gp: [N,k,chi] = [6223,2,Mod(1,6223)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6223, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("6223.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [38,-2,11,38,16]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
\( p \)
Sign
\(7\)
\( +1 \)
\(127\)
\( -1 \)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6223))\):
\( T_{2}^{38} + 2 T_{2}^{37} - 55 T_{2}^{36} - 110 T_{2}^{35} + 1372 T_{2}^{34} + 2750 T_{2}^{33} + \cdots + 213 \)
T2^38 + 2*T2^37 - 55*T2^36 - 110*T2^35 + 1372*T2^34 + 2750*T2^33 - 20540*T2^32 - 41384*T2^31 + 205760*T2^30 + 418464*T2^29 - 1455519*T2^28 - 3005631*T2^27 + 7475436*T2^26 + 15807557*T2^25 - 28205672*T2^24 - 61855745*T2^23 + 78111606*T2^22 + 181205710*T2^21 - 156448067*T2^20 - 396807315*T2^19 + 218492992*T2^18 + 643973795*T2^17 - 194561596*T2^16 - 762145524*T2^15 + 78445645*T2^14 + 641378802*T2^13 + 36815752*T2^12 - 369497991*T2^11 - 68946692*T2^10 + 137503067*T2^9 + 40023305*T2^8 - 30058299*T2^7 - 11344048*T2^6 + 3239342*T2^5 + 1467907*T2^4 - 121977*T2^3 - 60982*T2^2 + 2832*T2 + 213
\( T_{3}^{38} - 11 T_{3}^{37} - 20 T_{3}^{36} + 630 T_{3}^{35} - 941 T_{3}^{34} - 15429 T_{3}^{33} + \cdots - 50092 \)
T3^38 - 11*T3^37 - 20*T3^36 + 630*T3^35 - 941*T3^34 - 15429*T3^33 + 46819*T3^32 + 206941*T3^31 - 941064*T3^30 - 1557188*T3^29 + 11296022*T3^28 + 4713391*T3^27 - 90398487*T3^26 + 26804541*T3^25 + 505913537*T3^24 - 392771419*T3^23 - 2024510314*T3^22 + 2307791245*T3^21 + 5839762792*T3^20 - 8450452703*T3^19 - 12127168221*T3^18 + 21022782934*T3^17 + 17998617551*T3^16 - 36349934591*T3^15 - 18931597223*T3^14 + 43525698396*T3^13 + 14134138686*T3^12 - 35274564702*T3^11 - 7696554672*T3^10 + 18497652848*T3^9 + 3151515750*T3^8 - 5804087801*T3^7 - 880866288*T3^6 + 953670516*T3^5 + 116937069*T3^4 - 68274798*T3^3 - 3153157*T3^2 + 1706024*T3 - 50092
\( T_{5}^{38} - 16 T_{5}^{37} + 7 T_{5}^{36} + 1159 T_{5}^{35} - 4586 T_{5}^{34} - 34379 T_{5}^{33} + \cdots + 4636506252 \)
T5^38 - 16*T5^37 + 7*T5^36 + 1159*T5^35 - 4586*T5^34 - 34379*T5^33 + 226273*T5^32 + 483400*T5^31 - 5724822*T5^30 - 1175580*T5^29 + 91403962*T5^28 - 77890132*T5^27 - 994768082*T5^26 + 1581823877*T5^25 + 7626361973*T5^24 - 16948815724*T5^23 - 41533018355*T5^22 + 119980250862*T5^21 + 158662694771*T5^20 - 597194938029*T5^19 - 407867981916*T5^18 + 2134370255728*T5^17 + 632865798147*T5^16 - 5496497045172*T5^15 - 376225514375*T5^14 + 10135947643968*T5^13 - 452645094292*T5^12 - 13203454160334*T5^11 + 889759551891*T5^10 + 11848849840156*T5^9 - 269249419186*T5^8 - 6959612423214*T5^7 - 414933333561*T5^6 + 2420923120334*T5^5 + 347088533519*T5^4 - 418185314410*T5^3 - 84213650321*T5^2 + 23448262962*T5 + 4636506252