Properties

Label 889.2.f.c.128.36
Level $889$
Weight $2$
Character 889.128
Analytic conductor $7.099$
Analytic rank $0$
Dimension $76$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [889,2,Mod(128,889)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("889.128"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(889, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 889 = 7 \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 889.f (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [76] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.09870073969\)
Analytic rank: \(0\)
Dimension: \(76\)
Relative dimension: \(38\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 128.36
Character \(\chi\) \(=\) 889.128
Dual form 889.2.f.c.382.36

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.24531 - 2.15694i) q^{2} +(-0.448739 - 0.777240i) q^{3} +(-2.10158 - 3.64005i) q^{4} +(0.262530 - 0.454716i) q^{5} -2.23528 q^{6} +(-2.22760 - 1.42751i) q^{7} -5.48724 q^{8} +(1.09727 - 1.90052i) q^{9} +(-0.653862 - 1.13252i) q^{10} +(-1.30679 - 2.26342i) q^{11} +(-1.88613 + 3.26687i) q^{12} +1.45191 q^{13} +(-5.85311 + 3.02710i) q^{14} -0.471231 q^{15} +(-2.63014 + 4.55553i) q^{16} +(2.27602 + 3.94218i) q^{17} +(-2.73287 - 4.73346i) q^{18} +(-0.100839 + 0.174659i) q^{19} -2.20692 q^{20} +(-0.109909 + 2.37196i) q^{21} -6.50942 q^{22} +(0.235477 - 0.407858i) q^{23} +(2.46234 + 4.26490i) q^{24} +(2.36216 + 4.09137i) q^{25} +(1.80807 - 3.13167i) q^{26} -4.66198 q^{27} +(-0.514735 + 11.1086i) q^{28} -1.50355 q^{29} +(-0.586827 + 1.01641i) q^{30} +(0.900011 + 1.55886i) q^{31} +(1.06342 + 1.84189i) q^{32} +(-1.17282 + 2.03138i) q^{33} +11.3374 q^{34} +(-1.23393 + 0.638159i) q^{35} -9.22398 q^{36} +(0.480992 - 0.833102i) q^{37} +(0.251152 + 0.435008i) q^{38} +(-0.651528 - 1.12848i) q^{39} +(-1.44057 + 2.49513i) q^{40} +1.83977 q^{41} +(4.97930 + 3.19089i) q^{42} -6.33513 q^{43} +(-5.49265 + 9.51355i) q^{44} +(-0.576131 - 0.997888i) q^{45} +(-0.586482 - 1.01582i) q^{46} +(-1.91960 + 3.32485i) q^{47} +4.72098 q^{48} +(2.92441 + 6.35986i) q^{49} +11.7664 q^{50} +(2.04268 - 3.53802i) q^{51} +(-3.05130 - 5.28501i) q^{52} +(-1.53772 - 2.66341i) q^{53} +(-5.80560 + 10.0556i) q^{54} -1.37229 q^{55} +(12.2234 + 7.83311i) q^{56} +0.181002 q^{57} +(-1.87238 + 3.24305i) q^{58} +(-4.68890 - 8.12141i) q^{59} +(0.990330 + 1.71530i) q^{60} +(6.89125 - 11.9360i) q^{61} +4.48316 q^{62} +(-5.15729 + 2.66724i) q^{63} -5.22342 q^{64} +(0.381169 - 0.660205i) q^{65} +(2.92103 + 5.05938i) q^{66} +(-6.69052 - 11.5883i) q^{67} +(9.56649 - 16.5696i) q^{68} -0.422671 q^{69} +(-0.160149 + 3.45620i) q^{70} +10.5072 q^{71} +(-6.02096 + 10.4286i) q^{72} +(1.47152 + 2.54876i) q^{73} +(-1.19797 - 2.07494i) q^{74} +(2.11999 - 3.67192i) q^{75} +0.847689 q^{76} +(-0.320068 + 6.90747i) q^{77} -3.24541 q^{78} +(1.76927 - 3.06446i) q^{79} +(1.38098 + 2.39193i) q^{80} +(-1.19978 - 2.07808i) q^{81} +(2.29108 - 3.96827i) q^{82} +17.4538 q^{83} +(8.86503 - 4.58480i) q^{84} +2.39010 q^{85} +(-7.88919 + 13.6645i) q^{86} +(0.674700 + 1.16861i) q^{87} +(7.17066 + 12.4200i) q^{88} +(2.83313 - 4.90713i) q^{89} -2.86984 q^{90} +(-3.23427 - 2.07262i) q^{91} -1.97950 q^{92} +(0.807741 - 1.39905i) q^{93} +(4.78099 + 8.28091i) q^{94} +(0.0529467 + 0.0917064i) q^{95} +(0.954394 - 1.65306i) q^{96} +6.82742 q^{97} +(17.3596 + 1.61223i) q^{98} -5.73558 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 76 q + 2 q^{2} - 11 q^{3} - 38 q^{4} - 16 q^{5} + 22 q^{6} + 3 q^{7} - 47 q^{9} - 12 q^{10} + 2 q^{11} - 30 q^{12} + 42 q^{13} - 2 q^{14} + 14 q^{15} - 46 q^{16} - 58 q^{17} + 13 q^{18} - 17 q^{19} + 88 q^{20}+ \cdots + 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/889\mathbb{Z}\right)^\times\).

\(n\) \(255\) \(638\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.24531 2.15694i 0.880566 1.52518i 0.0298523 0.999554i \(-0.490496\pi\)
0.850713 0.525630i \(-0.176170\pi\)
\(3\) −0.448739 0.777240i −0.259080 0.448739i 0.706916 0.707298i \(-0.250086\pi\)
−0.965996 + 0.258558i \(0.916753\pi\)
\(4\) −2.10158 3.64005i −1.05079 1.82002i
\(5\) 0.262530 0.454716i 0.117407 0.203355i −0.801332 0.598219i \(-0.795875\pi\)
0.918739 + 0.394864i \(0.129208\pi\)
\(6\) −2.23528 −0.912547
\(7\) −2.22760 1.42751i −0.841954 0.539550i
\(8\) −5.48724 −1.94003
\(9\) 1.09727 1.90052i 0.365755 0.633507i
\(10\) −0.653862 1.13252i −0.206769 0.358135i
\(11\) −1.30679 2.26342i −0.394012 0.682448i 0.598963 0.800777i \(-0.295580\pi\)
−0.992974 + 0.118329i \(0.962246\pi\)
\(12\) −1.88613 + 3.26687i −0.544478 + 0.943063i
\(13\) 1.45191 0.402686 0.201343 0.979521i \(-0.435469\pi\)
0.201343 + 0.979521i \(0.435469\pi\)
\(14\) −5.85311 + 3.02710i −1.56431 + 0.809026i
\(15\) −0.471231 −0.121671
\(16\) −2.63014 + 4.55553i −0.657534 + 1.13888i
\(17\) 2.27602 + 3.94218i 0.552016 + 0.956119i 0.998129 + 0.0611429i \(0.0194745\pi\)
−0.446113 + 0.894977i \(0.647192\pi\)
\(18\) −2.73287 4.73346i −0.644143 1.11569i
\(19\) −0.100839 + 0.174659i −0.0231341 + 0.0400695i −0.877361 0.479831i \(-0.840698\pi\)
0.854227 + 0.519901i \(0.174031\pi\)
\(20\) −2.20692 −0.493481
\(21\) −0.109909 + 2.37196i −0.0239840 + 0.517604i
\(22\) −6.50942 −1.38781
\(23\) 0.235477 0.407858i 0.0491003 0.0850442i −0.840431 0.541919i \(-0.817698\pi\)
0.889531 + 0.456875i \(0.151031\pi\)
\(24\) 2.46234 + 4.26490i 0.502623 + 0.870569i
\(25\) 2.36216 + 4.09137i 0.472431 + 0.818275i
\(26\) 1.80807 3.13167i 0.354592 0.614171i
\(27\) −4.66198 −0.897199
\(28\) −0.514735 + 11.1086i −0.0972758 + 2.09933i
\(29\) −1.50355 −0.279201 −0.139601 0.990208i \(-0.544582\pi\)
−0.139601 + 0.990208i \(0.544582\pi\)
\(30\) −0.586827 + 1.01641i −0.107140 + 0.185571i
\(31\) 0.900011 + 1.55886i 0.161647 + 0.279980i 0.935459 0.353434i \(-0.114986\pi\)
−0.773813 + 0.633415i \(0.781653\pi\)
\(32\) 1.06342 + 1.84189i 0.187987 + 0.325604i
\(33\) −1.17282 + 2.03138i −0.204161 + 0.353617i
\(34\) 11.3374 1.94434
\(35\) −1.23393 + 0.638159i −0.208571 + 0.107869i
\(36\) −9.22398 −1.53733
\(37\) 0.480992 0.833102i 0.0790745 0.136961i −0.823776 0.566915i \(-0.808137\pi\)
0.902851 + 0.429954i \(0.141470\pi\)
\(38\) 0.251152 + 0.435008i 0.0407422 + 0.0705676i
\(39\) −0.651528 1.12848i −0.104328 0.180701i
\(40\) −1.44057 + 2.49513i −0.227773 + 0.394515i
\(41\) 1.83977 0.287324 0.143662 0.989627i \(-0.454112\pi\)
0.143662 + 0.989627i \(0.454112\pi\)
\(42\) 4.97930 + 3.19089i 0.768323 + 0.492365i
\(43\) −6.33513 −0.966098 −0.483049 0.875593i \(-0.660471\pi\)
−0.483049 + 0.875593i \(0.660471\pi\)
\(44\) −5.49265 + 9.51355i −0.828048 + 1.43422i
\(45\) −0.576131 0.997888i −0.0858845 0.148756i
\(46\) −0.586482 1.01582i −0.0864721 0.149774i
\(47\) −1.91960 + 3.32485i −0.280003 + 0.484979i −0.971385 0.237510i \(-0.923669\pi\)
0.691382 + 0.722489i \(0.257002\pi\)
\(48\) 4.72098 0.681415
\(49\) 2.92441 + 6.35986i 0.417772 + 0.908552i
\(50\) 11.7664 1.66403
\(51\) 2.04268 3.53802i 0.286032 0.495423i
\(52\) −3.05130 5.28501i −0.423139 0.732899i
\(53\) −1.53772 2.66341i −0.211222 0.365847i 0.740875 0.671643i \(-0.234411\pi\)
−0.952097 + 0.305795i \(0.901078\pi\)
\(54\) −5.80560 + 10.0556i −0.790043 + 1.36839i
\(55\) −1.37229 −0.185039
\(56\) 12.2234 + 7.83311i 1.63342 + 1.04674i
\(57\) 0.181002 0.0239743
\(58\) −1.87238 + 3.24305i −0.245855 + 0.425834i
\(59\) −4.68890 8.12141i −0.610443 1.05732i −0.991166 0.132629i \(-0.957658\pi\)
0.380723 0.924689i \(-0.375675\pi\)
\(60\) 0.990330 + 1.71530i 0.127851 + 0.221445i
\(61\) 6.89125 11.9360i 0.882334 1.52825i 0.0335958 0.999436i \(-0.489304\pi\)
0.848739 0.528813i \(-0.177363\pi\)
\(62\) 4.48316 0.569362
\(63\) −5.15729 + 2.66724i −0.649757 + 0.336040i
\(64\) −5.22342 −0.652927
\(65\) 0.381169 0.660205i 0.0472782 0.0818883i
\(66\) 2.92103 + 5.05938i 0.359554 + 0.622766i
\(67\) −6.69052 11.5883i −0.817377 1.41574i −0.907609 0.419817i \(-0.862094\pi\)
0.0902317 0.995921i \(-0.471239\pi\)
\(68\) 9.56649 16.5696i 1.16011 2.00936i
\(69\) −0.422671 −0.0508836
\(70\) −0.160149 + 3.45620i −0.0191414 + 0.413095i
\(71\) 10.5072 1.24698 0.623490 0.781832i \(-0.285714\pi\)
0.623490 + 0.781832i \(0.285714\pi\)
\(72\) −6.02096 + 10.4286i −0.709577 + 1.22902i
\(73\) 1.47152 + 2.54876i 0.172229 + 0.298309i 0.939199 0.343374i \(-0.111570\pi\)
−0.766970 + 0.641683i \(0.778236\pi\)
\(74\) −1.19797 2.07494i −0.139261 0.241207i
\(75\) 2.11999 3.67192i 0.244795 0.423997i
\(76\) 0.847689 0.0972366
\(77\) −0.320068 + 6.90747i −0.0364752 + 0.787179i
\(78\) −3.24541 −0.367470
\(79\) 1.76927 3.06446i 0.199058 0.344779i −0.749165 0.662383i \(-0.769545\pi\)
0.948223 + 0.317604i \(0.102878\pi\)
\(80\) 1.38098 + 2.39193i 0.154398 + 0.267426i
\(81\) −1.19978 2.07808i −0.133309 0.230898i
\(82\) 2.29108 3.96827i 0.253008 0.438222i
\(83\) 17.4538 1.91580 0.957902 0.287094i \(-0.0926893\pi\)
0.957902 + 0.287094i \(0.0926893\pi\)
\(84\) 8.86503 4.58480i 0.967255 0.500243i
\(85\) 2.39010 0.259242
\(86\) −7.88919 + 13.6645i −0.850713 + 1.47348i
\(87\) 0.674700 + 1.16861i 0.0723354 + 0.125289i
\(88\) 7.17066 + 12.4200i 0.764395 + 1.32397i
\(89\) 2.83313 4.90713i 0.300312 0.520155i −0.675895 0.736998i \(-0.736243\pi\)
0.976206 + 0.216843i \(0.0695760\pi\)
\(90\) −2.86984 −0.302508
\(91\) −3.23427 2.07262i −0.339043 0.217269i
\(92\) −1.97950 −0.206377
\(93\) 0.807741 1.39905i 0.0837588 0.145075i
\(94\) 4.78099 + 8.28091i 0.493121 + 0.854111i
\(95\) 0.0529467 + 0.0917064i 0.00543222 + 0.00940888i
\(96\) 0.954394 1.65306i 0.0974075 0.168715i
\(97\) 6.82742 0.693219 0.346610 0.938009i \(-0.387333\pi\)
0.346610 + 0.938009i \(0.387333\pi\)
\(98\) 17.3596 + 1.61223i 1.75358 + 0.162860i
\(99\) −5.73558 −0.576447
\(100\) 9.92853 17.1967i 0.992853 1.71967i
\(101\) −3.49520 6.05386i −0.347785 0.602381i 0.638071 0.769978i \(-0.279733\pi\)
−0.985856 + 0.167596i \(0.946399\pi\)
\(102\) −5.08753 8.81186i −0.503740 0.872504i
\(103\) −2.00406 + 3.47114i −0.197466 + 0.342021i −0.947706 0.319144i \(-0.896605\pi\)
0.750240 + 0.661165i \(0.229938\pi\)
\(104\) −7.96696 −0.781224
\(105\) 1.04971 + 0.672689i 0.102442 + 0.0656477i
\(106\) −7.65974 −0.743980
\(107\) 3.05688 5.29468i 0.295520 0.511856i −0.679586 0.733596i \(-0.737840\pi\)
0.975106 + 0.221740i \(0.0711737\pi\)
\(108\) 9.79754 + 16.9698i 0.942769 + 1.63292i
\(109\) 2.24913 + 3.89561i 0.215428 + 0.373132i 0.953405 0.301694i \(-0.0975521\pi\)
−0.737977 + 0.674826i \(0.764219\pi\)
\(110\) −1.70892 + 2.95993i −0.162939 + 0.282219i
\(111\) −0.863360 −0.0819465
\(112\) 12.3620 6.39334i 1.16810 0.604114i
\(113\) −7.47274 −0.702977 −0.351488 0.936192i \(-0.614324\pi\)
−0.351488 + 0.936192i \(0.614324\pi\)
\(114\) 0.225404 0.390410i 0.0211110 0.0365653i
\(115\) −0.123640 0.214150i −0.0115294 0.0199696i
\(116\) 3.15983 + 5.47298i 0.293382 + 0.508153i
\(117\) 1.59313 2.75938i 0.147285 0.255105i
\(118\) −23.3565 −2.15014
\(119\) 0.557459 12.0307i 0.0511022 1.10285i
\(120\) 2.58576 0.236046
\(121\) 2.08461 3.61064i 0.189510 0.328240i
\(122\) −17.1635 29.7280i −1.55391 2.69145i
\(123\) −0.825579 1.42994i −0.0744399 0.128934i
\(124\) 3.78290 6.55217i 0.339714 0.588402i
\(125\) 5.10585 0.456681
\(126\) −0.669354 + 14.4455i −0.0596308 + 1.28691i
\(127\) 1.00000 0.0887357
\(128\) −8.63159 + 14.9504i −0.762932 + 1.32144i
\(129\) 2.84282 + 4.92391i 0.250297 + 0.433526i
\(130\) −0.949346 1.64432i −0.0832632 0.144216i
\(131\) −0.00535191 + 0.00926978i −0.000467599 + 0.000809905i −0.866259 0.499595i \(-0.833482\pi\)
0.865792 + 0.500405i \(0.166816\pi\)
\(132\) 9.85908 0.858122
\(133\) 0.473958 0.245120i 0.0410973 0.0212546i
\(134\) −33.3270 −2.87902
\(135\) −1.22391 + 2.11988i −0.105338 + 0.182450i
\(136\) −12.4891 21.6317i −1.07093 1.85490i
\(137\) 1.23789 + 2.14409i 0.105760 + 0.183182i 0.914048 0.405605i \(-0.132939\pi\)
−0.808288 + 0.588787i \(0.799606\pi\)
\(138\) −0.526355 + 0.911674i −0.0448063 + 0.0776069i
\(139\) −5.74197 −0.487028 −0.243514 0.969897i \(-0.578300\pi\)
−0.243514 + 0.969897i \(0.578300\pi\)
\(140\) 4.91613 + 3.15040i 0.415489 + 0.266258i
\(141\) 3.44560 0.290172
\(142\) 13.0847 22.6634i 1.09805 1.90187i
\(143\) −1.89734 3.28628i −0.158663 0.274813i
\(144\) 5.77191 + 9.99725i 0.480993 + 0.833104i
\(145\) −0.394726 + 0.683686i −0.0327802 + 0.0567770i
\(146\) 7.33000 0.606635
\(147\) 3.63084 5.12688i 0.299467 0.422858i
\(148\) −4.04338 −0.332363
\(149\) −2.97753 + 5.15723i −0.243928 + 0.422496i −0.961830 0.273648i \(-0.911770\pi\)
0.717901 + 0.696145i \(0.245103\pi\)
\(150\) −5.28007 9.14535i −0.431116 0.746714i
\(151\) −7.89503 13.6746i −0.642488 1.11282i −0.984875 0.173264i \(-0.944569\pi\)
0.342387 0.939559i \(-0.388765\pi\)
\(152\) 0.553329 0.958395i 0.0448809 0.0777361i
\(153\) 9.98959 0.807611
\(154\) 14.5004 + 9.29229i 1.16847 + 0.748794i
\(155\) 0.945120 0.0759139
\(156\) −2.73848 + 4.74318i −0.219254 + 0.379759i
\(157\) 3.27313 + 5.66923i 0.261224 + 0.452454i 0.966568 0.256412i \(-0.0825404\pi\)
−0.705343 + 0.708866i \(0.749207\pi\)
\(158\) −4.40657 7.63239i −0.350567 0.607201i
\(159\) −1.38007 + 2.39035i −0.109447 + 0.189567i
\(160\) 1.11672 0.0882842
\(161\) −1.10677 + 0.572397i −0.0872258 + 0.0451112i
\(162\) −5.97639 −0.469549
\(163\) −3.15013 + 5.45618i −0.246737 + 0.427361i −0.962619 0.270861i \(-0.912692\pi\)
0.715882 + 0.698222i \(0.246025\pi\)
\(164\) −3.86643 6.69686i −0.301918 0.522937i
\(165\) 0.615799 + 1.06660i 0.0479399 + 0.0830343i
\(166\) 21.7354 37.6468i 1.68699 2.92196i
\(167\) 16.4914 1.27614 0.638072 0.769976i \(-0.279732\pi\)
0.638072 + 0.769976i \(0.279732\pi\)
\(168\) 0.603094 13.0155i 0.0465297 1.00417i
\(169\) −10.8920 −0.837844
\(170\) 2.97640 5.15528i 0.228280 0.395392i
\(171\) 0.221295 + 0.383294i 0.0169229 + 0.0293112i
\(172\) 13.3138 + 23.0602i 1.01517 + 1.75832i
\(173\) −10.5980 + 18.3563i −0.805751 + 1.39560i 0.110032 + 0.993928i \(0.464905\pi\)
−0.915783 + 0.401673i \(0.868429\pi\)
\(174\) 3.36084 0.254784
\(175\) 0.578556 12.4860i 0.0437348 0.943850i
\(176\) 13.7481 1.03630
\(177\) −4.20819 + 7.28880i −0.316307 + 0.547859i
\(178\) −7.05625 12.2218i −0.528888 0.916061i
\(179\) 3.12847 + 5.41868i 0.233833 + 0.405011i 0.958933 0.283633i \(-0.0915397\pi\)
−0.725100 + 0.688644i \(0.758206\pi\)
\(180\) −2.42157 + 4.19429i −0.180493 + 0.312624i
\(181\) 7.21573 0.536341 0.268171 0.963371i \(-0.413581\pi\)
0.268171 + 0.963371i \(0.413581\pi\)
\(182\) −8.49816 + 4.39506i −0.629926 + 0.325784i
\(183\) −12.3695 −0.914380
\(184\) −1.29212 + 2.23801i −0.0952561 + 0.164988i
\(185\) −0.252550 0.437429i −0.0185678 0.0321604i
\(186\) −2.01177 3.48449i −0.147510 0.255495i
\(187\) 5.94855 10.3032i 0.435001 0.753444i
\(188\) 16.1368 1.17690
\(189\) 10.3850 + 6.65505i 0.755400 + 0.484083i
\(190\) 0.263740 0.0191337
\(191\) −11.5057 + 19.9285i −0.832524 + 1.44197i 0.0635070 + 0.997981i \(0.479771\pi\)
−0.896031 + 0.443992i \(0.853562\pi\)
\(192\) 2.34395 + 4.05984i 0.169160 + 0.292994i
\(193\) −6.70506 11.6135i −0.482641 0.835959i 0.517160 0.855888i \(-0.326989\pi\)
−0.999801 + 0.0199298i \(0.993656\pi\)
\(194\) 8.50223 14.7263i 0.610425 1.05729i
\(195\) −0.684183 −0.0489954
\(196\) 17.0043 24.0108i 1.21459 1.71505i
\(197\) 4.15719 0.296187 0.148094 0.988973i \(-0.452686\pi\)
0.148094 + 0.988973i \(0.452686\pi\)
\(198\) −7.14256 + 12.3713i −0.507600 + 0.879188i
\(199\) 2.37768 + 4.11827i 0.168549 + 0.291936i 0.937910 0.346879i \(-0.112758\pi\)
−0.769361 + 0.638815i \(0.779425\pi\)
\(200\) −12.9617 22.4503i −0.916531 1.58748i
\(201\) −6.00460 + 10.4003i −0.423532 + 0.733579i
\(202\) −17.4104 −1.22499
\(203\) 3.34930 + 2.14633i 0.235075 + 0.150643i
\(204\) −17.1714 −1.20224
\(205\) 0.482996 0.836573i 0.0337339 0.0584288i
\(206\) 4.99135 + 8.64527i 0.347764 + 0.602344i
\(207\) −0.516761 0.895057i −0.0359174 0.0622107i
\(208\) −3.81871 + 6.61420i −0.264780 + 0.458612i
\(209\) 0.527103 0.0364605
\(210\) 2.75816 1.42646i 0.190331 0.0984352i
\(211\) 27.7227 1.90851 0.954254 0.298997i \(-0.0966520\pi\)
0.954254 + 0.298997i \(0.0966520\pi\)
\(212\) −6.46329 + 11.1948i −0.443901 + 0.768859i
\(213\) −4.71501 8.16664i −0.323067 0.559569i
\(214\) −7.61352 13.1870i −0.520450 0.901445i
\(215\) −1.66316 + 2.88068i −0.113427 + 0.196461i
\(216\) 25.5814 1.74059
\(217\) 0.220437 4.75731i 0.0149643 0.322947i
\(218\) 11.2034 0.758793
\(219\) 1.32066 2.28745i 0.0892421 0.154572i
\(220\) 2.88397 + 4.99519i 0.194437 + 0.336776i
\(221\) 3.30457 + 5.72368i 0.222289 + 0.385016i
\(222\) −1.07515 + 1.86221i −0.0721593 + 0.124983i
\(223\) 19.5825 1.31134 0.655671 0.755047i \(-0.272386\pi\)
0.655671 + 0.755047i \(0.272386\pi\)
\(224\) 0.260460 5.62104i 0.0174027 0.375572i
\(225\) 10.3677 0.691177
\(226\) −9.30587 + 16.1182i −0.619017 + 1.07217i
\(227\) −4.75695 8.23927i −0.315730 0.546860i 0.663863 0.747854i \(-0.268916\pi\)
−0.979592 + 0.200995i \(0.935583\pi\)
\(228\) −0.380391 0.658857i −0.0251920 0.0436339i
\(229\) −3.98104 + 6.89536i −0.263074 + 0.455658i −0.967057 0.254559i \(-0.918070\pi\)
0.703983 + 0.710217i \(0.251403\pi\)
\(230\) −0.615877 −0.0406097
\(231\) 5.51238 2.85088i 0.362688 0.187574i
\(232\) 8.25031 0.541660
\(233\) −1.38156 + 2.39293i −0.0905091 + 0.156766i −0.907725 0.419565i \(-0.862183\pi\)
0.817216 + 0.576331i \(0.195516\pi\)
\(234\) −3.96787 6.87255i −0.259388 0.449273i
\(235\) 1.00791 + 1.74575i 0.0657486 + 0.113880i
\(236\) −19.7082 + 34.1356i −1.28290 + 2.22204i
\(237\) −3.17576 −0.206288
\(238\) −25.2551 16.1843i −1.63705 1.04907i
\(239\) −29.2782 −1.89385 −0.946924 0.321458i \(-0.895827\pi\)
−0.946924 + 0.321458i \(0.895827\pi\)
\(240\) 1.23940 2.14670i 0.0800030 0.138569i
\(241\) 0.718774 + 1.24495i 0.0463003 + 0.0801944i 0.888247 0.459367i \(-0.151924\pi\)
−0.841947 + 0.539561i \(0.818590\pi\)
\(242\) −5.19195 8.99272i −0.333751 0.578074i
\(243\) −8.06975 + 13.9772i −0.517675 + 0.896639i
\(244\) −57.9301 −3.70860
\(245\) 3.65967 + 0.339883i 0.233808 + 0.0217143i
\(246\) −4.11240 −0.262197
\(247\) −0.146409 + 0.253588i −0.00931580 + 0.0161354i
\(248\) −4.93858 8.55386i −0.313600 0.543171i
\(249\) −7.83221 13.5658i −0.496346 0.859697i
\(250\) 6.35836 11.0130i 0.402138 0.696523i
\(251\) −9.26401 −0.584739 −0.292370 0.956305i \(-0.594444\pi\)
−0.292370 + 0.956305i \(0.594444\pi\)
\(252\) 20.5473 + 13.1674i 1.29436 + 0.829466i
\(253\) −1.23087 −0.0773844
\(254\) 1.24531 2.15694i 0.0781376 0.135338i
\(255\) −1.07253 1.85768i −0.0671644 0.116332i
\(256\) 16.2746 + 28.1884i 1.01716 + 1.76177i
\(257\) 5.34788 9.26279i 0.333591 0.577797i −0.649622 0.760257i \(-0.725073\pi\)
0.983213 + 0.182460i \(0.0584061\pi\)
\(258\) 14.1608 0.881610
\(259\) −2.26072 + 1.16920i −0.140474 + 0.0726503i
\(260\) −3.20424 −0.198718
\(261\) −1.64979 + 2.85752i −0.102119 + 0.176876i
\(262\) 0.0133296 + 0.0230875i 0.000823503 + 0.00142635i
\(263\) 10.7959 + 18.6990i 0.665701 + 1.15303i 0.979095 + 0.203405i \(0.0652007\pi\)
−0.313394 + 0.949623i \(0.601466\pi\)
\(264\) 6.43552 11.1466i 0.396079 0.686029i
\(265\) −1.61479 −0.0991959
\(266\) 0.0615140 1.32755i 0.00377166 0.0813971i
\(267\) −5.08536 −0.311219
\(268\) −28.1214 + 48.7076i −1.71779 + 2.97529i
\(269\) 3.07589 + 5.32760i 0.187540 + 0.324830i 0.944430 0.328714i \(-0.106615\pi\)
−0.756889 + 0.653543i \(0.773282\pi\)
\(270\) 3.04829 + 5.27980i 0.185513 + 0.321318i
\(271\) 0.118396 0.205068i 0.00719205 0.0124570i −0.862407 0.506216i \(-0.831044\pi\)
0.869599 + 0.493759i \(0.164377\pi\)
\(272\) −23.9450 −1.45188
\(273\) −0.159577 + 3.44387i −0.00965804 + 0.208432i
\(274\) 6.16621 0.372515
\(275\) 6.17368 10.6931i 0.372287 0.644820i
\(276\) 0.888278 + 1.53854i 0.0534680 + 0.0926094i
\(277\) −3.23884 5.60984i −0.194603 0.337063i 0.752167 0.658972i \(-0.229009\pi\)
−0.946770 + 0.321910i \(0.895675\pi\)
\(278\) −7.15052 + 12.3851i −0.428860 + 0.742807i
\(279\) 3.95021 0.236493
\(280\) 6.77084 3.50173i 0.404635 0.209268i
\(281\) 8.39461 0.500781 0.250390 0.968145i \(-0.419441\pi\)
0.250390 + 0.968145i \(0.419441\pi\)
\(282\) 4.29084 7.43195i 0.255516 0.442566i
\(283\) 11.6391 + 20.1595i 0.691871 + 1.19836i 0.971224 + 0.238167i \(0.0765466\pi\)
−0.279353 + 0.960188i \(0.590120\pi\)
\(284\) −22.0818 38.2468i −1.31032 2.26953i
\(285\) 0.0475186 0.0823046i 0.00281476 0.00487530i
\(286\) −9.45107 −0.558853
\(287\) −4.09828 2.62630i −0.241914 0.155026i
\(288\) 4.66740 0.275029
\(289\) −1.86053 + 3.22253i −0.109443 + 0.189561i
\(290\) 0.983111 + 1.70280i 0.0577303 + 0.0999917i
\(291\) −3.06373 5.30654i −0.179599 0.311075i
\(292\) 6.18506 10.7128i 0.361953 0.626922i
\(293\) 5.84226 0.341308 0.170654 0.985331i \(-0.445412\pi\)
0.170654 + 0.985331i \(0.445412\pi\)
\(294\) −6.53685 14.2160i −0.381237 0.829096i
\(295\) −4.92391 −0.286681
\(296\) −2.63932 + 4.57143i −0.153407 + 0.265709i
\(297\) 6.09223 + 10.5520i 0.353507 + 0.612292i
\(298\) 7.41587 + 12.8447i 0.429590 + 0.744072i
\(299\) 0.341890 0.592171i 0.0197720 0.0342461i
\(300\) −17.8213 −1.02891
\(301\) 14.1121 + 9.04349i 0.813410 + 0.521258i
\(302\) −39.3270 −2.26301
\(303\) −3.13687 + 5.43321i −0.180208 + 0.312130i
\(304\) −0.530442 0.918753i −0.0304229 0.0526941i
\(305\) −3.61832 6.26712i −0.207185 0.358854i
\(306\) 12.4401 21.5469i 0.711154 1.23176i
\(307\) 6.39402 0.364926 0.182463 0.983213i \(-0.441593\pi\)
0.182463 + 0.983213i \(0.441593\pi\)
\(308\) 25.8162 13.3515i 1.47101 0.760775i
\(309\) 3.59721 0.204638
\(310\) 1.17697 2.03856i 0.0668472 0.115783i
\(311\) −7.71506 13.3629i −0.437481 0.757739i 0.560014 0.828483i \(-0.310796\pi\)
−0.997494 + 0.0707444i \(0.977463\pi\)
\(312\) 3.57509 + 6.19223i 0.202400 + 0.350566i
\(313\) 9.86775 17.0914i 0.557758 0.966065i −0.439925 0.898034i \(-0.644995\pi\)
0.997683 0.0680310i \(-0.0216717\pi\)
\(314\) 16.3042 0.920101
\(315\) −0.141110 + 3.04533i −0.00795066 + 0.171585i
\(316\) −14.8730 −0.836674
\(317\) 5.92534 10.2630i 0.332800 0.576427i −0.650259 0.759712i \(-0.725340\pi\)
0.983060 + 0.183285i \(0.0586731\pi\)
\(318\) 3.43723 + 5.95345i 0.192750 + 0.333853i
\(319\) 1.96482 + 3.40316i 0.110009 + 0.190540i
\(320\) −1.37130 + 2.37517i −0.0766582 + 0.132776i
\(321\) −5.48698 −0.306253
\(322\) −0.143645 + 3.10004i −0.00800505 + 0.172759i
\(323\) −0.918049 −0.0510816
\(324\) −5.04288 + 8.73453i −0.280160 + 0.485251i
\(325\) 3.42963 + 5.94029i 0.190242 + 0.329508i
\(326\) 7.84575 + 13.5892i 0.434536 + 0.752639i
\(327\) 2.01855 3.49623i 0.111626 0.193342i
\(328\) −10.0953 −0.557418
\(329\) 9.02237 4.66617i 0.497419 0.257254i
\(330\) 3.06744 0.168857
\(331\) 4.86647 8.42898i 0.267486 0.463299i −0.700726 0.713430i \(-0.747141\pi\)
0.968212 + 0.250132i \(0.0804739\pi\)
\(332\) −36.6806 63.5327i −2.01311 3.48681i
\(333\) −1.05555 1.82827i −0.0578439 0.100189i
\(334\) 20.5369 35.5710i 1.12373 1.94636i
\(335\) −7.02585 −0.383863
\(336\) −10.5165 6.73927i −0.573720 0.367657i
\(337\) 27.8574 1.51749 0.758746 0.651387i \(-0.225812\pi\)
0.758746 + 0.651387i \(0.225812\pi\)
\(338\) −13.5639 + 23.4933i −0.737776 + 1.27787i
\(339\) 3.35332 + 5.80811i 0.182127 + 0.315453i
\(340\) −5.02298 8.70006i −0.272410 0.471827i
\(341\) 2.35225 4.07421i 0.127381 0.220631i
\(342\) 1.10232 0.0596067
\(343\) 2.56439 18.3419i 0.138464 0.990367i
\(344\) 34.7624 1.87426
\(345\) −0.110964 + 0.192195i −0.00597409 + 0.0103474i
\(346\) 26.3955 + 45.7184i 1.41903 + 2.45784i
\(347\) −7.85989 13.6137i −0.421941 0.730823i 0.574188 0.818723i \(-0.305318\pi\)
−0.996129 + 0.0879002i \(0.971984\pi\)
\(348\) 2.83588 4.91188i 0.152019 0.263305i
\(349\) −25.6094 −1.37084 −0.685419 0.728149i \(-0.740381\pi\)
−0.685419 + 0.728149i \(0.740381\pi\)
\(350\) −26.2109 16.7968i −1.40103 0.897825i
\(351\) −6.76876 −0.361290
\(352\) 2.77932 4.81393i 0.148138 0.256583i
\(353\) 7.83459 + 13.5699i 0.416993 + 0.722254i 0.995635 0.0933280i \(-0.0297505\pi\)
−0.578642 + 0.815582i \(0.696417\pi\)
\(354\) 10.4810 + 18.1536i 0.557058 + 0.964852i
\(355\) 2.75847 4.77780i 0.146404 0.253579i
\(356\) −23.8163 −1.26226
\(357\) −9.60085 + 4.96535i −0.508131 + 0.262794i
\(358\) 15.5837 0.823622
\(359\) −4.98729 + 8.63823i −0.263219 + 0.455909i −0.967095 0.254414i \(-0.918117\pi\)
0.703877 + 0.710322i \(0.251451\pi\)
\(360\) 3.16137 + 5.47565i 0.166619 + 0.288592i
\(361\) 9.47966 + 16.4193i 0.498930 + 0.864171i
\(362\) 8.98580 15.5639i 0.472283 0.818019i
\(363\) −3.74178 −0.196392
\(364\) −0.747347 + 16.1287i −0.0391716 + 0.845372i
\(365\) 1.54528 0.0808836
\(366\) −15.4038 + 26.6802i −0.805172 + 1.39460i
\(367\) −3.91901 6.78793i −0.204571 0.354327i 0.745425 0.666589i \(-0.232247\pi\)
−0.949996 + 0.312262i \(0.898913\pi\)
\(368\) 1.23867 + 2.14544i 0.0645702 + 0.111839i
\(369\) 2.01872 3.49652i 0.105090 0.182022i
\(370\) −1.25801 −0.0654007
\(371\) −0.376630 + 8.12813i −0.0195536 + 0.421991i
\(372\) −6.79014 −0.352052
\(373\) 9.61390 16.6518i 0.497789 0.862196i −0.502208 0.864747i \(-0.667479\pi\)
0.999997 + 0.00255103i \(0.000812018\pi\)
\(374\) −14.8156 25.6613i −0.766094 1.32691i
\(375\) −2.29120 3.96847i −0.118317 0.204931i
\(376\) 10.5333 18.2442i 0.543214 0.940874i
\(377\) −2.18301 −0.112431
\(378\) 27.2871 14.1123i 1.40350 0.725857i
\(379\) 34.6924 1.78203 0.891014 0.453976i \(-0.149995\pi\)
0.891014 + 0.453976i \(0.149995\pi\)
\(380\) 0.222544 0.385457i 0.0114163 0.0197735i
\(381\) −0.448739 0.777240i −0.0229896 0.0398192i
\(382\) 28.6563 + 49.6342i 1.46618 + 2.53950i
\(383\) −5.81375 + 10.0697i −0.297069 + 0.514538i −0.975464 0.220159i \(-0.929342\pi\)
0.678395 + 0.734697i \(0.262676\pi\)
\(384\) 15.4933 0.790642
\(385\) 3.05691 + 1.95896i 0.155794 + 0.0998378i
\(386\) −33.3995 −1.69999
\(387\) −6.95132 + 12.0400i −0.353355 + 0.612030i
\(388\) −14.3484 24.8521i −0.728429 1.26168i
\(389\) −3.35763 5.81558i −0.170238 0.294862i 0.768265 0.640132i \(-0.221120\pi\)
−0.938503 + 0.345271i \(0.887787\pi\)
\(390\) −0.852018 + 1.47574i −0.0431436 + 0.0747269i
\(391\) 2.14380 0.108417
\(392\) −16.0469 34.8981i −0.810491 1.76262i
\(393\) 0.00960646 0.000484582
\(394\) 5.17698 8.96679i 0.260812 0.451740i
\(395\) −0.928972 1.60903i −0.0467417 0.0809589i
\(396\) 12.0538 + 20.8778i 0.605726 + 1.04915i
\(397\) −9.26544 + 16.0482i −0.465019 + 0.805437i −0.999202 0.0399319i \(-0.987286\pi\)
0.534183 + 0.845369i \(0.320619\pi\)
\(398\) 11.8438 0.593675
\(399\) −0.403201 0.258383i −0.0201853 0.0129354i
\(400\) −24.8512 −1.24256
\(401\) −1.95867 + 3.39251i −0.0978112 + 0.169414i −0.910778 0.412895i \(-0.864517\pi\)
0.812967 + 0.582310i \(0.197851\pi\)
\(402\) 14.9551 + 25.9031i 0.745895 + 1.29193i
\(403\) 1.30673 + 2.26333i 0.0650930 + 0.112744i
\(404\) −14.6909 + 25.4454i −0.730899 + 1.26595i
\(405\) −1.25992 −0.0626057
\(406\) 8.80041 4.55138i 0.436757 0.225881i
\(407\) −2.51422 −0.124625
\(408\) −11.2087 + 19.4140i −0.554912 + 0.961136i
\(409\) 11.9849 + 20.7584i 0.592614 + 1.02644i 0.993879 + 0.110476i \(0.0352374\pi\)
−0.401265 + 0.915962i \(0.631429\pi\)
\(410\) −1.20296 2.08358i −0.0594098 0.102901i
\(411\) 1.11098 1.92427i 0.0548006 0.0949174i
\(412\) 16.8468 0.829982
\(413\) −1.14844 + 24.7847i −0.0565110 + 1.21958i
\(414\) −2.57411 −0.126510
\(415\) 4.58215 7.93652i 0.224929 0.389589i
\(416\) 1.54398 + 2.67426i 0.0757000 + 0.131116i
\(417\) 2.57665 + 4.46289i 0.126179 + 0.218548i
\(418\) 0.656405 1.13693i 0.0321058 0.0556089i
\(419\) 16.6001 0.810970 0.405485 0.914102i \(-0.367103\pi\)
0.405485 + 0.914102i \(0.367103\pi\)
\(420\) 0.242559 5.23472i 0.0118357 0.255428i
\(421\) 24.9623 1.21659 0.608294 0.793712i \(-0.291854\pi\)
0.608294 + 0.793712i \(0.291854\pi\)
\(422\) 34.5233 59.7961i 1.68057 2.91083i
\(423\) 4.21262 + 7.29648i 0.204825 + 0.354767i
\(424\) 8.43784 + 14.6148i 0.409778 + 0.709756i
\(425\) −10.7526 + 18.6241i −0.521579 + 0.903401i
\(426\) −23.4866 −1.13793
\(427\) −32.3898 + 16.7513i −1.56745 + 0.810651i
\(428\) −25.6972 −1.24212
\(429\) −1.70282 + 2.94937i −0.0822129 + 0.142397i
\(430\) 4.14230 + 7.17467i 0.199759 + 0.345993i
\(431\) 11.8693 + 20.5582i 0.571723 + 0.990254i 0.996389 + 0.0849035i \(0.0270582\pi\)
−0.424666 + 0.905350i \(0.639608\pi\)
\(432\) 12.2616 21.2378i 0.589939 1.02180i
\(433\) 26.6967 1.28296 0.641481 0.767139i \(-0.278320\pi\)
0.641481 + 0.767139i \(0.278320\pi\)
\(434\) −9.98670 6.39978i −0.479377 0.307199i
\(435\) 0.708517 0.0339708
\(436\) 9.45347 16.3739i 0.452739 0.784167i
\(437\) 0.0474906 + 0.0822562i 0.00227178 + 0.00393485i
\(438\) −3.28926 5.69717i −0.157167 0.272221i
\(439\) −0.381229 + 0.660308i −0.0181951 + 0.0315148i −0.874980 0.484160i \(-0.839125\pi\)
0.856784 + 0.515675i \(0.172459\pi\)
\(440\) 7.53006 0.358982
\(441\) 15.2959 + 1.42057i 0.728376 + 0.0676461i
\(442\) 16.4608 0.782961
\(443\) 6.04312 10.4670i 0.287117 0.497302i −0.686003 0.727599i \(-0.740636\pi\)
0.973120 + 0.230297i \(0.0739697\pi\)
\(444\) 1.81442 + 3.14267i 0.0861087 + 0.149145i
\(445\) −1.48757 2.57654i −0.0705174 0.122140i
\(446\) 24.3862 42.2382i 1.15472 2.00004i
\(447\) 5.34453 0.252788
\(448\) 11.6357 + 7.45650i 0.549734 + 0.352287i
\(449\) −1.21186 −0.0571911 −0.0285955 0.999591i \(-0.509103\pi\)
−0.0285955 + 0.999591i \(0.509103\pi\)
\(450\) 12.9109 22.3624i 0.608626 1.05417i
\(451\) −2.40419 4.16419i −0.113209 0.196084i
\(452\) 15.7046 + 27.2012i 0.738682 + 1.27943i
\(453\) −7.08562 + 12.2727i −0.332912 + 0.576620i
\(454\) −23.6954 −1.11208
\(455\) −1.79154 + 0.926547i −0.0839889 + 0.0434372i
\(456\) −0.993203 −0.0465110
\(457\) 13.4544 23.3038i 0.629372 1.09011i −0.358305 0.933604i \(-0.616645\pi\)
0.987678 0.156501i \(-0.0500213\pi\)
\(458\) 9.91523 + 17.1737i 0.463308 + 0.802474i
\(459\) −10.6108 18.3784i −0.495268 0.857829i
\(460\) −0.519677 + 0.900108i −0.0242301 + 0.0419677i
\(461\) −5.84995 −0.272459 −0.136230 0.990677i \(-0.543499\pi\)
−0.136230 + 0.990677i \(0.543499\pi\)
\(462\) 0.715441 15.4401i 0.0332853 0.718338i
\(463\) 6.82196 0.317043 0.158522 0.987355i \(-0.449327\pi\)
0.158522 + 0.987355i \(0.449327\pi\)
\(464\) 3.95453 6.84944i 0.183584 0.317977i
\(465\) −0.424113 0.734585i −0.0196678 0.0340656i
\(466\) 3.44094 + 5.95988i 0.159398 + 0.276086i
\(467\) −16.2687 + 28.1783i −0.752827 + 1.30393i 0.193620 + 0.981077i \(0.437977\pi\)
−0.946447 + 0.322858i \(0.895356\pi\)
\(468\) −13.3924 −0.619062
\(469\) −1.63869 + 35.3649i −0.0756677 + 1.63300i
\(470\) 5.02062 0.231584
\(471\) 2.93757 5.08802i 0.135356 0.234443i
\(472\) 25.7291 + 44.5641i 1.18428 + 2.05123i
\(473\) 8.27868 + 14.3391i 0.380654 + 0.659312i
\(474\) −3.95480 + 6.84991i −0.181650 + 0.314627i
\(475\) −0.952793 −0.0437171
\(476\) −44.9637 + 23.2542i −2.06091 + 1.06586i
\(477\) −6.74915 −0.309022
\(478\) −36.4603 + 63.1512i −1.66766 + 2.88847i
\(479\) −7.64409 13.2400i −0.349268 0.604949i 0.636852 0.770986i \(-0.280236\pi\)
−0.986120 + 0.166037i \(0.946903\pi\)
\(480\) −0.501115 0.867956i −0.0228727 0.0396166i
\(481\) 0.698355 1.20959i 0.0318422 0.0551524i
\(482\) 3.58038 0.163082
\(483\) 0.941542 + 0.603369i 0.0428416 + 0.0274542i
\(484\) −17.5239 −0.796540
\(485\) 1.79240 3.10453i 0.0813888 0.140970i
\(486\) 20.0987 + 34.8119i 0.911693 + 1.57910i
\(487\) 11.6410 + 20.1628i 0.527504 + 0.913663i 0.999486 + 0.0320550i \(0.0102052\pi\)
−0.471983 + 0.881608i \(0.656461\pi\)
\(488\) −37.8139 + 65.4957i −1.71176 + 2.96485i
\(489\) 5.65434 0.255698
\(490\) 5.29053 7.47042i 0.239002 0.337479i
\(491\) 16.4779 0.743639 0.371820 0.928305i \(-0.378734\pi\)
0.371820 + 0.928305i \(0.378734\pi\)
\(492\) −3.47004 + 6.01029i −0.156442 + 0.270965i
\(493\) −3.42210 5.92725i −0.154124 0.266950i
\(494\) 0.364649 + 0.631591i 0.0164063 + 0.0284166i
\(495\) −1.50576 + 2.60806i −0.0676790 + 0.117223i
\(496\) −9.46860 −0.425153
\(497\) −23.4059 14.9992i −1.04990 0.672807i
\(498\) −39.0141 −1.74826
\(499\) 12.9873 22.4946i 0.581390 1.00700i −0.413925 0.910311i \(-0.635843\pi\)
0.995315 0.0966856i \(-0.0308241\pi\)
\(500\) −10.7304 18.5855i −0.479877 0.831171i
\(501\) −7.40035 12.8178i −0.330623 0.572657i
\(502\) −11.5365 + 19.9819i −0.514901 + 0.891835i
\(503\) −22.6548 −1.01013 −0.505063 0.863082i \(-0.668531\pi\)
−0.505063 + 0.863082i \(0.668531\pi\)
\(504\) 28.2993 14.6358i 1.26055 0.651929i
\(505\) −3.67038 −0.163330
\(506\) −1.53282 + 2.65492i −0.0681420 + 0.118025i
\(507\) 4.88766 + 8.46567i 0.217068 + 0.375974i
\(508\) −2.10158 3.64005i −0.0932427 0.161501i
\(509\) −10.5563 + 18.2841i −0.467901 + 0.810429i −0.999327 0.0366760i \(-0.988323\pi\)
0.531426 + 0.847105i \(0.321656\pi\)
\(510\) −5.34252 −0.236571
\(511\) 0.360417 7.77823i 0.0159439 0.344089i
\(512\) 46.5410 2.05684
\(513\) 0.470111 0.814256i 0.0207559 0.0359503i
\(514\) −13.3195 23.0701i −0.587498 1.01758i
\(515\) 1.05225 + 1.82256i 0.0463678 + 0.0803114i
\(516\) 11.9489 20.6960i 0.526019 0.911092i
\(517\) 10.0341 0.441297
\(518\) −0.293414 + 6.33224i −0.0128919 + 0.278223i
\(519\) 19.0230 0.835015
\(520\) −2.09157 + 3.62270i −0.0917213 + 0.158866i
\(521\) −5.93230 10.2750i −0.259899 0.450158i 0.706316 0.707897i \(-0.250356\pi\)
−0.966215 + 0.257739i \(0.917023\pi\)
\(522\) 4.10899 + 7.11698i 0.179846 + 0.311502i
\(523\) −19.7339 + 34.1801i −0.862903 + 1.49459i 0.00621204 + 0.999981i \(0.498023\pi\)
−0.869115 + 0.494611i \(0.835311\pi\)
\(524\) 0.0449899 0.00196539
\(525\) −9.96420 + 5.15326i −0.434873 + 0.224907i
\(526\) 53.7766 2.34477
\(527\) −4.09689 + 7.09601i −0.178463 + 0.309107i
\(528\) −6.16933 10.6856i −0.268485 0.465031i
\(529\) 11.3891 + 19.7265i 0.495178 + 0.857674i
\(530\) −2.01091 + 3.48300i −0.0873485 + 0.151292i
\(531\) −20.5799 −0.893090
\(532\) −1.88831 1.21009i −0.0818687 0.0524640i
\(533\) 2.67118 0.115702
\(534\) −6.33283 + 10.9688i −0.274048 + 0.474666i
\(535\) −1.60505 2.78003i −0.0693923 0.120191i
\(536\) 36.7125 + 63.5879i 1.58574 + 2.74658i
\(537\) 2.80774 4.86315i 0.121163 0.209860i
\(538\) 15.3217 0.660566
\(539\) 10.5735 14.9302i 0.455432 0.643088i
\(540\) 10.2886 0.442751
\(541\) 9.26318 16.0443i 0.398255 0.689798i −0.595255 0.803537i \(-0.702949\pi\)
0.993511 + 0.113738i \(0.0362825\pi\)
\(542\) −0.294879 0.510746i −0.0126661 0.0219384i
\(543\) −3.23798 5.60835i −0.138955 0.240677i
\(544\) −4.84072 + 8.38437i −0.207544 + 0.359477i
\(545\) 2.36186 0.101171
\(546\) 7.22948 + 4.63287i 0.309393 + 0.198269i
\(547\) 19.8599 0.849148 0.424574 0.905393i \(-0.360424\pi\)
0.424574 + 0.905393i \(0.360424\pi\)
\(548\) 5.20306 9.01196i 0.222264 0.384972i
\(549\) −15.1231 26.1939i −0.645437 1.11793i
\(550\) −15.3763 26.6325i −0.655646 1.13561i
\(551\) 0.151616 0.262607i 0.00645908 0.0111875i
\(552\) 2.31930 0.0987158
\(553\) −8.31578 + 4.30074i −0.353623 + 0.182886i
\(554\) −16.1334 −0.685444
\(555\) −0.226658 + 0.392583i −0.00962110 + 0.0166642i
\(556\) 12.0672 + 20.9010i 0.511764 + 0.886402i
\(557\) 8.13454 + 14.0894i 0.344672 + 0.596989i 0.985294 0.170867i \(-0.0546569\pi\)
−0.640622 + 0.767856i \(0.721324\pi\)
\(558\) 4.91922 8.52034i 0.208247 0.360695i
\(559\) −9.19801 −0.389035
\(560\) 0.338240 7.29963i 0.0142932 0.308466i
\(561\) −10.6774 −0.450800
\(562\) 10.4539 18.1066i 0.440970 0.763783i
\(563\) −15.9603 27.6440i −0.672645 1.16506i −0.977151 0.212545i \(-0.931825\pi\)
0.304506 0.952510i \(-0.401509\pi\)
\(564\) −7.24122 12.5422i −0.304910 0.528120i
\(565\) −1.96182 + 3.39797i −0.0825344 + 0.142954i
\(566\) 57.9769 2.43695
\(567\) −0.293859 + 6.34184i −0.0123409 + 0.266332i
\(568\) −57.6557 −2.41918
\(569\) 9.33702 16.1722i 0.391428 0.677974i −0.601210 0.799091i \(-0.705314\pi\)
0.992638 + 0.121117i \(0.0386477\pi\)
\(570\) −0.118351 0.204989i −0.00495716 0.00858605i
\(571\) −15.3214 26.5375i −0.641182 1.11056i −0.985169 0.171585i \(-0.945111\pi\)
0.343988 0.938974i \(-0.388222\pi\)
\(572\) −7.97481 + 13.8128i −0.333444 + 0.577542i
\(573\) 20.6523 0.862761
\(574\) −10.7684 + 5.56917i −0.449464 + 0.232453i
\(575\) 2.22493 0.0927860
\(576\) −5.73147 + 9.92720i −0.238811 + 0.413634i
\(577\) 6.86958 + 11.8985i 0.285984 + 0.495339i 0.972847 0.231447i \(-0.0743461\pi\)
−0.686863 + 0.726787i \(0.741013\pi\)
\(578\) 4.63386 + 8.02608i 0.192743 + 0.333841i
\(579\) −6.01765 + 10.4229i −0.250085 + 0.433160i
\(580\) 3.31820 0.137781
\(581\) −38.8801 24.9156i −1.61302 1.03367i
\(582\) −15.2612 −0.632595
\(583\) −4.01895 + 6.96103i −0.166448 + 0.288296i
\(584\) −8.07461 13.9856i −0.334130 0.578729i
\(585\) −0.836488 1.44884i −0.0345845 0.0599022i
\(586\) 7.27541 12.6014i 0.300544 0.520558i
\(587\) 43.1552 1.78121 0.890603 0.454782i \(-0.150283\pi\)
0.890603 + 0.454782i \(0.150283\pi\)
\(588\) −26.2926 2.44186i −1.08429 0.100701i
\(589\) −0.363026 −0.0149582
\(590\) −6.13178 + 10.6206i −0.252442 + 0.437242i
\(591\) −1.86549 3.23113i −0.0767362 0.132911i
\(592\) 2.53015 + 4.38234i 0.103988 + 0.180113i
\(593\) −18.9321 + 32.7914i −0.777450 + 1.34658i 0.155957 + 0.987764i \(0.450154\pi\)
−0.933407 + 0.358819i \(0.883180\pi\)
\(594\) 30.3468 1.24514
\(595\) −5.32418 3.41190i −0.218270 0.139874i
\(596\) 25.0301 1.02527
\(597\) 2.13392 3.69606i 0.0873355 0.151270i
\(598\) −0.851517 1.47487i −0.0348211 0.0603120i
\(599\) −21.7322 37.6412i −0.887952 1.53798i −0.842292 0.539021i \(-0.818794\pi\)
−0.0456595 0.998957i \(-0.514539\pi\)
\(600\) −11.6329 + 20.1487i −0.474910 + 0.822568i
\(601\) −6.30594 −0.257225 −0.128612 0.991695i \(-0.541052\pi\)
−0.128612 + 0.991695i \(0.541052\pi\)
\(602\) 37.0802 19.1770i 1.51128 0.781598i
\(603\) −29.3651 −1.19584
\(604\) −33.1841 + 57.4766i −1.35024 + 2.33869i
\(605\) −1.09454 1.89581i −0.0444995 0.0770755i
\(606\) 7.81273 + 13.5320i 0.317370 + 0.549701i
\(607\) −17.3272 + 30.0116i −0.703291 + 1.21814i 0.264014 + 0.964519i \(0.414953\pi\)
−0.967305 + 0.253616i \(0.918380\pi\)
\(608\) −0.428937 −0.0173957
\(609\) 0.165252 3.56635i 0.00669637 0.144516i
\(610\) −18.0237 −0.729759
\(611\) −2.78708 + 4.82737i −0.112753 + 0.195294i
\(612\) −20.9940 36.3626i −0.848630 1.46987i
\(613\) 10.2054 + 17.6763i 0.412192 + 0.713938i 0.995129 0.0985793i \(-0.0314298\pi\)
−0.582937 + 0.812517i \(0.698096\pi\)
\(614\) 7.96252 13.7915i 0.321341 0.556579i
\(615\) −0.866957 −0.0349591
\(616\) 1.75629 37.9029i 0.0707630 1.52715i
\(617\) −7.50281 −0.302052 −0.151026 0.988530i \(-0.548258\pi\)
−0.151026 + 0.988530i \(0.548258\pi\)
\(618\) 4.47963 7.75894i 0.180197 0.312110i
\(619\) −8.58028 14.8615i −0.344871 0.597333i 0.640460 0.767992i \(-0.278744\pi\)
−0.985330 + 0.170659i \(0.945411\pi\)
\(620\) −1.98625 3.44028i −0.0797697 0.138165i
\(621\) −1.09779 + 1.90143i −0.0440527 + 0.0763016i
\(622\) −38.4305 −1.54092
\(623\) −13.3161 + 6.88679i −0.533498 + 0.275913i
\(624\) 6.85442 0.274397
\(625\) −10.4703 + 18.1352i −0.418814 + 0.725406i
\(626\) −24.5768 42.5682i −0.982285 1.70137i
\(627\) −0.236532 0.409685i −0.00944617 0.0163612i
\(628\) 13.7575 23.8287i 0.548985 0.950870i
\(629\) 4.37899 0.174602
\(630\) 6.39286 + 4.09674i 0.254698 + 0.163218i
\(631\) 8.55084 0.340403 0.170202 0.985409i \(-0.445558\pi\)
0.170202 + 0.985409i \(0.445558\pi\)
\(632\) −9.70839 + 16.8154i −0.386179 + 0.668882i
\(633\) −12.4403 21.5472i −0.494456 0.856423i
\(634\) −14.7578 25.5612i −0.586105 1.01516i
\(635\) 0.262530 0.454716i 0.0104182 0.0180448i
\(636\) 11.6013 0.460023
\(637\) 4.24596 + 9.23393i 0.168231 + 0.365861i
\(638\) 9.78720 0.387479
\(639\) 11.5292 19.9692i 0.456089 0.789970i
\(640\) 4.53211 + 7.84984i 0.179147 + 0.310292i
\(641\) −11.3506 19.6598i −0.448322 0.776517i 0.549955 0.835194i \(-0.314645\pi\)
−0.998277 + 0.0586777i \(0.981312\pi\)
\(642\) −6.83298 + 11.8351i −0.269676 + 0.467093i
\(643\) 10.9385 0.431374 0.215687 0.976463i \(-0.430801\pi\)
0.215687 + 0.976463i \(0.430801\pi\)
\(644\) 4.40952 + 2.82576i 0.173760 + 0.111350i
\(645\) 2.98531 0.117546
\(646\) −1.14325 + 1.98017i −0.0449807 + 0.0779089i
\(647\) 1.37721 + 2.38539i 0.0541436 + 0.0937795i 0.891827 0.452377i \(-0.149424\pi\)
−0.837683 + 0.546156i \(0.816090\pi\)
\(648\) 6.58349 + 11.4029i 0.258624 + 0.447950i
\(649\) −12.2548 + 21.2259i −0.481043 + 0.833191i
\(650\) 17.0838 0.670081
\(651\) −3.79649 + 1.96346i −0.148796 + 0.0769540i
\(652\) 26.4810 1.03708
\(653\) 17.5243 30.3529i 0.685778 1.18780i −0.287414 0.957806i \(-0.592796\pi\)
0.973192 0.229996i \(-0.0738712\pi\)
\(654\) −5.02743 8.70776i −0.196588 0.340500i
\(655\) 0.00281008 + 0.00486720i 0.000109799 + 0.000190177i
\(656\) −4.83885 + 8.38114i −0.188925 + 0.327228i
\(657\) 6.45861 0.251975
\(658\) 1.17099 25.2715i 0.0456501 0.985185i
\(659\) −44.9909 −1.75260 −0.876299 0.481767i \(-0.839995\pi\)
−0.876299 + 0.481767i \(0.839995\pi\)
\(660\) 2.58831 4.48308i 0.100750 0.174504i
\(661\) −7.40286 12.8221i −0.287938 0.498723i 0.685380 0.728186i \(-0.259636\pi\)
−0.973317 + 0.229463i \(0.926303\pi\)
\(662\) −12.1205 20.9933i −0.471077 0.815930i
\(663\) 2.96578 5.13688i 0.115181 0.199500i
\(664\) −95.7732 −3.71672
\(665\) 0.0129681 0.279867i 0.000502881 0.0108528i
\(666\) −5.25795 −0.203741
\(667\) −0.354050 + 0.613233i −0.0137089 + 0.0237445i
\(668\) −34.6581 60.0296i −1.34096 2.32261i
\(669\) −8.78744 15.2203i −0.339742 0.588451i
\(670\) −8.74935 + 15.1543i −0.338017 + 0.585462i
\(671\) −36.0216 −1.39060
\(672\) −4.48578 + 2.31994i −0.173043 + 0.0894938i
\(673\) −30.9268 −1.19214 −0.596070 0.802932i \(-0.703272\pi\)
−0.596070 + 0.802932i \(0.703272\pi\)
\(674\) 34.6911 60.0867i 1.33625 2.31445i
\(675\) −11.0123 19.0739i −0.423865 0.734155i
\(676\) 22.8904 + 39.6473i 0.880399 + 1.52490i
\(677\) −25.6794 + 44.4779i −0.986938 + 1.70943i −0.353950 + 0.935264i \(0.615162\pi\)
−0.632988 + 0.774162i \(0.718172\pi\)
\(678\) 16.7036 0.641499
\(679\) −15.2088 9.74624i −0.583658 0.374026i
\(680\) −13.1150 −0.502938
\(681\) −4.26926 + 7.39457i −0.163598 + 0.283361i
\(682\) −5.85855 10.1473i −0.224335 0.388560i
\(683\) 7.38965 + 12.7993i 0.282757 + 0.489750i 0.972063 0.234721i \(-0.0754176\pi\)
−0.689306 + 0.724471i \(0.742084\pi\)
\(684\) 0.930140 1.61105i 0.0355648 0.0616000i
\(685\) 1.29993 0.0496679
\(686\) −36.3688 28.3725i −1.38857 1.08327i
\(687\) 7.14579 0.272629
\(688\) 16.6622 28.8599i 0.635242 1.10027i
\(689\) −2.23263 3.86702i −0.0850563 0.147322i
\(690\) 0.276368 + 0.478684i 0.0105212 + 0.0182232i
\(691\) 16.3221 28.2707i 0.620922 1.07547i −0.368393 0.929670i \(-0.620092\pi\)
0.989314 0.145798i \(-0.0465749\pi\)
\(692\) 89.0903 3.38670
\(693\) 12.7766 + 8.18762i 0.485342 + 0.311022i
\(694\) −39.1519 −1.48619
\(695\) −1.50744 + 2.61096i −0.0571805 + 0.0990395i
\(696\) −3.70224 6.41247i −0.140333 0.243064i
\(697\) 4.18736 + 7.25272i 0.158608 + 0.274716i
\(698\) −31.8915 + 55.2377i −1.20711 + 2.09078i
\(699\) 2.47984 0.0937963
\(700\) −46.6654 + 24.1343i −1.76379 + 0.912191i
\(701\) −28.6064 −1.08045 −0.540224 0.841521i \(-0.681661\pi\)
−0.540224 + 0.841521i \(0.681661\pi\)
\(702\) −8.42919 + 14.5998i −0.318139 + 0.551034i
\(703\) 0.0970057 + 0.168019i 0.00365864 + 0.00633695i
\(704\) 6.82590 + 11.8228i 0.257261 + 0.445589i
\(705\) 0.904575 1.56677i 0.0340683 0.0590080i
\(706\) 39.0259 1.46876
\(707\) −0.856069 + 18.4750i −0.0321958 + 0.694825i
\(708\) 35.3754 1.32949
\(709\) 2.00977 3.48103i 0.0754785 0.130733i −0.825816 0.563940i \(-0.809285\pi\)
0.901294 + 0.433207i \(0.142618\pi\)
\(710\) −6.87028 11.8997i −0.257837 0.446587i
\(711\) −3.88271 6.72506i −0.145613 0.252209i
\(712\) −15.5461 + 26.9266i −0.582614 + 1.00912i
\(713\) 0.847727 0.0317476
\(714\) −1.24607 + 26.8918i −0.0466332 + 1.00640i
\(715\) −1.99243 −0.0745127
\(716\) 13.1495 22.7756i 0.491420 0.851164i
\(717\) 13.1383 + 22.7562i 0.490658 + 0.849844i
\(718\) 12.4214 + 21.5145i 0.463563 + 0.802915i
\(719\) −1.18715 + 2.05620i −0.0442731 + 0.0766833i −0.887313 0.461168i \(-0.847431\pi\)
0.843040 + 0.537851i \(0.180764\pi\)
\(720\) 6.06121 0.225888
\(721\) 9.41934 4.87148i 0.350795 0.181423i
\(722\) 47.2204 1.75736
\(723\) 0.645084 1.11732i 0.0239909 0.0415535i
\(724\) −15.1645 26.2656i −0.563583 0.976154i
\(725\) −3.55161 6.15157i −0.131903 0.228463i
\(726\) −4.65967 + 8.07078i −0.172936 + 0.299535i
\(727\) 24.6101 0.912737 0.456368 0.889791i \(-0.349150\pi\)
0.456368 + 0.889791i \(0.349150\pi\)
\(728\) 17.7472 + 11.3729i 0.657755 + 0.421509i
\(729\) 7.28618 0.269858
\(730\) 1.92435 3.33307i 0.0712233 0.123362i
\(731\) −14.4189 24.9742i −0.533301 0.923705i
\(732\) 25.9955 + 45.0256i 0.960823 + 1.66419i
\(733\) −9.50215 + 16.4582i −0.350970 + 0.607897i −0.986420 0.164245i \(-0.947481\pi\)
0.635450 + 0.772142i \(0.280815\pi\)
\(734\) −19.5215 −0.720552
\(735\) −1.37807 2.99696i −0.0508309 0.110545i
\(736\) 1.00164 0.0369209
\(737\) −17.4862 + 30.2870i −0.644112 + 1.11563i
\(738\) −5.02785 8.70850i −0.185078 0.320564i
\(739\) −17.5504 30.3981i −0.645600 1.11821i −0.984163 0.177268i \(-0.943274\pi\)
0.338562 0.940944i \(-0.390059\pi\)
\(740\) −1.06151 + 1.83859i −0.0390218 + 0.0675878i
\(741\) 0.262798 0.00965414
\(742\) 17.0628 + 10.9344i 0.626396 + 0.401414i
\(743\) 21.0754 0.773180 0.386590 0.922252i \(-0.373653\pi\)
0.386590 + 0.922252i \(0.373653\pi\)
\(744\) −4.43227 + 7.67691i −0.162495 + 0.281449i
\(745\) 1.56338 + 2.70786i 0.0572778 + 0.0992081i
\(746\) −23.9445 41.4732i −0.876672 1.51844i
\(747\) 19.1515 33.1713i 0.700716 1.21368i
\(748\) −50.0055 −1.82838
\(749\) −14.3677 + 7.43068i −0.524986 + 0.271511i
\(750\) −11.4130 −0.416743
\(751\) −9.01353 + 15.6119i −0.328908 + 0.569686i −0.982296 0.187338i \(-0.940014\pi\)
0.653387 + 0.757024i \(0.273347\pi\)
\(752\) −10.0976 17.4896i −0.368222 0.637780i
\(753\) 4.15713 + 7.20035i 0.151494 + 0.262396i
\(754\) −2.71852 + 4.70861i −0.0990025 + 0.171477i
\(755\) −8.29074 −0.301731
\(756\) 2.39969 51.7882i 0.0872757 1.88352i
\(757\) 4.30504 0.156469 0.0782347 0.996935i \(-0.475072\pi\)
0.0782347 + 0.996935i \(0.475072\pi\)
\(758\) 43.2027 74.8293i 1.56919 2.71792i
\(759\) 0.552342 + 0.956684i 0.0200487 + 0.0347254i
\(760\) −0.290531 0.503215i −0.0105387 0.0182535i
\(761\) −8.84721 + 15.3238i −0.320711 + 0.555488i −0.980635 0.195845i \(-0.937255\pi\)
0.659924 + 0.751332i \(0.270589\pi\)
\(762\) −2.23528 −0.0809755
\(763\) 0.550874 11.8885i 0.0199430 0.430394i
\(764\) 96.7208 3.49924
\(765\) 2.62257 4.54242i 0.0948192 0.164232i
\(766\) 14.4798 + 25.0798i 0.523177 + 0.906169i
\(767\) −6.80784 11.7915i −0.245817 0.425767i
\(768\) 14.6061 25.2985i 0.527052 0.912880i
\(769\) 30.3350 1.09391 0.546954 0.837163i \(-0.315787\pi\)
0.546954 + 0.837163i \(0.315787\pi\)
\(770\) 8.03214 4.15404i 0.289458 0.149701i
\(771\) −9.59921 −0.345707
\(772\) −28.1825 + 48.8135i −1.01431 + 1.75684i
\(773\) 19.0957 + 33.0748i 0.686825 + 1.18962i 0.972859 + 0.231397i \(0.0743296\pi\)
−0.286034 + 0.958219i \(0.592337\pi\)
\(774\) 17.3131 + 29.9871i 0.622305 + 1.07786i
\(775\) −4.25193 + 7.36456i −0.152734 + 0.264543i
\(776\) −37.4637 −1.34487
\(777\) 1.92322 + 1.23246i 0.0689952 + 0.0442142i
\(778\) −16.7251 −0.599624
\(779\) −0.185521 + 0.321333i −0.00664699 + 0.0115129i
\(780\) 1.43787 + 2.49046i 0.0514839 + 0.0891727i
\(781\) −13.7307 23.7823i −0.491324 0.850999i
\(782\) 2.66969 4.62404i 0.0954679 0.165355i
\(783\) 7.00950 0.250499
\(784\) −36.6641 3.40509i −1.30943 0.121610i
\(785\) 3.43719 0.122678
\(786\) 0.0119630 0.0207205i 0.000426706 0.000739076i
\(787\) −11.5332 19.9761i −0.411115 0.712072i 0.583897 0.811828i \(-0.301527\pi\)
−0.995012 + 0.0997560i \(0.968194\pi\)
\(788\) −8.73668 15.1324i −0.311231 0.539068i
\(789\) 9.68905 16.7819i 0.344939 0.597453i
\(790\) −4.62743 −0.164636
\(791\) 16.6463 + 10.6675i 0.591874 + 0.379291i
\(792\) 31.4725 1.11833
\(793\) 10.0055 17.3300i 0.355304 0.615405i
\(794\) 23.0767 + 39.9699i 0.818960 + 1.41848i
\(795\) 0.724621 + 1.25508i 0.0256997 + 0.0445131i
\(796\) 9.99379 17.3098i 0.354221 0.613528i
\(797\) −40.2087 −1.42427 −0.712133 0.702044i \(-0.752271\pi\)
−0.712133 + 0.702044i \(0.752271\pi\)
\(798\) −1.05943 + 0.547912i −0.0375033 + 0.0193959i
\(799\) −17.4762 −0.618263
\(800\) −5.02391 + 8.70167i −0.177622 + 0.307651i
\(801\) −6.21740 10.7689i −0.219681 0.380499i
\(802\) 4.87829 + 8.44945i 0.172258 + 0.298360i
\(803\) 3.84594 6.66137i 0.135720 0.235075i
\(804\) 50.4766 1.78017
\(805\) −0.0302827 + 0.653538i −0.00106732 + 0.0230342i
\(806\) 6.50913 0.229274
\(807\) 2.76055 4.78141i 0.0971759 0.168314i
\(808\) 19.1790 + 33.2190i 0.674714 + 1.16864i
\(809\) −5.05480 8.75516i −0.177717 0.307815i 0.763381 0.645948i \(-0.223538\pi\)
−0.941098 + 0.338133i \(0.890205\pi\)
\(810\) −1.56898 + 2.71756i −0.0551284 + 0.0954852i
\(811\) 30.6004 1.07452 0.537262 0.843416i \(-0.319459\pi\)
0.537262 + 0.843416i \(0.319459\pi\)
\(812\) 0.773927 16.7023i 0.0271595 0.586136i
\(813\) −0.212516 −0.00745326
\(814\) −3.13098 + 5.42301i −0.109741 + 0.190076i
\(815\) 1.65401 + 2.86482i 0.0579373 + 0.100350i
\(816\) 10.7450 + 18.6110i 0.376152 + 0.651514i
\(817\) 0.638830 1.10649i 0.0223498 0.0387110i
\(818\) 59.6994 2.08734
\(819\) −7.48790 + 3.87258i −0.261648 + 0.135319i
\(820\) −4.06022 −0.141789
\(821\) −3.40220 + 5.89278i −0.118738 + 0.205660i −0.919268 0.393633i \(-0.871218\pi\)
0.800530 + 0.599293i \(0.204551\pi\)
\(822\) −2.76702 4.79263i −0.0965110 0.167162i
\(823\) −18.5702 32.1646i −0.647318 1.12119i −0.983761 0.179483i \(-0.942557\pi\)
0.336444 0.941704i \(-0.390776\pi\)
\(824\) 10.9968 19.0470i 0.383090 0.663532i
\(825\) −11.0815 −0.385808
\(826\) 52.0289 + 33.3417i 1.81032 + 1.16011i
\(827\) 24.5185 0.852591 0.426296 0.904584i \(-0.359818\pi\)
0.426296 + 0.904584i \(0.359818\pi\)
\(828\) −2.17203 + 3.76207i −0.0754834 + 0.130741i
\(829\) 22.0323 + 38.1611i 0.765215 + 1.32539i 0.940133 + 0.340808i \(0.110701\pi\)
−0.174918 + 0.984583i \(0.555966\pi\)
\(830\) −11.4124 19.7668i −0.396130 0.686116i
\(831\) −2.90679 + 5.03471i −0.100836 + 0.174652i
\(832\) −7.58391 −0.262925
\(833\) −18.4157 + 26.0037i −0.638067 + 0.900975i
\(834\) 12.8349 0.444436
\(835\) 4.32950 7.49891i 0.149828 0.259511i
\(836\) −1.10775 1.91868i −0.0383123 0.0663589i
\(837\) −4.19584 7.26740i −0.145029 0.251198i
\(838\) 20.6723 35.8054i 0.714112 1.23688i
\(839\) 4.05620 0.140036 0.0700178 0.997546i \(-0.477694\pi\)
0.0700178 + 0.997546i \(0.477694\pi\)
\(840\) −5.76003 3.69120i −0.198740 0.127359i
\(841\) −26.7394 −0.922047
\(842\) 31.0857 53.8421i 1.07129 1.85552i
\(843\) −3.76699 6.52462i −0.129742 0.224720i
\(844\) −58.2615 100.912i −2.00544 3.47353i
\(845\) −2.85947 + 4.95275i −0.0983688 + 0.170380i
\(846\) 20.9841 0.721447
\(847\) −9.79791 + 5.06726i −0.336660 + 0.174113i
\(848\) 16.1776 0.555543
\(849\) 10.4458 18.0927i 0.358500 0.620940i
\(850\) 26.7807 + 46.3855i 0.918569 + 1.59101i
\(851\) −0.226525 0.392352i −0.00776517 0.0134497i
\(852\) −19.8180 + 34.3257i −0.678952 + 1.17598i
\(853\) 50.0794 1.71469 0.857343 0.514745i \(-0.172113\pi\)
0.857343 + 0.514745i \(0.172113\pi\)
\(854\) −4.20380 + 90.7231i −0.143851 + 3.10448i
\(855\) 0.232387 0.00794745
\(856\) −16.7739 + 29.0532i −0.573319 + 0.993017i
\(857\) −6.63830 11.4979i −0.226760 0.392760i 0.730086 0.683355i \(-0.239480\pi\)
−0.956846 + 0.290595i \(0.906147\pi\)
\(858\) 4.24107 + 7.34574i 0.144788 + 0.250779i
\(859\) −15.0067 + 25.9923i −0.512021 + 0.886846i 0.487882 + 0.872909i \(0.337770\pi\)
−0.999903 + 0.0139364i \(0.995564\pi\)
\(860\) 13.9811 0.476751
\(861\) −0.202207 + 4.36387i −0.00689119 + 0.148720i
\(862\) 59.1236 2.01376
\(863\) −22.5347 + 39.0313i −0.767091 + 1.32864i 0.172043 + 0.985090i \(0.444963\pi\)
−0.939134 + 0.343552i \(0.888370\pi\)
\(864\) −4.95763 8.58687i −0.168662 0.292131i
\(865\) 5.56459 + 9.63815i 0.189202 + 0.327707i
\(866\) 33.2456 57.5831i 1.12973 1.95675i
\(867\) 3.33957 0.113418
\(868\) −17.7801 + 9.19547i −0.603496 + 0.312115i
\(869\) −9.24824 −0.313725
\(870\) 0.882321 1.52823i 0.0299135 0.0518117i
\(871\) −9.71401 16.8252i −0.329147 0.570099i
\(872\) −12.3415 21.3761i −0.417937 0.723887i
\(873\) 7.49149 12.9756i 0.253549 0.439159i
\(874\) 0.236562 0.00800182
\(875\) −11.3738 7.28868i −0.384504 0.246402i
\(876\) −11.1019 −0.375099
\(877\) 14.4774 25.0756i 0.488867 0.846742i −0.511051 0.859550i \(-0.670744\pi\)
0.999918 + 0.0128081i \(0.00407704\pi\)
\(878\) 0.949496 + 1.64457i 0.0320439 + 0.0555017i
\(879\) −2.62165 4.54083i −0.0884261 0.153159i
\(880\) 3.60930 6.25149i 0.121669 0.210738i
\(881\) 43.4223 1.46294 0.731468 0.681876i \(-0.238836\pi\)
0.731468 + 0.681876i \(0.238836\pi\)
\(882\) 22.1122 31.2232i 0.744556 1.05134i
\(883\) 28.5142 0.959578 0.479789 0.877384i \(-0.340713\pi\)
0.479789 + 0.877384i \(0.340713\pi\)
\(884\) 13.8896 24.0576i 0.467159 0.809144i
\(885\) 2.20955 + 3.82706i 0.0742733 + 0.128645i
\(886\) −15.0511 26.0693i −0.505652 0.875814i
\(887\) −24.2409 + 41.9864i −0.813929 + 1.40977i 0.0961655 + 0.995365i \(0.469342\pi\)
−0.910094 + 0.414401i \(0.863991\pi\)
\(888\) 4.73746 0.158979
\(889\) −2.22760 1.42751i −0.0747113 0.0478773i
\(890\) −7.40991 −0.248381
\(891\) −3.13572 + 5.43123i −0.105051 + 0.181953i
\(892\) −41.1543 71.2813i −1.37795 2.38667i
\(893\) −0.387143 0.670550i −0.0129552 0.0224391i
\(894\) 6.65559 11.5278i 0.222596 0.385548i
\(895\) 3.28528 0.109815
\(896\) 40.5696 20.9817i 1.35533 0.700949i
\(897\) −0.613679 −0.0204901
\(898\) −1.50914 + 2.61390i −0.0503605 + 0.0872269i
\(899\) −1.35321 2.34382i −0.0451320 0.0781709i
\(900\) −21.7885 37.7387i −0.726283 1.25796i
\(901\) 6.99976 12.1239i 0.233196 0.403907i
\(902\) −11.9758 −0.398752
\(903\) 0.696285 15.0267i 0.0231709 0.500057i
\(904\) 41.0047 1.36380
\(905\) 1.89435 3.28111i 0.0629702 0.109068i
\(906\) 17.6476 + 30.5665i 0.586301 + 1.01550i
\(907\) 23.4213 + 40.5669i 0.777692 + 1.34700i 0.933269 + 0.359178i \(0.116943\pi\)
−0.155578 + 0.987824i \(0.549724\pi\)
\(908\) −19.9942 + 34.6310i −0.663532 + 1.14927i
\(909\) −15.3406 −0.508817
\(910\) −0.232521 + 5.01808i −0.00770799 + 0.166348i
\(911\) 10.1028 0.334722 0.167361 0.985896i \(-0.446476\pi\)
0.167361 + 0.985896i \(0.446476\pi\)
\(912\) −0.476061 + 0.824561i −0.0157639 + 0.0273039i
\(913\) −22.8084 39.5054i −0.754849 1.30744i
\(914\) −33.5099 58.0408i −1.10841 1.91982i
\(915\) −3.24737 + 5.62461i −0.107355 + 0.185944i
\(916\) 33.4659 1.10575
\(917\) 0.0251547 0.0130094i 0.000830680 0.000429609i
\(918\) −52.8547 −1.74446
\(919\) 8.00171 13.8594i 0.263952 0.457178i −0.703336 0.710857i \(-0.748307\pi\)
0.967289 + 0.253679i \(0.0816406\pi\)
\(920\) 0.678440 + 1.17509i 0.0223675 + 0.0387416i
\(921\) −2.86925 4.96968i −0.0945449 0.163757i
\(922\) −7.28499 + 12.6180i −0.239918 + 0.415551i
\(923\) 15.2555 0.502142
\(924\) −21.9621 14.0740i −0.722499 0.463000i
\(925\) 4.54471 0.149429
\(926\) 8.49544 14.7145i 0.279178 0.483550i
\(927\) 4.39798 + 7.61752i 0.144448 + 0.250192i
\(928\) −1.59890 2.76937i −0.0524863 0.0909090i
\(929\) −9.19778 + 15.9310i −0.301769 + 0.522680i −0.976537 0.215350i \(-0.930911\pi\)
0.674767 + 0.738030i \(0.264244\pi\)
\(930\) −2.11260 −0.0692750
\(931\) −1.40570 0.130551i −0.0460700 0.00427864i
\(932\) 11.6139 0.380425
\(933\) −6.92410 + 11.9929i −0.226685 + 0.392630i
\(934\) 40.5191 + 70.1812i 1.32583 + 2.29640i
\(935\) −3.12335 5.40980i −0.102144 0.176919i
\(936\) −8.74187 + 15.1414i −0.285737 + 0.494911i
\(937\) −24.7977 −0.810105 −0.405053 0.914293i \(-0.632747\pi\)
−0.405053 + 0.914293i \(0.632747\pi\)
\(938\) 74.2393 + 47.5748i 2.42400 + 1.55337i
\(939\) −17.7122 −0.578016
\(940\) 4.23640 7.33766i 0.138176 0.239328i
\(941\) −22.5274 39.0185i −0.734371 1.27197i −0.954999 0.296610i \(-0.904144\pi\)
0.220628 0.975358i \(-0.429189\pi\)
\(942\) −7.31635 12.6723i −0.238380 0.412886i
\(943\) 0.433224 0.750365i 0.0141077 0.0244353i
\(944\) 49.3298 1.60555
\(945\) 5.75254 2.97509i 0.187130 0.0967796i
\(946\) 41.2380 1.34076
\(947\) −25.1436 + 43.5499i −0.817056 + 1.41518i 0.0907864 + 0.995870i \(0.471062\pi\)
−0.907842 + 0.419312i \(0.862271\pi\)
\(948\) 6.67412 + 11.5599i 0.216765 + 0.375449i
\(949\) 2.13652 + 3.70055i 0.0693542 + 0.120125i
\(950\) −1.18652 + 2.05511i −0.0384958 + 0.0666767i
\(951\) −10.6357 −0.344888
\(952\) −3.05891 + 66.0151i −0.0991399 + 2.13956i
\(953\) 22.8566 0.740398 0.370199 0.928952i \(-0.379289\pi\)
0.370199 + 0.928952i \(0.379289\pi\)
\(954\) −8.40477 + 14.5575i −0.272114 + 0.471316i
\(955\) 6.04119 + 10.4637i 0.195488 + 0.338596i
\(956\) 61.5305 + 106.574i 1.99004 + 3.44685i
\(957\) 1.76338 3.05427i 0.0570020 0.0987304i
\(958\) −38.0770 −1.23021
\(959\) 0.303193 6.54328i 0.00979061 0.211293i
\(960\) 2.46143 0.0794424
\(961\) 13.8800 24.0408i 0.447741 0.775510i
\(962\) −1.73933 3.01261i −0.0560784 0.0971306i
\(963\) −6.70843 11.6193i −0.216176 0.374428i
\(964\) 3.02112 5.23274i 0.0973039 0.168535i
\(965\) −7.04113 −0.226662
\(966\) 2.47394 1.27947i 0.0795976 0.0411661i
\(967\) −32.5270 −1.04600 −0.522998 0.852334i \(-0.675187\pi\)
−0.522998 + 0.852334i \(0.675187\pi\)
\(968\) −11.4387 + 19.8125i −0.367655 + 0.636797i
\(969\) 0.411965 + 0.713544i 0.0132342 + 0.0229223i
\(970\) −4.46419 7.73220i −0.143336 0.248266i
\(971\) 27.8167 48.1800i 0.892682 1.54617i 0.0560344 0.998429i \(-0.482154\pi\)
0.836648 0.547742i \(-0.184512\pi\)
\(972\) 67.8370 2.17587
\(973\) 12.7908 + 8.19675i 0.410055 + 0.262776i
\(974\) 57.9865 1.85801
\(975\) 3.07802 5.33129i 0.0985755 0.170738i
\(976\) 36.2499 + 62.7866i 1.16033 + 2.00975i
\(977\) 23.2568 + 40.2819i 0.744051 + 1.28873i 0.950637 + 0.310305i \(0.100431\pi\)
−0.206586 + 0.978428i \(0.566235\pi\)
\(978\) 7.04140 12.1961i 0.225159 0.389987i
\(979\) −14.8092 −0.473305
\(980\) −6.45392 14.0357i −0.206163 0.448353i
\(981\) 9.87158 0.315175
\(982\) 20.5201 35.5419i 0.654823 1.13419i
\(983\) −11.3916 19.7308i −0.363335 0.629314i 0.625173 0.780486i \(-0.285029\pi\)
−0.988507 + 0.151172i \(0.951695\pi\)
\(984\) 4.53015 + 7.84644i 0.144416 + 0.250136i
\(985\) 1.09139 1.89034i 0.0347745 0.0602312i
\(986\) −17.0463 −0.542864
\(987\) −7.67543 4.91865i −0.244311 0.156562i
\(988\) 1.23076 0.0391558
\(989\) −1.49178 + 2.58383i −0.0474357 + 0.0821610i
\(990\) 3.75028 + 6.49567i 0.119192 + 0.206446i
\(991\) −12.9723 22.4687i −0.412079 0.713742i 0.583038 0.812445i \(-0.301864\pi\)
−0.995117 + 0.0987030i \(0.968531\pi\)
\(992\) −1.91417 + 3.31545i −0.0607751 + 0.105266i
\(993\) −8.73512 −0.277201
\(994\) −61.4999 + 31.8064i −1.95066 + 1.00884i
\(995\) 2.49685 0.0791556
\(996\) −32.9201 + 57.0193i −1.04311 + 1.80672i
\(997\) −20.3293 35.2115i −0.643837 1.11516i −0.984569 0.174998i \(-0.944008\pi\)
0.340732 0.940160i \(-0.389325\pi\)
\(998\) −32.3463 56.0254i −1.02390 1.77345i
\(999\) −2.24237 + 3.88391i −0.0709456 + 0.122881i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 889.2.f.c.128.36 76
7.2 even 3 6223.2.a.p.1.3 38
7.4 even 3 inner 889.2.f.c.382.36 yes 76
7.5 odd 6 6223.2.a.o.1.3 38
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
889.2.f.c.128.36 76 1.1 even 1 trivial
889.2.f.c.382.36 yes 76 7.4 even 3 inner
6223.2.a.o.1.3 38 7.5 odd 6
6223.2.a.p.1.3 38 7.2 even 3