Properties

Label 6223.2.a.p.1.3
Level $6223$
Weight $2$
Character 6223.1
Self dual yes
Analytic conductor $49.691$
Analytic rank $0$
Dimension $38$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6223,2,Mod(1,6223)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6223, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6223.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6223 = 7^{2} \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6223.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [38,-2,11,38,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.6909051778\)
Analytic rank: \(0\)
Dimension: \(38\)
Twist minimal: no (minimal twist has level 889)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Character \(\chi\) \(=\) 6223.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.49062 q^{2} +0.897479 q^{3} +4.20317 q^{4} -0.525060 q^{5} -2.23528 q^{6} -5.48724 q^{8} -2.19453 q^{9} +1.30772 q^{10} +2.61358 q^{11} +3.77225 q^{12} +1.45191 q^{13} -0.471231 q^{15} +5.26027 q^{16} -4.55204 q^{17} +5.46573 q^{18} +0.201679 q^{19} -2.20692 q^{20} -6.50942 q^{22} -0.470953 q^{23} -4.92468 q^{24} -4.72431 q^{25} -3.61614 q^{26} -4.66198 q^{27} -1.50355 q^{29} +1.17365 q^{30} -1.80002 q^{31} -2.12683 q^{32} +2.34563 q^{33} +11.3374 q^{34} -9.22398 q^{36} -0.961983 q^{37} -0.502304 q^{38} +1.30306 q^{39} +2.88113 q^{40} +1.83977 q^{41} -6.33513 q^{43} +10.9853 q^{44} +1.15226 q^{45} +1.17296 q^{46} +3.83920 q^{47} +4.72098 q^{48} +11.7664 q^{50} -4.08536 q^{51} +6.10260 q^{52} +3.07544 q^{53} +11.6112 q^{54} -1.37229 q^{55} +0.181002 q^{57} +3.74475 q^{58} +9.37780 q^{59} -1.98066 q^{60} -13.7825 q^{61} +4.48316 q^{62} -5.22342 q^{64} -0.762339 q^{65} -5.84207 q^{66} +13.3810 q^{67} -19.1330 q^{68} -0.422671 q^{69} +10.5072 q^{71} +12.0419 q^{72} -2.94305 q^{73} +2.39593 q^{74} -4.23997 q^{75} +0.847689 q^{76} -3.24541 q^{78} -3.53853 q^{79} -2.76196 q^{80} +2.39956 q^{81} -4.58217 q^{82} +17.4538 q^{83} +2.39010 q^{85} +15.7784 q^{86} -1.34940 q^{87} -14.3413 q^{88} -5.66627 q^{89} -2.86984 q^{90} -1.97950 q^{92} -1.61548 q^{93} -9.56198 q^{94} -0.105893 q^{95} -1.90879 q^{96} +6.82742 q^{97} -5.73558 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 38 q - 2 q^{2} + 11 q^{3} + 38 q^{4} + 16 q^{5} + 11 q^{6} + 47 q^{9} + 12 q^{10} - 2 q^{11} + 30 q^{12} + 21 q^{13} + 7 q^{15} + 46 q^{16} + 58 q^{17} - 13 q^{18} + 17 q^{19} + 44 q^{20} + 21 q^{22} + 7 q^{23}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.49062 −1.76113 −0.880566 0.473924i \(-0.842837\pi\)
−0.880566 + 0.473924i \(0.842837\pi\)
\(3\) 0.897479 0.518160 0.259080 0.965856i \(-0.416581\pi\)
0.259080 + 0.965856i \(0.416581\pi\)
\(4\) 4.20317 2.10158
\(5\) −0.525060 −0.234814 −0.117407 0.993084i \(-0.537458\pi\)
−0.117407 + 0.993084i \(0.537458\pi\)
\(6\) −2.23528 −0.912547
\(7\) 0 0
\(8\) −5.48724 −1.94003
\(9\) −2.19453 −0.731511
\(10\) 1.30772 0.413539
\(11\) 2.61358 0.788023 0.394012 0.919105i \(-0.371087\pi\)
0.394012 + 0.919105i \(0.371087\pi\)
\(12\) 3.77225 1.08896
\(13\) 1.45191 0.402686 0.201343 0.979521i \(-0.435469\pi\)
0.201343 + 0.979521i \(0.435469\pi\)
\(14\) 0 0
\(15\) −0.471231 −0.121671
\(16\) 5.26027 1.31507
\(17\) −4.55204 −1.10403 −0.552016 0.833834i \(-0.686141\pi\)
−0.552016 + 0.833834i \(0.686141\pi\)
\(18\) 5.46573 1.28829
\(19\) 0.201679 0.0462683 0.0231341 0.999732i \(-0.492636\pi\)
0.0231341 + 0.999732i \(0.492636\pi\)
\(20\) −2.20692 −0.493481
\(21\) 0 0
\(22\) −6.50942 −1.38781
\(23\) −0.470953 −0.0982006 −0.0491003 0.998794i \(-0.515635\pi\)
−0.0491003 + 0.998794i \(0.515635\pi\)
\(24\) −4.92468 −1.00525
\(25\) −4.72431 −0.944862
\(26\) −3.61614 −0.709184
\(27\) −4.66198 −0.897199
\(28\) 0 0
\(29\) −1.50355 −0.279201 −0.139601 0.990208i \(-0.544582\pi\)
−0.139601 + 0.990208i \(0.544582\pi\)
\(30\) 1.17365 0.214279
\(31\) −1.80002 −0.323294 −0.161647 0.986849i \(-0.551681\pi\)
−0.161647 + 0.986849i \(0.551681\pi\)
\(32\) −2.12683 −0.375975
\(33\) 2.34563 0.408322
\(34\) 11.3374 1.94434
\(35\) 0 0
\(36\) −9.22398 −1.53733
\(37\) −0.961983 −0.158149 −0.0790745 0.996869i \(-0.525197\pi\)
−0.0790745 + 0.996869i \(0.525197\pi\)
\(38\) −0.502304 −0.0814845
\(39\) 1.30306 0.208656
\(40\) 2.88113 0.455547
\(41\) 1.83977 0.287324 0.143662 0.989627i \(-0.454112\pi\)
0.143662 + 0.989627i \(0.454112\pi\)
\(42\) 0 0
\(43\) −6.33513 −0.966098 −0.483049 0.875593i \(-0.660471\pi\)
−0.483049 + 0.875593i \(0.660471\pi\)
\(44\) 10.9853 1.65610
\(45\) 1.15226 0.171769
\(46\) 1.17296 0.172944
\(47\) 3.83920 0.560005 0.280003 0.959999i \(-0.409665\pi\)
0.280003 + 0.959999i \(0.409665\pi\)
\(48\) 4.72098 0.681415
\(49\) 0 0
\(50\) 11.7664 1.66403
\(51\) −4.08536 −0.572065
\(52\) 6.10260 0.846279
\(53\) 3.07544 0.422444 0.211222 0.977438i \(-0.432256\pi\)
0.211222 + 0.977438i \(0.432256\pi\)
\(54\) 11.6112 1.58009
\(55\) −1.37229 −0.185039
\(56\) 0 0
\(57\) 0.181002 0.0239743
\(58\) 3.74475 0.491710
\(59\) 9.37780 1.22089 0.610443 0.792060i \(-0.290992\pi\)
0.610443 + 0.792060i \(0.290992\pi\)
\(60\) −1.98066 −0.255702
\(61\) −13.7825 −1.76467 −0.882334 0.470623i \(-0.844029\pi\)
−0.882334 + 0.470623i \(0.844029\pi\)
\(62\) 4.48316 0.569362
\(63\) 0 0
\(64\) −5.22342 −0.652927
\(65\) −0.762339 −0.0945565
\(66\) −5.84207 −0.719109
\(67\) 13.3810 1.63475 0.817377 0.576103i \(-0.195427\pi\)
0.817377 + 0.576103i \(0.195427\pi\)
\(68\) −19.1330 −2.32021
\(69\) −0.422671 −0.0508836
\(70\) 0 0
\(71\) 10.5072 1.24698 0.623490 0.781832i \(-0.285714\pi\)
0.623490 + 0.781832i \(0.285714\pi\)
\(72\) 12.0419 1.41915
\(73\) −2.94305 −0.344458 −0.172229 0.985057i \(-0.555097\pi\)
−0.172229 + 0.985057i \(0.555097\pi\)
\(74\) 2.39593 0.278521
\(75\) −4.23997 −0.489590
\(76\) 0.847689 0.0972366
\(77\) 0 0
\(78\) −3.24541 −0.367470
\(79\) −3.53853 −0.398116 −0.199058 0.979988i \(-0.563788\pi\)
−0.199058 + 0.979988i \(0.563788\pi\)
\(80\) −2.76196 −0.308797
\(81\) 2.39956 0.266618
\(82\) −4.58217 −0.506016
\(83\) 17.4538 1.91580 0.957902 0.287094i \(-0.0926893\pi\)
0.957902 + 0.287094i \(0.0926893\pi\)
\(84\) 0 0
\(85\) 2.39010 0.259242
\(86\) 15.7784 1.70143
\(87\) −1.34940 −0.144671
\(88\) −14.3413 −1.52879
\(89\) −5.66627 −0.600623 −0.300312 0.953841i \(-0.597091\pi\)
−0.300312 + 0.953841i \(0.597091\pi\)
\(90\) −2.86984 −0.302508
\(91\) 0 0
\(92\) −1.97950 −0.206377
\(93\) −1.61548 −0.167518
\(94\) −9.56198 −0.986243
\(95\) −0.105893 −0.0108644
\(96\) −1.90879 −0.194815
\(97\) 6.82742 0.693219 0.346610 0.938009i \(-0.387333\pi\)
0.346610 + 0.938009i \(0.387333\pi\)
\(98\) 0 0
\(99\) −5.73558 −0.576447
\(100\) −19.8571 −1.98571
\(101\) 6.99039 0.695570 0.347785 0.937574i \(-0.386934\pi\)
0.347785 + 0.937574i \(0.386934\pi\)
\(102\) 10.1751 1.00748
\(103\) 4.00812 0.394932 0.197466 0.980310i \(-0.436729\pi\)
0.197466 + 0.980310i \(0.436729\pi\)
\(104\) −7.96696 −0.781224
\(105\) 0 0
\(106\) −7.65974 −0.743980
\(107\) −6.11377 −0.591040 −0.295520 0.955336i \(-0.595493\pi\)
−0.295520 + 0.955336i \(0.595493\pi\)
\(108\) −19.5951 −1.88554
\(109\) −4.49826 −0.430855 −0.215428 0.976520i \(-0.569115\pi\)
−0.215428 + 0.976520i \(0.569115\pi\)
\(110\) 3.41784 0.325878
\(111\) −0.863360 −0.0819465
\(112\) 0 0
\(113\) −7.47274 −0.702977 −0.351488 0.936192i \(-0.614324\pi\)
−0.351488 + 0.936192i \(0.614324\pi\)
\(114\) −0.450807 −0.0422220
\(115\) 0.247279 0.0230589
\(116\) −6.31965 −0.586765
\(117\) −3.18625 −0.294569
\(118\) −23.3565 −2.15014
\(119\) 0 0
\(120\) 2.58576 0.236046
\(121\) −4.16921 −0.379019
\(122\) 34.3269 3.10781
\(123\) 1.65116 0.148880
\(124\) −7.56579 −0.679428
\(125\) 5.10585 0.456681
\(126\) 0 0
\(127\) 1.00000 0.0887357
\(128\) 17.2632 1.52586
\(129\) −5.68564 −0.500593
\(130\) 1.89869 0.166526
\(131\) 0.0107038 0.000935197 0 0.000467599 1.00000i \(-0.499851\pi\)
0.000467599 1.00000i \(0.499851\pi\)
\(132\) 9.85908 0.858122
\(133\) 0 0
\(134\) −33.3270 −2.87902
\(135\) 2.44782 0.210675
\(136\) 24.9781 2.14186
\(137\) −2.47578 −0.211520 −0.105760 0.994392i \(-0.533728\pi\)
−0.105760 + 0.994392i \(0.533728\pi\)
\(138\) 1.05271 0.0896127
\(139\) −5.74197 −0.487028 −0.243514 0.969897i \(-0.578300\pi\)
−0.243514 + 0.969897i \(0.578300\pi\)
\(140\) 0 0
\(141\) 3.44560 0.290172
\(142\) −26.1695 −2.19609
\(143\) 3.79467 0.317326
\(144\) −11.5438 −0.961986
\(145\) 0.789452 0.0655604
\(146\) 7.33000 0.606635
\(147\) 0 0
\(148\) −4.04338 −0.332363
\(149\) 5.95505 0.487857 0.243928 0.969793i \(-0.421564\pi\)
0.243928 + 0.969793i \(0.421564\pi\)
\(150\) 10.5601 0.862231
\(151\) 15.7901 1.28498 0.642488 0.766295i \(-0.277902\pi\)
0.642488 + 0.766295i \(0.277902\pi\)
\(152\) −1.10666 −0.0897619
\(153\) 9.98959 0.807611
\(154\) 0 0
\(155\) 0.945120 0.0759139
\(156\) 5.47696 0.438508
\(157\) −6.54627 −0.522449 −0.261224 0.965278i \(-0.584126\pi\)
−0.261224 + 0.965278i \(0.584126\pi\)
\(158\) 8.81313 0.701135
\(159\) 2.76014 0.218894
\(160\) 1.11672 0.0882842
\(161\) 0 0
\(162\) −5.97639 −0.469549
\(163\) 6.30025 0.493474 0.246737 0.969082i \(-0.420642\pi\)
0.246737 + 0.969082i \(0.420642\pi\)
\(164\) 7.73287 0.603836
\(165\) −1.23160 −0.0958798
\(166\) −43.4707 −3.37398
\(167\) 16.4914 1.27614 0.638072 0.769976i \(-0.279732\pi\)
0.638072 + 0.769976i \(0.279732\pi\)
\(168\) 0 0
\(169\) −10.8920 −0.837844
\(170\) −5.95281 −0.456560
\(171\) −0.442590 −0.0338457
\(172\) −26.6276 −2.03034
\(173\) 21.1960 1.61150 0.805751 0.592255i \(-0.201762\pi\)
0.805751 + 0.592255i \(0.201762\pi\)
\(174\) 3.36084 0.254784
\(175\) 0 0
\(176\) 13.7481 1.03630
\(177\) 8.41638 0.632614
\(178\) 14.1125 1.05778
\(179\) −6.25695 −0.467666 −0.233833 0.972277i \(-0.575127\pi\)
−0.233833 + 0.972277i \(0.575127\pi\)
\(180\) 4.84315 0.360987
\(181\) 7.21573 0.536341 0.268171 0.963371i \(-0.413581\pi\)
0.268171 + 0.963371i \(0.413581\pi\)
\(182\) 0 0
\(183\) −12.3695 −0.914380
\(184\) 2.58423 0.190512
\(185\) 0.505099 0.0371356
\(186\) 4.02354 0.295021
\(187\) −11.8971 −0.870003
\(188\) 16.1368 1.17690
\(189\) 0 0
\(190\) 0.263740 0.0191337
\(191\) 23.0114 1.66505 0.832524 0.553989i \(-0.186895\pi\)
0.832524 + 0.553989i \(0.186895\pi\)
\(192\) −4.68791 −0.338320
\(193\) 13.4101 0.965282 0.482641 0.875818i \(-0.339678\pi\)
0.482641 + 0.875818i \(0.339678\pi\)
\(194\) −17.0045 −1.22085
\(195\) −0.684183 −0.0489954
\(196\) 0 0
\(197\) 4.15719 0.296187 0.148094 0.988973i \(-0.452686\pi\)
0.148094 + 0.988973i \(0.452686\pi\)
\(198\) 14.2851 1.01520
\(199\) −4.75536 −0.337099 −0.168549 0.985693i \(-0.553908\pi\)
−0.168549 + 0.985693i \(0.553908\pi\)
\(200\) 25.9234 1.83306
\(201\) 12.0092 0.847064
\(202\) −17.4104 −1.22499
\(203\) 0 0
\(204\) −17.1714 −1.20224
\(205\) −0.965992 −0.0674678
\(206\) −9.98269 −0.695527
\(207\) 1.03352 0.0718348
\(208\) 7.63742 0.529560
\(209\) 0.527103 0.0364605
\(210\) 0 0
\(211\) 27.7227 1.90851 0.954254 0.298997i \(-0.0966520\pi\)
0.954254 + 0.298997i \(0.0966520\pi\)
\(212\) 12.9266 0.887801
\(213\) 9.43002 0.646134
\(214\) 15.2270 1.04090
\(215\) 3.32633 0.226854
\(216\) 25.5814 1.74059
\(217\) 0 0
\(218\) 11.2034 0.758793
\(219\) −2.64132 −0.178484
\(220\) −5.76795 −0.388875
\(221\) −6.60913 −0.444579
\(222\) 2.15030 0.144319
\(223\) 19.5825 1.31134 0.655671 0.755047i \(-0.272386\pi\)
0.655671 + 0.755047i \(0.272386\pi\)
\(224\) 0 0
\(225\) 10.3677 0.691177
\(226\) 18.6117 1.23803
\(227\) 9.51389 0.631459 0.315730 0.948849i \(-0.397751\pi\)
0.315730 + 0.948849i \(0.397751\pi\)
\(228\) 0.760783 0.0503841
\(229\) 7.96207 0.526149 0.263074 0.964776i \(-0.415264\pi\)
0.263074 + 0.964776i \(0.415264\pi\)
\(230\) −0.615877 −0.0406097
\(231\) 0 0
\(232\) 8.25031 0.541660
\(233\) 2.76312 0.181018 0.0905091 0.995896i \(-0.471151\pi\)
0.0905091 + 0.995896i \(0.471151\pi\)
\(234\) 7.93574 0.518775
\(235\) −2.01581 −0.131497
\(236\) 39.4164 2.56579
\(237\) −3.17576 −0.206288
\(238\) 0 0
\(239\) −29.2782 −1.89385 −0.946924 0.321458i \(-0.895827\pi\)
−0.946924 + 0.321458i \(0.895827\pi\)
\(240\) −2.47880 −0.160006
\(241\) −1.43755 −0.0926006 −0.0463003 0.998928i \(-0.514743\pi\)
−0.0463003 + 0.998928i \(0.514743\pi\)
\(242\) 10.3839 0.667503
\(243\) 16.1395 1.03535
\(244\) −57.9301 −3.70860
\(245\) 0 0
\(246\) −4.11240 −0.262197
\(247\) 0.292819 0.0186316
\(248\) 9.87715 0.627200
\(249\) 15.6644 0.992693
\(250\) −12.7167 −0.804275
\(251\) −9.26401 −0.584739 −0.292370 0.956305i \(-0.594444\pi\)
−0.292370 + 0.956305i \(0.594444\pi\)
\(252\) 0 0
\(253\) −1.23087 −0.0773844
\(254\) −2.49062 −0.156275
\(255\) 2.14506 0.134329
\(256\) −32.5491 −2.03432
\(257\) −10.6958 −0.667183 −0.333591 0.942718i \(-0.608261\pi\)
−0.333591 + 0.942718i \(0.608261\pi\)
\(258\) 14.1608 0.881610
\(259\) 0 0
\(260\) −3.20424 −0.198718
\(261\) 3.29958 0.204239
\(262\) −0.0266591 −0.00164701
\(263\) −21.5917 −1.33140 −0.665701 0.746219i \(-0.731867\pi\)
−0.665701 + 0.746219i \(0.731867\pi\)
\(264\) −12.8710 −0.792158
\(265\) −1.61479 −0.0991959
\(266\) 0 0
\(267\) −5.08536 −0.311219
\(268\) 56.2427 3.43557
\(269\) −6.15178 −0.375081 −0.187540 0.982257i \(-0.560052\pi\)
−0.187540 + 0.982257i \(0.560052\pi\)
\(270\) −6.09659 −0.371026
\(271\) −0.236792 −0.0143841 −0.00719205 0.999974i \(-0.502289\pi\)
−0.00719205 + 0.999974i \(0.502289\pi\)
\(272\) −23.9450 −1.45188
\(273\) 0 0
\(274\) 6.16621 0.372515
\(275\) −12.3474 −0.744574
\(276\) −1.77656 −0.106936
\(277\) 6.47769 0.389206 0.194603 0.980882i \(-0.437658\pi\)
0.194603 + 0.980882i \(0.437658\pi\)
\(278\) 14.3010 0.857719
\(279\) 3.95021 0.236493
\(280\) 0 0
\(281\) 8.39461 0.500781 0.250390 0.968145i \(-0.419441\pi\)
0.250390 + 0.968145i \(0.419441\pi\)
\(282\) −8.58167 −0.511031
\(283\) −23.2781 −1.38374 −0.691871 0.722021i \(-0.743213\pi\)
−0.691871 + 0.722021i \(0.743213\pi\)
\(284\) 44.1636 2.62063
\(285\) −0.0950372 −0.00562952
\(286\) −9.45107 −0.558853
\(287\) 0 0
\(288\) 4.66740 0.275029
\(289\) 3.72106 0.218886
\(290\) −1.96622 −0.115461
\(291\) 6.12746 0.359198
\(292\) −12.3701 −0.723907
\(293\) 5.84226 0.341308 0.170654 0.985331i \(-0.445412\pi\)
0.170654 + 0.985331i \(0.445412\pi\)
\(294\) 0 0
\(295\) −4.92391 −0.286681
\(296\) 5.27863 0.306814
\(297\) −12.1845 −0.707014
\(298\) −14.8317 −0.859180
\(299\) −0.683780 −0.0395440
\(300\) −17.8213 −1.02891
\(301\) 0 0
\(302\) −39.3270 −2.26301
\(303\) 6.27373 0.360416
\(304\) 1.06088 0.0608459
\(305\) 7.23665 0.414369
\(306\) −24.8802 −1.42231
\(307\) 6.39402 0.364926 0.182463 0.983213i \(-0.441593\pi\)
0.182463 + 0.983213i \(0.441593\pi\)
\(308\) 0 0
\(309\) 3.59721 0.204638
\(310\) −2.35393 −0.133694
\(311\) 15.4301 0.874962 0.437481 0.899228i \(-0.355871\pi\)
0.437481 + 0.899228i \(0.355871\pi\)
\(312\) −7.15018 −0.404799
\(313\) −19.7355 −1.11552 −0.557758 0.830004i \(-0.688338\pi\)
−0.557758 + 0.830004i \(0.688338\pi\)
\(314\) 16.3042 0.920101
\(315\) 0 0
\(316\) −14.8730 −0.836674
\(317\) −11.8507 −0.665601 −0.332800 0.942997i \(-0.607994\pi\)
−0.332800 + 0.942997i \(0.607994\pi\)
\(318\) −6.87445 −0.385500
\(319\) −3.92963 −0.220017
\(320\) 2.74261 0.153316
\(321\) −5.48698 −0.306253
\(322\) 0 0
\(323\) −0.918049 −0.0510816
\(324\) 10.0858 0.560320
\(325\) −6.85926 −0.380483
\(326\) −15.6915 −0.869072
\(327\) −4.03710 −0.223252
\(328\) −10.0953 −0.557418
\(329\) 0 0
\(330\) 3.06744 0.168857
\(331\) −9.73295 −0.534971 −0.267486 0.963562i \(-0.586193\pi\)
−0.267486 + 0.963562i \(0.586193\pi\)
\(332\) 73.3613 4.02622
\(333\) 2.11110 0.115688
\(334\) −41.0738 −2.24746
\(335\) −7.02585 −0.383863
\(336\) 0 0
\(337\) 27.8574 1.51749 0.758746 0.651387i \(-0.225812\pi\)
0.758746 + 0.651387i \(0.225812\pi\)
\(338\) 27.1277 1.47555
\(339\) −6.70663 −0.364254
\(340\) 10.0460 0.544819
\(341\) −4.70450 −0.254763
\(342\) 1.10232 0.0596067
\(343\) 0 0
\(344\) 34.7624 1.87426
\(345\) 0.221928 0.0119482
\(346\) −52.7911 −2.83807
\(347\) 15.7198 0.843882 0.421941 0.906623i \(-0.361349\pi\)
0.421941 + 0.906623i \(0.361349\pi\)
\(348\) −5.67175 −0.304038
\(349\) −25.6094 −1.37084 −0.685419 0.728149i \(-0.740381\pi\)
−0.685419 + 0.728149i \(0.740381\pi\)
\(350\) 0 0
\(351\) −6.76876 −0.361290
\(352\) −5.55865 −0.296277
\(353\) −15.6692 −0.833987 −0.416993 0.908910i \(-0.636916\pi\)
−0.416993 + 0.908910i \(0.636916\pi\)
\(354\) −20.9620 −1.11412
\(355\) −5.51693 −0.292808
\(356\) −23.8163 −1.26226
\(357\) 0 0
\(358\) 15.5837 0.823622
\(359\) 9.97457 0.526438 0.263219 0.964736i \(-0.415216\pi\)
0.263219 + 0.964736i \(0.415216\pi\)
\(360\) −6.32273 −0.333237
\(361\) −18.9593 −0.997859
\(362\) −17.9716 −0.944567
\(363\) −3.74178 −0.196392
\(364\) 0 0
\(365\) 1.54528 0.0808836
\(366\) 30.8077 1.61034
\(367\) 7.83802 0.409141 0.204571 0.978852i \(-0.434420\pi\)
0.204571 + 0.978852i \(0.434420\pi\)
\(368\) −2.47734 −0.129140
\(369\) −4.03744 −0.210181
\(370\) −1.25801 −0.0654007
\(371\) 0 0
\(372\) −6.79014 −0.352052
\(373\) −19.2278 −0.995578 −0.497789 0.867298i \(-0.665855\pi\)
−0.497789 + 0.867298i \(0.665855\pi\)
\(374\) 29.6311 1.53219
\(375\) 4.58239 0.236634
\(376\) −21.0666 −1.08643
\(377\) −2.18301 −0.112431
\(378\) 0 0
\(379\) 34.6924 1.78203 0.891014 0.453976i \(-0.149995\pi\)
0.891014 + 0.453976i \(0.149995\pi\)
\(380\) −0.445088 −0.0228325
\(381\) 0.897479 0.0459792
\(382\) −57.3126 −2.93237
\(383\) 11.6275 0.594137 0.297069 0.954856i \(-0.403991\pi\)
0.297069 + 0.954856i \(0.403991\pi\)
\(384\) 15.4933 0.790642
\(385\) 0 0
\(386\) −33.3995 −1.69999
\(387\) 13.9026 0.706711
\(388\) 28.6968 1.45686
\(389\) 6.71525 0.340477 0.170238 0.985403i \(-0.445546\pi\)
0.170238 + 0.985403i \(0.445546\pi\)
\(390\) 1.70404 0.0862872
\(391\) 2.14380 0.108417
\(392\) 0 0
\(393\) 0.00960646 0.000484582 0
\(394\) −10.3540 −0.521625
\(395\) 1.85794 0.0934833
\(396\) −24.1076 −1.21145
\(397\) 18.5309 0.930038 0.465019 0.885301i \(-0.346047\pi\)
0.465019 + 0.885301i \(0.346047\pi\)
\(398\) 11.8438 0.593675
\(399\) 0 0
\(400\) −24.8512 −1.24256
\(401\) 3.91734 0.195622 0.0978112 0.995205i \(-0.468816\pi\)
0.0978112 + 0.995205i \(0.468816\pi\)
\(402\) −29.9103 −1.49179
\(403\) −2.61346 −0.130186
\(404\) 29.3818 1.46180
\(405\) −1.25992 −0.0626057
\(406\) 0 0
\(407\) −2.51422 −0.124625
\(408\) 22.4173 1.10982
\(409\) −23.9698 −1.18523 −0.592614 0.805487i \(-0.701904\pi\)
−0.592614 + 0.805487i \(0.701904\pi\)
\(410\) 2.40591 0.118820
\(411\) −2.22196 −0.109601
\(412\) 16.8468 0.829982
\(413\) 0 0
\(414\) −2.57411 −0.126510
\(415\) −9.16431 −0.449858
\(416\) −3.08796 −0.151400
\(417\) −5.15330 −0.252358
\(418\) −1.31281 −0.0642117
\(419\) 16.6001 0.810970 0.405485 0.914102i \(-0.367103\pi\)
0.405485 + 0.914102i \(0.367103\pi\)
\(420\) 0 0
\(421\) 24.9623 1.21659 0.608294 0.793712i \(-0.291854\pi\)
0.608294 + 0.793712i \(0.291854\pi\)
\(422\) −69.0465 −3.36113
\(423\) −8.42525 −0.409650
\(424\) −16.8757 −0.819555
\(425\) 21.5052 1.04316
\(426\) −23.4866 −1.13793
\(427\) 0 0
\(428\) −25.6972 −1.24212
\(429\) 3.40564 0.164426
\(430\) −8.28460 −0.399519
\(431\) −23.7386 −1.14345 −0.571723 0.820447i \(-0.693725\pi\)
−0.571723 + 0.820447i \(0.693725\pi\)
\(432\) −24.5233 −1.17988
\(433\) 26.6967 1.28296 0.641481 0.767139i \(-0.278320\pi\)
0.641481 + 0.767139i \(0.278320\pi\)
\(434\) 0 0
\(435\) 0.708517 0.0339708
\(436\) −18.9069 −0.905478
\(437\) −0.0949813 −0.00454357
\(438\) 6.57852 0.314334
\(439\) 0.762459 0.0363902 0.0181951 0.999834i \(-0.494208\pi\)
0.0181951 + 0.999834i \(0.494208\pi\)
\(440\) 7.53006 0.358982
\(441\) 0 0
\(442\) 16.4608 0.782961
\(443\) −12.0862 −0.574235 −0.287117 0.957895i \(-0.592697\pi\)
−0.287117 + 0.957895i \(0.592697\pi\)
\(444\) −3.62884 −0.172217
\(445\) 2.97513 0.141035
\(446\) −48.7725 −2.30944
\(447\) 5.34453 0.252788
\(448\) 0 0
\(449\) −1.21186 −0.0571911 −0.0285955 0.999591i \(-0.509103\pi\)
−0.0285955 + 0.999591i \(0.509103\pi\)
\(450\) −25.8218 −1.21725
\(451\) 4.80839 0.226418
\(452\) −31.4092 −1.47736
\(453\) 14.1712 0.665823
\(454\) −23.6954 −1.11208
\(455\) 0 0
\(456\) −0.993203 −0.0465110
\(457\) −26.9089 −1.25874 −0.629372 0.777104i \(-0.716688\pi\)
−0.629372 + 0.777104i \(0.716688\pi\)
\(458\) −19.8305 −0.926617
\(459\) 21.2215 0.990536
\(460\) 1.03935 0.0484602
\(461\) −5.84995 −0.272459 −0.136230 0.990677i \(-0.543499\pi\)
−0.136230 + 0.990677i \(0.543499\pi\)
\(462\) 0 0
\(463\) 6.82196 0.317043 0.158522 0.987355i \(-0.449327\pi\)
0.158522 + 0.987355i \(0.449327\pi\)
\(464\) −7.90906 −0.367169
\(465\) 0.848226 0.0393355
\(466\) −6.88188 −0.318797
\(467\) 32.5375 1.50565 0.752827 0.658218i \(-0.228690\pi\)
0.752827 + 0.658218i \(0.228690\pi\)
\(468\) −13.3924 −0.619062
\(469\) 0 0
\(470\) 5.02062 0.231584
\(471\) −5.87514 −0.270712
\(472\) −51.4582 −2.36856
\(473\) −16.5574 −0.761308
\(474\) 7.90960 0.363300
\(475\) −0.952793 −0.0437171
\(476\) 0 0
\(477\) −6.74915 −0.309022
\(478\) 72.9207 3.33531
\(479\) 15.2882 0.698535 0.349268 0.937023i \(-0.386430\pi\)
0.349268 + 0.937023i \(0.386430\pi\)
\(480\) 1.00223 0.0457453
\(481\) −1.39671 −0.0636845
\(482\) 3.58038 0.163082
\(483\) 0 0
\(484\) −17.5239 −0.796540
\(485\) −3.58481 −0.162778
\(486\) −40.1973 −1.82339
\(487\) −23.2820 −1.05501 −0.527504 0.849553i \(-0.676872\pi\)
−0.527504 + 0.849553i \(0.676872\pi\)
\(488\) 75.6279 3.42351
\(489\) 5.65434 0.255698
\(490\) 0 0
\(491\) 16.4779 0.743639 0.371820 0.928305i \(-0.378734\pi\)
0.371820 + 0.928305i \(0.378734\pi\)
\(492\) 6.94009 0.312883
\(493\) 6.84420 0.308247
\(494\) −0.729298 −0.0328127
\(495\) 3.01153 0.135358
\(496\) −9.46860 −0.425153
\(497\) 0 0
\(498\) −39.0141 −1.74826
\(499\) −25.9745 −1.16278 −0.581390 0.813625i \(-0.697491\pi\)
−0.581390 + 0.813625i \(0.697491\pi\)
\(500\) 21.4607 0.959753
\(501\) 14.8007 0.661247
\(502\) 23.0731 1.02980
\(503\) −22.6548 −1.01013 −0.505063 0.863082i \(-0.668531\pi\)
−0.505063 + 0.863082i \(0.668531\pi\)
\(504\) 0 0
\(505\) −3.67038 −0.163330
\(506\) 3.06563 0.136284
\(507\) −9.77531 −0.434137
\(508\) 4.20317 0.186485
\(509\) 21.1127 0.935803 0.467901 0.883781i \(-0.345010\pi\)
0.467901 + 0.883781i \(0.345010\pi\)
\(510\) −5.34252 −0.236571
\(511\) 0 0
\(512\) 46.5410 2.05684
\(513\) −0.940222 −0.0415118
\(514\) 26.6390 1.17500
\(515\) −2.10451 −0.0927356
\(516\) −23.8977 −1.05204
\(517\) 10.0341 0.441297
\(518\) 0 0
\(519\) 19.0230 0.835015
\(520\) 4.18313 0.183443
\(521\) 11.8646 0.519798 0.259899 0.965636i \(-0.416311\pi\)
0.259899 + 0.965636i \(0.416311\pi\)
\(522\) −8.21798 −0.359691
\(523\) 39.4678 1.72581 0.862903 0.505370i \(-0.168644\pi\)
0.862903 + 0.505370i \(0.168644\pi\)
\(524\) 0.0449899 0.00196539
\(525\) 0 0
\(526\) 53.7766 2.34477
\(527\) 8.19377 0.356926
\(528\) 12.3387 0.536971
\(529\) −22.7782 −0.990357
\(530\) 4.02183 0.174697
\(531\) −20.5799 −0.893090
\(532\) 0 0
\(533\) 2.67118 0.115702
\(534\) 12.6657 0.548097
\(535\) 3.21010 0.138785
\(536\) −73.4249 −3.17147
\(537\) −5.61548 −0.242326
\(538\) 15.3217 0.660566
\(539\) 0 0
\(540\) 10.2886 0.442751
\(541\) −18.5264 −0.796511 −0.398255 0.917275i \(-0.630384\pi\)
−0.398255 + 0.917275i \(0.630384\pi\)
\(542\) 0.589758 0.0253323
\(543\) 6.47597 0.277910
\(544\) 9.68143 0.415088
\(545\) 2.36186 0.101171
\(546\) 0 0
\(547\) 19.8599 0.849148 0.424574 0.905393i \(-0.360424\pi\)
0.424574 + 0.905393i \(0.360424\pi\)
\(548\) −10.4061 −0.444527
\(549\) 30.2461 1.29087
\(550\) 30.7525 1.31129
\(551\) −0.303233 −0.0129182
\(552\) 2.31930 0.0987158
\(553\) 0 0
\(554\) −16.1334 −0.685444
\(555\) 0.453316 0.0192422
\(556\) −24.1345 −1.02353
\(557\) −16.2691 −0.689343 −0.344672 0.938723i \(-0.612010\pi\)
−0.344672 + 0.938723i \(0.612010\pi\)
\(558\) −9.83844 −0.416495
\(559\) −9.19801 −0.389035
\(560\) 0 0
\(561\) −10.6774 −0.450800
\(562\) −20.9077 −0.881940
\(563\) 31.9205 1.34529 0.672645 0.739965i \(-0.265158\pi\)
0.672645 + 0.739965i \(0.265158\pi\)
\(564\) 14.4824 0.609821
\(565\) 3.92364 0.165069
\(566\) 57.9769 2.43695
\(567\) 0 0
\(568\) −57.6557 −2.41918
\(569\) −18.6740 −0.782857 −0.391428 0.920209i \(-0.628019\pi\)
−0.391428 + 0.920209i \(0.628019\pi\)
\(570\) 0.236701 0.00991431
\(571\) 30.6429 1.28236 0.641182 0.767389i \(-0.278444\pi\)
0.641182 + 0.767389i \(0.278444\pi\)
\(572\) 15.9496 0.666887
\(573\) 20.6523 0.862761
\(574\) 0 0
\(575\) 2.22493 0.0927860
\(576\) 11.4629 0.477623
\(577\) −13.7392 −0.571969 −0.285984 0.958234i \(-0.592321\pi\)
−0.285984 + 0.958234i \(0.592321\pi\)
\(578\) −9.26772 −0.385487
\(579\) 12.0353 0.500170
\(580\) 3.31820 0.137781
\(581\) 0 0
\(582\) −15.2612 −0.632595
\(583\) 8.03790 0.332896
\(584\) 16.1492 0.668259
\(585\) 1.67298 0.0691691
\(586\) −14.5508 −0.601089
\(587\) 43.1552 1.78121 0.890603 0.454782i \(-0.150283\pi\)
0.890603 + 0.454782i \(0.150283\pi\)
\(588\) 0 0
\(589\) −0.363026 −0.0149582
\(590\) 12.2636 0.504883
\(591\) 3.73099 0.153472
\(592\) −5.06029 −0.207977
\(593\) 37.8643 1.55490 0.777450 0.628945i \(-0.216513\pi\)
0.777450 + 0.628945i \(0.216513\pi\)
\(594\) 30.3468 1.24514
\(595\) 0 0
\(596\) 25.0301 1.02527
\(597\) −4.26784 −0.174671
\(598\) 1.70303 0.0696422
\(599\) 43.4643 1.77590 0.887952 0.459936i \(-0.152128\pi\)
0.887952 + 0.459936i \(0.152128\pi\)
\(600\) 23.2657 0.949819
\(601\) −6.30594 −0.257225 −0.128612 0.991695i \(-0.541052\pi\)
−0.128612 + 0.991695i \(0.541052\pi\)
\(602\) 0 0
\(603\) −29.3651 −1.19584
\(604\) 66.3682 2.70049
\(605\) 2.18909 0.0889991
\(606\) −15.6255 −0.634741
\(607\) 34.6545 1.40658 0.703291 0.710902i \(-0.251713\pi\)
0.703291 + 0.710902i \(0.251713\pi\)
\(608\) −0.428937 −0.0173957
\(609\) 0 0
\(610\) −18.0237 −0.729759
\(611\) 5.57416 0.225506
\(612\) 41.9879 1.69726
\(613\) −20.4108 −0.824385 −0.412192 0.911097i \(-0.635237\pi\)
−0.412192 + 0.911097i \(0.635237\pi\)
\(614\) −15.9250 −0.642682
\(615\) −0.866957 −0.0349591
\(616\) 0 0
\(617\) −7.50281 −0.302052 −0.151026 0.988530i \(-0.548258\pi\)
−0.151026 + 0.988530i \(0.548258\pi\)
\(618\) −8.95926 −0.360394
\(619\) 17.1606 0.689741 0.344871 0.938650i \(-0.387923\pi\)
0.344871 + 0.938650i \(0.387923\pi\)
\(620\) 3.97250 0.159539
\(621\) 2.19558 0.0881055
\(622\) −38.4305 −1.54092
\(623\) 0 0
\(624\) 6.85442 0.274397
\(625\) 20.9407 0.837627
\(626\) 49.1535 1.96457
\(627\) 0.473064 0.0188923
\(628\) −27.5150 −1.09797
\(629\) 4.37899 0.174602
\(630\) 0 0
\(631\) 8.55084 0.340403 0.170202 0.985409i \(-0.445558\pi\)
0.170202 + 0.985409i \(0.445558\pi\)
\(632\) 19.4168 0.772358
\(633\) 24.8805 0.988912
\(634\) 29.5155 1.17221
\(635\) −0.525060 −0.0208364
\(636\) 11.6013 0.460023
\(637\) 0 0
\(638\) 9.78720 0.387479
\(639\) −23.0585 −0.912178
\(640\) −9.06422 −0.358295
\(641\) 22.7012 0.896644 0.448322 0.893872i \(-0.352022\pi\)
0.448322 + 0.893872i \(0.352022\pi\)
\(642\) 13.6660 0.539352
\(643\) 10.9385 0.431374 0.215687 0.976463i \(-0.430801\pi\)
0.215687 + 0.976463i \(0.430801\pi\)
\(644\) 0 0
\(645\) 2.98531 0.117546
\(646\) 2.28651 0.0899614
\(647\) −2.75442 −0.108287 −0.0541436 0.998533i \(-0.517243\pi\)
−0.0541436 + 0.998533i \(0.517243\pi\)
\(648\) −13.1670 −0.517248
\(649\) 24.5096 0.962086
\(650\) 17.0838 0.670081
\(651\) 0 0
\(652\) 26.4810 1.03708
\(653\) −35.0485 −1.37156 −0.685778 0.727811i \(-0.740538\pi\)
−0.685778 + 0.727811i \(0.740538\pi\)
\(654\) 10.0549 0.393176
\(655\) −0.00562015 −0.000219598 0
\(656\) 9.67770 0.377851
\(657\) 6.45861 0.251975
\(658\) 0 0
\(659\) −44.9909 −1.75260 −0.876299 0.481767i \(-0.839995\pi\)
−0.876299 + 0.481767i \(0.839995\pi\)
\(660\) −5.17661 −0.201499
\(661\) 14.8057 0.575876 0.287938 0.957649i \(-0.407030\pi\)
0.287938 + 0.957649i \(0.407030\pi\)
\(662\) 24.2410 0.942154
\(663\) −5.93156 −0.230363
\(664\) −95.7732 −3.71672
\(665\) 0 0
\(666\) −5.25795 −0.203741
\(667\) 0.708100 0.0274177
\(668\) 69.3162 2.68192
\(669\) 17.5749 0.679484
\(670\) 17.4987 0.676034
\(671\) −36.0216 −1.39060
\(672\) 0 0
\(673\) −30.9268 −1.19214 −0.596070 0.802932i \(-0.703272\pi\)
−0.596070 + 0.802932i \(0.703272\pi\)
\(674\) −69.3822 −2.67250
\(675\) 22.0247 0.847730
\(676\) −45.7807 −1.76080
\(677\) 51.3587 1.97388 0.986938 0.161103i \(-0.0515051\pi\)
0.986938 + 0.161103i \(0.0515051\pi\)
\(678\) 16.7036 0.641499
\(679\) 0 0
\(680\) −13.1150 −0.502938
\(681\) 8.53852 0.327197
\(682\) 11.7171 0.448671
\(683\) −14.7793 −0.565515 −0.282757 0.959191i \(-0.591249\pi\)
−0.282757 + 0.959191i \(0.591249\pi\)
\(684\) −1.86028 −0.0711296
\(685\) 1.29993 0.0496679
\(686\) 0 0
\(687\) 7.14579 0.272629
\(688\) −33.3245 −1.27048
\(689\) 4.46525 0.170113
\(690\) −0.552737 −0.0210423
\(691\) −32.6442 −1.24184 −0.620922 0.783873i \(-0.713242\pi\)
−0.620922 + 0.783873i \(0.713242\pi\)
\(692\) 89.0903 3.38670
\(693\) 0 0
\(694\) −39.1519 −1.48619
\(695\) 3.01488 0.114361
\(696\) 7.40448 0.280666
\(697\) −8.37472 −0.317215
\(698\) 63.7831 2.41422
\(699\) 2.47984 0.0937963
\(700\) 0 0
\(701\) −28.6064 −1.08045 −0.540224 0.841521i \(-0.681661\pi\)
−0.540224 + 0.841521i \(0.681661\pi\)
\(702\) 16.8584 0.636279
\(703\) −0.194011 −0.00731728
\(704\) −13.6518 −0.514522
\(705\) −1.80915 −0.0681365
\(706\) 39.0259 1.46876
\(707\) 0 0
\(708\) 35.3754 1.32949
\(709\) −4.01954 −0.150957 −0.0754785 0.997147i \(-0.524048\pi\)
−0.0754785 + 0.997147i \(0.524048\pi\)
\(710\) 13.7406 0.515674
\(711\) 7.76543 0.291226
\(712\) 31.0922 1.16523
\(713\) 0.847727 0.0317476
\(714\) 0 0
\(715\) −1.99243 −0.0745127
\(716\) −26.2990 −0.982840
\(717\) −26.2766 −0.981316
\(718\) −24.8428 −0.927126
\(719\) 2.37429 0.0885462 0.0442731 0.999019i \(-0.485903\pi\)
0.0442731 + 0.999019i \(0.485903\pi\)
\(720\) 6.06121 0.225888
\(721\) 0 0
\(722\) 47.2204 1.75736
\(723\) −1.29017 −0.0479819
\(724\) 30.3289 1.12717
\(725\) 7.10322 0.263807
\(726\) 9.31933 0.345873
\(727\) 24.6101 0.912737 0.456368 0.889791i \(-0.349150\pi\)
0.456368 + 0.889791i \(0.349150\pi\)
\(728\) 0 0
\(729\) 7.28618 0.269858
\(730\) −3.84869 −0.142447
\(731\) 28.8378 1.06660
\(732\) −51.9911 −1.92165
\(733\) 19.0043 0.701939 0.350970 0.936387i \(-0.385852\pi\)
0.350970 + 0.936387i \(0.385852\pi\)
\(734\) −19.5215 −0.720552
\(735\) 0 0
\(736\) 1.00164 0.0369209
\(737\) 34.9724 1.28822
\(738\) 10.0557 0.370156
\(739\) 35.1007 1.29120 0.645600 0.763676i \(-0.276607\pi\)
0.645600 + 0.763676i \(0.276607\pi\)
\(740\) 2.12302 0.0780436
\(741\) 0.262798 0.00965414
\(742\) 0 0
\(743\) 21.0754 0.773180 0.386590 0.922252i \(-0.373653\pi\)
0.386590 + 0.922252i \(0.373653\pi\)
\(744\) 8.86454 0.324990
\(745\) −3.12676 −0.114556
\(746\) 47.8891 1.75334
\(747\) −38.3029 −1.40143
\(748\) −50.0055 −1.82838
\(749\) 0 0
\(750\) −11.4130 −0.416743
\(751\) 18.0271 0.657817 0.328908 0.944362i \(-0.393319\pi\)
0.328908 + 0.944362i \(0.393319\pi\)
\(752\) 20.1952 0.736445
\(753\) −8.31425 −0.302988
\(754\) 5.43703 0.198005
\(755\) −8.29074 −0.301731
\(756\) 0 0
\(757\) 4.30504 0.156469 0.0782347 0.996935i \(-0.475072\pi\)
0.0782347 + 0.996935i \(0.475072\pi\)
\(758\) −86.4054 −3.13839
\(759\) −1.10468 −0.0400975
\(760\) 0.581063 0.0210774
\(761\) 17.6944 0.641422 0.320711 0.947177i \(-0.396078\pi\)
0.320711 + 0.947177i \(0.396078\pi\)
\(762\) −2.23528 −0.0809755
\(763\) 0 0
\(764\) 96.7208 3.49924
\(765\) −5.24514 −0.189638
\(766\) −28.9596 −1.04635
\(767\) 13.6157 0.491634
\(768\) −29.2122 −1.05410
\(769\) 30.3350 1.09391 0.546954 0.837163i \(-0.315787\pi\)
0.546954 + 0.837163i \(0.315787\pi\)
\(770\) 0 0
\(771\) −9.59921 −0.345707
\(772\) 56.3650 2.02862
\(773\) −38.1914 −1.37365 −0.686825 0.726823i \(-0.740996\pi\)
−0.686825 + 0.726823i \(0.740996\pi\)
\(774\) −34.6261 −1.24461
\(775\) 8.50387 0.305468
\(776\) −37.4637 −1.34487
\(777\) 0 0
\(778\) −16.7251 −0.599624
\(779\) 0.371043 0.0132940
\(780\) −2.87573 −0.102968
\(781\) 27.4615 0.982649
\(782\) −5.33938 −0.190936
\(783\) 7.00950 0.250499
\(784\) 0 0
\(785\) 3.43719 0.122678
\(786\) −0.0239260 −0.000853412 0
\(787\) 23.0664 0.822230 0.411115 0.911584i \(-0.365140\pi\)
0.411115 + 0.911584i \(0.365140\pi\)
\(788\) 17.4734 0.622462
\(789\) −19.3781 −0.689879
\(790\) −4.62743 −0.164636
\(791\) 0 0
\(792\) 31.4725 1.11833
\(793\) −20.0109 −0.710608
\(794\) −46.1533 −1.63792
\(795\) −1.44924 −0.0513993
\(796\) −19.9876 −0.708441
\(797\) −40.2087 −1.42427 −0.712133 0.702044i \(-0.752271\pi\)
−0.712133 + 0.702044i \(0.752271\pi\)
\(798\) 0 0
\(799\) −17.4762 −0.618263
\(800\) 10.0478 0.355244
\(801\) 12.4348 0.439362
\(802\) −9.75658 −0.344517
\(803\) −7.69189 −0.271441
\(804\) 50.4766 1.78017
\(805\) 0 0
\(806\) 6.50913 0.229274
\(807\) −5.52110 −0.194352
\(808\) −38.3580 −1.34943
\(809\) 10.1096 0.355434 0.177717 0.984082i \(-0.443129\pi\)
0.177717 + 0.984082i \(0.443129\pi\)
\(810\) 3.13797 0.110257
\(811\) 30.6004 1.07452 0.537262 0.843416i \(-0.319459\pi\)
0.537262 + 0.843416i \(0.319459\pi\)
\(812\) 0 0
\(813\) −0.212516 −0.00745326
\(814\) 6.26195 0.219481
\(815\) −3.30801 −0.115875
\(816\) −21.4901 −0.752304
\(817\) −1.27766 −0.0446997
\(818\) 59.6994 2.08734
\(819\) 0 0
\(820\) −4.06022 −0.141789
\(821\) 6.80440 0.237475 0.118738 0.992926i \(-0.462115\pi\)
0.118738 + 0.992926i \(0.462115\pi\)
\(822\) 5.53405 0.193022
\(823\) 37.1405 1.29464 0.647318 0.762220i \(-0.275891\pi\)
0.647318 + 0.762220i \(0.275891\pi\)
\(824\) −21.9935 −0.766181
\(825\) −11.0815 −0.385808
\(826\) 0 0
\(827\) 24.5185 0.852591 0.426296 0.904584i \(-0.359818\pi\)
0.426296 + 0.904584i \(0.359818\pi\)
\(828\) 4.34407 0.150967
\(829\) −44.0647 −1.53043 −0.765215 0.643775i \(-0.777367\pi\)
−0.765215 + 0.643775i \(0.777367\pi\)
\(830\) 22.8248 0.792259
\(831\) 5.81359 0.201671
\(832\) −7.58391 −0.262925
\(833\) 0 0
\(834\) 12.8349 0.444436
\(835\) −8.65900 −0.299657
\(836\) 2.21550 0.0766247
\(837\) 8.39167 0.290059
\(838\) −41.3446 −1.42822
\(839\) 4.05620 0.140036 0.0700178 0.997546i \(-0.477694\pi\)
0.0700178 + 0.997546i \(0.477694\pi\)
\(840\) 0 0
\(841\) −26.7394 −0.922047
\(842\) −62.1715 −2.14257
\(843\) 7.53399 0.259484
\(844\) 116.523 4.01089
\(845\) 5.71894 0.196738
\(846\) 20.9841 0.721447
\(847\) 0 0
\(848\) 16.1776 0.555543
\(849\) −20.8916 −0.716999
\(850\) −53.5613 −1.83714
\(851\) 0.453049 0.0155303
\(852\) 39.6359 1.35790
\(853\) 50.0794 1.71469 0.857343 0.514745i \(-0.172113\pi\)
0.857343 + 0.514745i \(0.172113\pi\)
\(854\) 0 0
\(855\) 0.232387 0.00794745
\(856\) 33.5477 1.14664
\(857\) 13.2766 0.453520 0.226760 0.973951i \(-0.427187\pi\)
0.226760 + 0.973951i \(0.427187\pi\)
\(858\) −8.48213 −0.289575
\(859\) 30.0133 1.02404 0.512021 0.858973i \(-0.328897\pi\)
0.512021 + 0.858973i \(0.328897\pi\)
\(860\) 13.9811 0.476751
\(861\) 0 0
\(862\) 59.1236 2.01376
\(863\) 45.0695 1.53418 0.767091 0.641538i \(-0.221703\pi\)
0.767091 + 0.641538i \(0.221703\pi\)
\(864\) 9.91526 0.337324
\(865\) −11.1292 −0.378403
\(866\) −66.4913 −2.25947
\(867\) 3.33957 0.113418
\(868\) 0 0
\(869\) −9.24824 −0.313725
\(870\) −1.76464 −0.0598270
\(871\) 19.4280 0.658293
\(872\) 24.6830 0.835873
\(873\) −14.9830 −0.507097
\(874\) 0.236562 0.00800182
\(875\) 0 0
\(876\) −11.1019 −0.375099
\(877\) −28.9548 −0.977734 −0.488867 0.872358i \(-0.662590\pi\)
−0.488867 + 0.872358i \(0.662590\pi\)
\(878\) −1.89899 −0.0640878
\(879\) 5.24330 0.176852
\(880\) −7.21860 −0.243339
\(881\) 43.4223 1.46294 0.731468 0.681876i \(-0.238836\pi\)
0.731468 + 0.681876i \(0.238836\pi\)
\(882\) 0 0
\(883\) 28.5142 0.959578 0.479789 0.877384i \(-0.340713\pi\)
0.479789 + 0.877384i \(0.340713\pi\)
\(884\) −27.7793 −0.934319
\(885\) −4.41911 −0.148547
\(886\) 30.1022 1.01130
\(887\) 48.4818 1.62786 0.813929 0.580964i \(-0.197324\pi\)
0.813929 + 0.580964i \(0.197324\pi\)
\(888\) 4.73746 0.158979
\(889\) 0 0
\(890\) −7.40991 −0.248381
\(891\) 6.27144 0.210101
\(892\) 82.3085 2.75589
\(893\) 0.774285 0.0259105
\(894\) −13.3112 −0.445192
\(895\) 3.28528 0.109815
\(896\) 0 0
\(897\) −0.613679 −0.0204901
\(898\) 3.01827 0.100721
\(899\) 2.70641 0.0902640
\(900\) 43.5770 1.45257
\(901\) −13.9995 −0.466392
\(902\) −11.9758 −0.398752
\(903\) 0 0
\(904\) 41.0047 1.36380
\(905\) −3.78869 −0.125940
\(906\) −35.2951 −1.17260
\(907\) −46.8426 −1.55538 −0.777692 0.628646i \(-0.783609\pi\)
−0.777692 + 0.628646i \(0.783609\pi\)
\(908\) 39.9885 1.32706
\(909\) −15.3406 −0.508817
\(910\) 0 0
\(911\) 10.1028 0.334722 0.167361 0.985896i \(-0.446476\pi\)
0.167361 + 0.985896i \(0.446476\pi\)
\(912\) 0.952121 0.0315279
\(913\) 45.6169 1.50970
\(914\) 67.0197 2.21681
\(915\) 6.49474 0.214709
\(916\) 33.4659 1.10575
\(917\) 0 0
\(918\) −52.8547 −1.74446
\(919\) −16.0034 −0.527904 −0.263952 0.964536i \(-0.585026\pi\)
−0.263952 + 0.964536i \(0.585026\pi\)
\(920\) −1.35688 −0.0447350
\(921\) 5.73850 0.189090
\(922\) 14.5700 0.479837
\(923\) 15.2555 0.502142
\(924\) 0 0
\(925\) 4.54471 0.149429
\(926\) −16.9909 −0.558355
\(927\) −8.79595 −0.288897
\(928\) 3.19779 0.104973
\(929\) 18.3956 0.603539 0.301769 0.953381i \(-0.402423\pi\)
0.301769 + 0.953381i \(0.402423\pi\)
\(930\) −2.11260 −0.0692750
\(931\) 0 0
\(932\) 11.6139 0.380425
\(933\) 13.8482 0.453370
\(934\) −81.0383 −2.65165
\(935\) 6.24670 0.204289
\(936\) 17.4837 0.571474
\(937\) −24.7977 −0.810105 −0.405053 0.914293i \(-0.632747\pi\)
−0.405053 + 0.914293i \(0.632747\pi\)
\(938\) 0 0
\(939\) −17.7122 −0.578016
\(940\) −8.47280 −0.276352
\(941\) 45.0547 1.46874 0.734371 0.678748i \(-0.237477\pi\)
0.734371 + 0.678748i \(0.237477\pi\)
\(942\) 14.6327 0.476759
\(943\) −0.866447 −0.0282154
\(944\) 49.3298 1.60555
\(945\) 0 0
\(946\) 41.2380 1.34076
\(947\) 50.2871 1.63411 0.817056 0.576559i \(-0.195605\pi\)
0.817056 + 0.576559i \(0.195605\pi\)
\(948\) −13.3482 −0.433531
\(949\) −4.27303 −0.138708
\(950\) 2.37304 0.0769916
\(951\) −10.6357 −0.344888
\(952\) 0 0
\(953\) 22.8566 0.740398 0.370199 0.928952i \(-0.379289\pi\)
0.370199 + 0.928952i \(0.379289\pi\)
\(954\) 16.8095 0.544229
\(955\) −12.0824 −0.390977
\(956\) −123.061 −3.98008
\(957\) −3.52676 −0.114004
\(958\) −38.0770 −1.23021
\(959\) 0 0
\(960\) 2.46143 0.0794424
\(961\) −27.7599 −0.895481
\(962\) 3.47867 0.112157
\(963\) 13.4169 0.432352
\(964\) −6.04225 −0.194608
\(965\) −7.04113 −0.226662
\(966\) 0 0
\(967\) −32.5270 −1.04600 −0.522998 0.852334i \(-0.675187\pi\)
−0.522998 + 0.852334i \(0.675187\pi\)
\(968\) 22.8775 0.735309
\(969\) −0.823930 −0.0264684
\(970\) 8.92837 0.286673
\(971\) −55.6335 −1.78536 −0.892682 0.450687i \(-0.851179\pi\)
−0.892682 + 0.450687i \(0.851179\pi\)
\(972\) 67.8370 2.17587
\(973\) 0 0
\(974\) 57.9865 1.85801
\(975\) −6.15604 −0.197151
\(976\) −72.4997 −2.32066
\(977\) −46.5136 −1.48810 −0.744051 0.668123i \(-0.767098\pi\)
−0.744051 + 0.668123i \(0.767098\pi\)
\(978\) −14.0828 −0.450318
\(979\) −14.8092 −0.473305
\(980\) 0 0
\(981\) 9.87158 0.315175
\(982\) −41.0402 −1.30965
\(983\) 22.7831 0.726669 0.363335 0.931659i \(-0.381638\pi\)
0.363335 + 0.931659i \(0.381638\pi\)
\(984\) −9.06029 −0.288832
\(985\) −2.18278 −0.0695490
\(986\) −17.0463 −0.542864
\(987\) 0 0
\(988\) 1.23076 0.0391558
\(989\) 2.98355 0.0948714
\(990\) −7.50055 −0.238383
\(991\) 25.9446 0.824158 0.412079 0.911148i \(-0.364803\pi\)
0.412079 + 0.911148i \(0.364803\pi\)
\(992\) 3.82835 0.121550
\(993\) −8.73512 −0.277201
\(994\) 0 0
\(995\) 2.49685 0.0791556
\(996\) 65.8402 2.08623
\(997\) 40.6587 1.28767 0.643837 0.765163i \(-0.277342\pi\)
0.643837 + 0.765163i \(0.277342\pi\)
\(998\) 64.6925 2.04781
\(999\) 4.48475 0.141891
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6223.2.a.p.1.3 38
7.2 even 3 889.2.f.c.382.36 yes 76
7.4 even 3 889.2.f.c.128.36 76
7.6 odd 2 6223.2.a.o.1.3 38
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
889.2.f.c.128.36 76 7.4 even 3
889.2.f.c.382.36 yes 76 7.2 even 3
6223.2.a.o.1.3 38 7.6 odd 2
6223.2.a.p.1.3 38 1.1 even 1 trivial