gp: [N,k,chi] = [889,2,Mod(128,889)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("889.128");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(889, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([2, 0]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage: traces = [76]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{76} - 2 T_{2}^{75} + 59 T_{2}^{74} - 110 T_{2}^{73} + 1873 T_{2}^{72} - 3312 T_{2}^{71} + \cdots + 45369 \)
T2^76 - 2*T2^75 + 59*T2^74 - 110*T2^73 + 1873*T2^72 - 3312*T2^71 + 40980*T2^70 - 69116*T2^69 + 683888*T2^68 - 1104912*T2^67 + 9176131*T2^66 - 14240021*T2^65 + 102241389*T2^64 - 152726077*T2^63 + 966191190*T2^62 - 1391406729*T2^61 + 7858317898*T2^60 - 10923378561*T2^59 + 55580259462*T2^58 - 74640063951*T2^57 + 344397645906*T2^56 - 447119797248*T2^55 + 1879441134877*T2^54 - 2359847038175*T2^53 + 9065543723759*T2^52 - 11011083496007*T2^51 + 38738840360815*T2^50 - 45514650818256*T2^49 + 146827314342214*T2^48 - 166830164120825*T2^47 + 493725764497542*T2^46 - 542253269736735*T2^45 + 1472103433184512*T2^44 - 1561654487348047*T2^43 + 3886787820866390*T2^42 - 3978527027698094*T2^41 + 9069122915656924*T2^40 - 8945639830548553*T2^39 + 18650274884493245*T2^38 - 17697617057748291*T2^37 + 33688323622000627*T2^36 - 30690141877265055*T2^35 + 53231902962848473*T2^34 - 46436745969179732*T2^33 + 73226631615205731*T2^32 - 60978163786364934*T2^31 + 87204569406080994*T2^30 - 69046288823641917*T2^29 + 89324563184445200*T2^28 - 66921282361433105*T2^27 + 78116173867496748*T2^26 - 55026832445215825*T2^25 + 57819783544776482*T2^24 - 38000133333377407*T2^23 + 35860456292288968*T2^22 - 21763654678596182*T2^21 + 18406958122839299*T2^20 - 10190053791354275*T2^19 + 7704344343496525*T2^18 - 3824527271093025*T2^17 + 2575801593770624*T2^16 - 1121335333020444*T2^15 + 670484410475239*T2^14 - 247111489064751*T2^13 + 130619217295329*T2^12 - 38543000169596*T2^11 + 18222797512009*T2^10 - 3875411794238*T2^9 + 1679318275146*T2^8 - 177503453926*T2^7 + 90387912211*T2^6 + 185843988*T2^5 + 3751578997*T2^4 + 120738822*T2^3 + 21009390*T2^2 - 603216*T2 + 45369
acting on \(S_{2}^{\mathrm{new}}(889, [\chi])\).