −18.3923 6.21005i −0.693184 0.234050i
\(705\) 0 0
\(706\) 7.15119 + 0.249725i 0.269139 + 0.00939852i
\(707\) −2.94445 42.1076i −0.110738 1.58362i
\(708\) 0 0
\(709\) −0.966298 27.6712i −0.0362901 1.03921i −0.871838 0.489794i \(-0.837072\pi\)
0.835548 0.549418i \(-0.185150\pi\)
\(710\) 3.07519 + 3.41534i 0.115410 + 0.128176i
\(711\) 0 0
\(712\) −7.00020 0.735751i −0.262344 0.0275734i
\(713\) 14.5618 + 5.88336i 0.545345 + 0.220334i
\(714\) 0 0
\(715\) −8.31178 + 27.7804i −0.310843 + 1.03893i
\(716\) 24.9887 4.40618i 0.933872 0.164667i
\(717\) 0 0
\(718\) −2.46253 9.87666i −0.0919008 0.368594i
\(719\) 7.75673 17.4219i 0.289277 0.649728i −0.709193 0.705014i \(-0.750941\pi\)
0.998471 + 0.0552866i \(0.0176072\pi\)
\(720\) 0 0
\(721\) 0.127256 0.114582i 0.00473926 0.00426725i
\(722\) −4.16318 + 6.17218i −0.154938 + 0.229705i
\(723\) 0 0
\(724\) 24.8397 + 15.5216i 0.923161 + 0.576855i
\(725\) −27.5592 10.0307i −1.02352 0.372532i
\(726\) 0 0
\(727\) −8.83265 + 50.0925i −0.327585 + 1.85783i 0.163265 + 0.986582i \(0.447797\pi\)
−0.490850 + 0.871244i \(0.663314\pi\)
\(728\) 2.09742 + 6.45519i 0.0777355 + 0.239245i
\(729\) 0 0
\(730\) −7.24572 + 5.26432i −0.268176 + 0.194841i
\(731\) 12.1061 22.7683i 0.447760 0.842115i
\(732\) 0 0
\(733\) −6.59426 22.9969i −0.243565 0.849411i −0.984133 0.177430i \(-0.943222\pi\)
0.740569 0.671981i \(-0.234556\pi\)
\(734\) −7.26452 + 0.507985i −0.268138 + 0.0187501i
\(735\) 0 0
\(736\) 3.38723 + 9.30634i 0.124855 + 0.343036i
\(737\) 29.2775 19.2632i 1.07845 0.709568i
\(738\) 0 0
\(739\) 30.2672 + 27.2527i 1.11340 + 1.00251i 0.999960 + 0.00896278i \(0.00285298\pi\)
0.113438 + 0.993545i \(0.463814\pi\)
\(740\) 6.41821 1.60024i 0.235938 0.0588259i
\(741\) 0 0
\(742\) −1.36397 0.191694i −0.0500729 0.00703729i
\(743\) 5.72586 + 0.804718i 0.210062 + 0.0295222i 0.243419 0.969921i \(-0.421731\pi\)
−0.0333573 + 0.999443i \(0.510620\pi\)
\(744\) 0 0
\(745\) 45.4124 11.3226i 1.66378 0.414827i
\(746\) −5.83413 5.25308i −0.213603 0.192329i
\(747\) 0 0
\(748\) 14.2200 + 11.3748i 0.519935 + 0.415906i
\(749\) 7.21464 + 19.8221i 0.263617 + 0.724282i
\(750\) 0 0
\(751\) −21.1118 + 1.47628i −0.770382 + 0.0538703i −0.449537 0.893262i \(-0.648411\pi\)
−0.320844 + 0.947132i \(0.603967\pi\)
\(752\) −5.06860 17.6763i −0.184833 0.644588i
\(753\) 0 0
\(754\) −1.63102 + 3.06751i −0.0593984 + 0.111712i
\(755\) 12.7529 9.26551i 0.464125 0.337206i
\(756\) 0 0
\(757\) −11.9306 36.7185i −0.433623 1.33456i −0.894491 0.447087i \(-0.852462\pi\)
0.460867 0.887469i \(-0.347538\pi\)
\(758\) 0.757704 4.29715i 0.0275210 0.156080i
\(759\) 0 0
\(760\) −25.1359 9.14870i −0.911773 0.331858i
\(761\) 3.72143 + 2.32541i 0.134902 + 0.0842960i 0.595691 0.803213i \(-0.296878\pi\)
−0.460790 + 0.887509i \(0.652434\pi\)
\(762\) 0 0
\(763\) −12.3841 + 18.3603i −0.448336 + 0.664686i
\(764\) −5.35675 + 4.82324i −0.193800 + 0.174499i
\(765\) 0 0
\(766\) −0.420640 + 0.944774i −0.0151984 + 0.0341361i
\(767\) 8.91670 + 35.7629i 0.321963 + 1.29132i
\(768\) 0 0
\(769\) −23.9946 + 4.23090i −0.865268 + 0.152570i −0.588628 0.808404i \(-0.700332\pi\)
−0.276639 + 0.960974i \(0.589221\pi\)
\(770\) −2.53370 7.21774i −0.0913083 0.260109i
\(771\) 0 0
\(772\) 37.4142 + 15.1163i 1.34657 + 0.544048i
\(773\) 49.8408 + 5.23848i 1.79265 + 0.188415i 0.941614 0.336693i \(-0.109309\pi\)
0.851035 + 0.525108i \(0.175975\pi\)
\(774\) 0 0
\(775\) −24.0888 26.7534i −0.865297 0.961009i
\(776\) −0.759761 21.7567i −0.0272738 0.781020i
\(777\) 0 0
\(778\) −0.117513 1.68051i −0.00421304 0.0602493i
\(779\) −40.0539 1.39871i −1.43508 0.0501141i
\(780\) 0 0
\(781\) 11.9650 8.48520i 0.428142 0.303624i
\(782\) 2.53133i 0.0905200i
\(783\) 0 0
\(784\) −5.78860 4.20566i −0.206736 0.150202i
\(785\) −27.3810 + 13.3546i −0.977271 + 0.476647i
\(786\) 0 0
\(787\) 21.9370 + 17.1391i 0.781971 + 0.610942i 0.925519 0.378701i \(-0.123629\pi\)
−0.143549 + 0.989643i \(0.545851\pi\)
\(788\) 5.02423 20.1511i 0.178981 0.717853i
\(789\) 0 0
\(790\) −5.28393 6.76312i −0.187994 0.240621i
\(791\) −10.7969 + 18.7007i −0.383893 + 0.664921i
\(792\) 0 0
\(793\) −8.77267 15.1947i −0.311527 0.539580i
\(794\) 1.14058 2.82303i 0.0404776 0.100185i
\(795\) 0 0
\(796\) −9.61072 9.28096i −0.340643 0.328955i
\(797\) 6.13032 43.6195i 0.217147 1.54508i −0.510951 0.859610i \(-0.670707\pi\)
0.728098 0.685473i \(-0.240404\pi\)
\(798\) 0 0
\(799\) −1.07033 + 15.3065i −0.0378656 + 0.541504i
\(800\) 2.37292 22.5768i 0.0838953 0.798211i
\(801\) 0 0
\(802\) −1.67619 0.967752i −0.0591885 0.0341725i
\(803\) 14.0079 + 24.9179i 0.494328 + 0.879334i
\(804\) 0 0
\(805\) 11.5509 18.4853i 0.407115 0.651520i
\(806\) −3.53548 + 2.38471i −0.124532 + 0.0839980i
\(807\) 0 0
\(808\) 20.0097 + 10.6394i 0.703940 + 0.374291i
\(809\) −6.72556 + 20.6991i −0.236458 + 0.727743i 0.760467 + 0.649377i \(0.224970\pi\)
−0.996925 + 0.0783659i \(0.975030\pi\)
\(810\) 0 0
\(811\) −19.0123 + 26.1681i −0.667611 + 0.918888i −0.999703 0.0243591i \(-0.992245\pi\)
0.332092 + 0.943247i \(0.392245\pi\)
\(812\) 2.61465 + 18.6042i 0.0917561 + 0.652878i
\(813\) 0 0
\(814\) 0.131633 + 1.02147i 0.00461374 + 0.0358026i
\(815\) 33.6120 + 40.0572i 1.17738 + 1.40314i
\(816\) 0 0
\(817\) 56.7236 + 16.2652i 1.98451 + 0.569049i
\(818\) −5.17516 + 0.543931i −0.180945 + 0.0190181i
\(819\) 0 0
\(820\) −8.21691 38.6575i −0.286947 1.34998i
\(821\) −34.4021 2.40563i −1.20064 0.0839570i −0.544609 0.838690i \(-0.683322\pi\)
−0.656032 + 0.754733i \(0.727766\pi\)
\(822\) 0 0
\(823\) 28.1487 14.9669i 0.981201 0.521714i 0.100271 0.994960i \(-0.468029\pi\)
0.880930 + 0.473246i \(0.156918\pi\)
\(824\) 0.0159647 + 0.0905404i 0.000556157 + 0.00315412i
\(825\) 0 0
\(826\) −7.44840 6.24995i −0.259163 0.217463i
\(827\) 1.74959 1.94312i 0.0608393 0.0675689i −0.711957 0.702223i \(-0.752191\pi\)
0.772796 + 0.634654i \(0.218858\pi\)
\(828\) 0 0
\(829\) 0.916289 + 8.71791i 0.0318240 + 0.302786i 0.998843 + 0.0480825i \(0.0153111\pi\)
−0.967019 + 0.254703i \(0.918022\pi\)
\(830\) 3.49077 0.121901i 0.121167 0.00423123i
\(831\) 0 0
\(832\) 14.5740 + 3.63370i 0.505261 + 0.125976i
\(833\) 3.33858 + 4.94964i 0.115675 + 0.171495i
\(834\) 0 0
\(835\) 31.7167 + 5.59251i 1.09760 + 0.193537i
\(836\) −18.6955 + 37.2415i −0.646598 + 1.28803i
\(837\) 0 0
\(838\) −9.31343 + 3.02612i −0.321727 + 0.104535i
\(839\) 19.5785 + 20.2741i 0.675924 + 0.699940i 0.966429 0.256933i \(-0.0827121\pi\)
−0.290505 + 0.956874i \(0.593823\pi\)
\(840\) 0 0
\(841\) 5.72466 7.32724i 0.197402 0.252663i
\(842\) −1.99952 4.94898i −0.0689079 0.170553i
\(843\) 0 0
\(844\) 10.3524 36.1030i 0.356344 1.24272i
\(845\) −4.54376 + 21.3767i −0.156310 + 0.735381i
\(846\) 0 0
\(847\) −23.8189 + 5.36172i −0.818427 + 0.184231i
\(848\) −4.51261 + 5.37792i −0.154964 + 0.184679i
\(849\) 0 0
\(850\) −2.54358 + 5.21511i −0.0872440 + 0.178877i
\(851\) −2.03866 + 2.11109i −0.0698844 + 0.0723674i
\(852\) 0 0
\(853\) 6.39029 + 10.2266i 0.218799 + 0.350152i 0.939179 0.343428i \(-0.111588\pi\)
−0.720380 + 0.693580i \(0.756032\pi\)
\(854\) 4.22836 + 1.88259i 0.144691 + 0.0644208i
\(855\) 0 0
\(856\) −11.0778 2.35466i −0.378632 0.0804806i
\(857\) 10.8263 3.94045i 0.369819 0.134603i −0.150424 0.988622i \(-0.548064\pi\)
0.520243 + 0.854019i \(0.325842\pi\)
\(858\) 0 0
\(859\) −22.0450 + 18.4979i −0.752164 + 0.631141i −0.936074 0.351802i \(-0.885569\pi\)
0.183910 + 0.982943i \(0.441125\pi\)
\(860\) −2.03078 + 58.1538i −0.0692489 + 1.98303i
\(861\) 0 0
\(862\) 3.35202 + 6.87265i 0.114170 + 0.234083i
\(863\) 11.4124 + 3.70811i 0.388483 + 0.126226i 0.496745 0.867897i \(-0.334529\pi\)
−0.108262 + 0.994122i \(0.534529\pi\)
\(864\) 0 0
\(865\) 31.8269 + 43.8059i 1.08215 + 1.48945i
\(866\) 0.855978 0.826608i 0.0290873 0.0280893i
\(867\) 0 0
\(868\) −7.88738 + 21.6704i −0.267715 + 0.735541i
\(869\) −23.3953 + 14.2486i −0.793630 + 0.483351i
\(870\) 0 0
\(871\) −21.3682 + 16.6947i −0.724035 + 0.565678i
\(872\) −4.83620 10.8623i −0.163774 0.367843i
\(873\) 0 0
\(874\) 5.66605 1.20436i 0.191657 0.0407379i
\(875\) −10.3080 + 6.44114i −0.348474 + 0.217750i
\(876\) 0 0
\(877\) −16.5931 8.09298i −0.560308 0.273280i 0.136378 0.990657i \(-0.456454\pi\)
−0.696686 + 0.717376i \(0.745343\pi\)
\(878\) −4.32548 8.13505i −0.145978 0.274545i
\(879\) 0 0
\(880\) −38.0417 8.54305i −1.28238 0.287986i
\(881\) −24.4021 + 14.0886i −0.822129 + 0.474657i −0.851150 0.524922i \(-0.824094\pi\)
0.0290209 + 0.999579i \(0.490761\pi\)
\(882\) 0 0
\(883\) −17.3637 + 7.73084i −0.584336 + 0.260163i −0.677543 0.735483i \(-0.736955\pi\)
0.0932062 + 0.995647i \(0.470288\pi\)
\(884\) −11.6808 7.87882i −0.392869 0.264993i
\(885\) 0 0
\(886\) −0.915504 + 0.369888i −0.0307570 + 0.0124266i
\(887\) 42.2597 12.1178i 1.41894 0.406875i 0.523488 0.852033i \(-0.324630\pi\)
0.895452 + 0.445158i \(0.146853\pi\)
\(888\) 0 0
\(889\) −29.9590 + 4.21047i −1.00479 + 0.141215i
\(890\) −6.13795 −0.205745
\(891\) 0 0
\(892\) 45.1781 1.51267
\(893\) −34.7708 + 4.88671i −1.16356 + 0.163528i
\(894\) 0 0
\(895\) 43.5770 12.4955i 1.45662 0.417678i
\(896\) −17.8147 + 7.19761i −0.595147 + 0.240455i
\(897\) 0 0
\(898\) 4.37621 + 2.95179i 0.146036 + 0.0985026i
\(899\) −22.0930 + 9.83645i −0.736844 + 0.328064i
\(900\) 0 0
\(901\) 5.07312 2.92897i 0.169010 0.0975781i
\(902\) 6.12678 0.573003i 0.203999 0.0190789i
\(903\) 0 0
\(904\) −5.44282 10.2364i −0.181025 0.340459i
\(905\) 47.0338 + 22.9399i 1.56346 + 0.762548i
\(906\) 0 0
\(907\) −15.6006 + 9.74832i −0.518008 + 0.323688i −0.763604 0.645685i \(-0.776572\pi\)
0.245596 + 0.969372i \(0.421016\pi\)
\(908\) −27.9103 + 5.93252i −0.926236 + 0.196877i
\(909\) 0 0
\(910\) 2.40737 + 5.40705i 0.0798037 + 0.179242i
\(911\) 4.37755 3.42012i 0.145035 0.113314i −0.540532 0.841324i \(-0.681777\pi\)
0.685566 + 0.728010i \(0.259555\pi\)
\(912\) 0 0
\(913\) 0.905129 11.1114i 0.0299554 0.367735i
\(914\) 2.14870 5.90350i 0.0710726 0.195270i
\(915\) 0 0
\(916\) 9.00364 8.69471i 0.297489 0.287281i
\(917\) 17.0785 + 23.5065i 0.563980 + 0.776252i
\(918\) 0 0
\(919\) 13.4610 + 4.37374i 0.444037 + 0.144276i 0.522497 0.852641i \(-0.325000\pi\)
−0.0784604 + 0.996917i \(0.525000\pi\)
\(920\) 5.13020 + 10.5185i 0.169138 + 0.346783i
\(921\) 0 0
\(922\) −0.199351 + 5.70867i −0.00656529 + 0.188005i
\(923\) −8.69421 + 7.29530i −0.286173 + 0.240128i
\(924\) 0 0
\(925\) 6.32141 2.30081i 0.207847 0.0756501i
\(926\) 3.07723 + 0.654086i 0.101124 + 0.0214946i
\(927\) 0 0
\(928\) −13.9315 6.20272i −0.457325 0.203614i
\(929\) 7.17652 + 11.4848i 0.235454 + 0.376805i 0.944583 0.328274i \(-0.106467\pi\)
−0.709128 + 0.705079i \(0.750911\pi\)
\(930\) 0 0
\(931\) −9.49071 + 9.82791i −0.311045 + 0.322097i
\(932\) 0.755968 1.54996i 0.0247625 0.0507708i
\(933\) 0 0
\(934\) 3.15944 3.76527i 0.103380 0.123203i
\(935\) 27.3903 + 17.5552i 0.895758 + 0.574117i
\(936\) 0 0
\(937\) −1.89625 + 8.92115i −0.0619478 + 0.291441i −0.998206 0.0598709i \(-0.980931\pi\)
0.936258 + 0.351312i \(0.114264\pi\)
\(938\) 1.97176 6.87635i 0.0643803 0.224521i
\(939\) 0 0
\(940\) −12.9705 32.1031i −0.423051 1.04709i
\(941\) −14.9201 + 19.0969i −0.486382 + 0.622541i −0.967119 0.254324i \(-0.918147\pi\)
0.480737 + 0.876865i \(0.340369\pi\)
\(942\) 0 0
\(943\) 12.1805 + 12.6133i 0.396651 + 0.410744i
\(944\) −47.1328 + 15.3144i −1.53404 + 0.498441i
\(945\) 0 0
\(946\) −8.95695 1.36372i −0.291215 0.0443385i
\(947\) −5.16006 0.909858i −0.167680 0.0295664i 0.0891780 0.996016i \(-0.471576\pi\)
−0.256858 + 0.966449i \(0.582687\pi\)
\(948\) 0 0
\(949\) −12.3680 18.3364i −0.401483 0.595224i
\(950\) −12.8835 3.21222i −0.417997 0.104218i
\(951\) 0 0
\(952\) 7.61046 0.265763i 0.246656 0.00861343i
\(953\) −4.59645 43.7323i −0.148894 1.41663i −0.772562 0.634939i \(-0.781025\pi\)
0.623669 0.781689i \(-0.285641\pi\)
\(954\) 0 0
\(955\) −8.61712 + 9.57028i −0.278843 + 0.309687i
\(956\) 33.3482 + 27.9825i 1.07856 + 0.905018i
\(957\) 0 0
\(958\) 1.15600 + 6.55600i 0.0373486 + 0.211815i
\(959\) 25.7080 13.6692i 0.830155 0.441401i
\(960\) 0 0
\(961\) 1.31099 + 0.0916731i 0.0422899 + 0.00295720i
\(962\) −0.165683 0.779476i −0.00534182 0.0251313i
\(963\) 0 0
\(964\) −23.2239 + 2.44093i −0.747990 + 0.0786169i
\(965\) 69.3003 + 19.8715i 2.23086 + 0.639688i
\(966\) 0 0
\(967\) 9.98272 + 11.8969i 0.321023 + 0.382580i 0.902288 0.431134i \(-0.141887\pi\)
−0.581265 + 0.813714i \(0.697442\pi\)
\(968\) 4.33545 12.3704i 0.139347 0.397601i
\(969\) 0 0
\(970\) −2.64205 18.7991i −0.0848310 0.603604i
\(971\) −11.4826 + 15.8045i −0.368495 + 0.507190i −0.952491 0.304566i \(-0.901488\pi\)
0.583996 + 0.811757i \(0.301488\pi\)
\(972\) 0 0
\(973\) 2.78181 8.56154i 0.0891808 0.274470i
\(974\) 8.73847 + 4.64632i 0.279999 + 0.148878i
\(975\) 0 0
\(976\) 19.5580 13.1920i 0.626036 0.422267i
\(977\) −9.90505 + 15.8514i −0.316891 + 0.507131i −0.967698 0.252112i \(-0.918875\pi\)
0.650807 + 0.759243i \(0.274431\pi\)
\(978\) 0 0
\(979\) −2.27102 + 19.4583i −0.0725821 + 0.621891i
\(980\) −11.6675 6.73624i −0.372705 0.215181i
\(981\) 0 0
\(982\) 0.679495 6.46497i 0.0216836 0.206305i
\(983\) 4.26388 60.9763i 0.135997 1.94484i −0.154558 0.987984i \(-0.549395\pi\)
0.290555 0.956858i \(-0.406160\pi\)
\(984\) 0 0
\(985\) 5.16384 36.7427i 0.164534 1.17072i
\(986\) 2.80387 + 2.70766i 0.0892933 + 0.0862296i
\(987\) 0 0
\(988\) 12.0782 29.8946i 0.384259 0.951074i
\(989\) −12.9085 22.3582i −0.410467 0.710950i
\(990\) 0 0
\(991\) 9.31557 16.1350i 0.295919 0.512547i −0.679279 0.733880i \(-0.737708\pi\)
0.975198 + 0.221333i \(0.0710408\pi\)
\(992\) −11.5248 14.7511i −0.365913 0.468348i
\(993\) 0 0
\(994\) 0.724321 2.90509i 0.0229741 0.0921439i
\(995\) −18.8095 14.6956i −0.596301 0.465881i
\(996\) 0 0
\(997\) −15.1879 + 7.40765i −0.481007 + 0.234603i −0.662889 0.748718i \(-0.730670\pi\)
0.181882 + 0.983320i \(0.441781\pi\)
\(998\) 5.95947 + 4.32981i 0.188644 + 0.137058i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.bb.a.413.18 816
3.2 odd 2 297.2.x.a.83.17 yes 816
11.2 odd 10 inner 891.2.bb.a.332.18 816
27.13 even 9 297.2.x.a.149.17 yes 816
27.14 odd 18 inner 891.2.bb.a.314.18 816
33.2 even 10 297.2.x.a.2.17 816
297.13 odd 90 297.2.x.a.68.17 yes 816
297.68 even 90 inner 891.2.bb.a.233.18 816
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
297.2.x.a.2.17 816 33.2 even 10
297.2.x.a.68.17 yes 816 297.13 odd 90
297.2.x.a.83.17 yes 816 3.2 odd 2
297.2.x.a.149.17 yes 816 27.13 even 9
891.2.bb.a.233.18 816 297.68 even 90 inner
891.2.bb.a.314.18 816 27.14 odd 18 inner
891.2.bb.a.332.18 816 11.2 odd 10 inner
891.2.bb.a.413.18 816 1.1 even 1 trivial