Properties

Label 889.2.a.c.1.11
Level $889$
Weight $2$
Character 889.1
Self dual yes
Analytic conductor $7.099$
Analytic rank $1$
Dimension $16$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [889,2,Mod(1,889)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(889, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("889.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 889 = 7 \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 889.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.09870073969\)
Analytic rank: \(1\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} - 20 x^{14} + 38 x^{13} + 155 x^{12} - 275 x^{11} - 593 x^{10} + 957 x^{9} + 1177 x^{8} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.11
Root \(-0.532475\) of defining polynomial
Character \(\chi\) \(=\) 889.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.532475 q^{2} +1.70041 q^{3} -1.71647 q^{4} -0.118172 q^{5} +0.905424 q^{6} -1.00000 q^{7} -1.97893 q^{8} -0.108620 q^{9} -0.0629236 q^{10} -5.22568 q^{11} -2.91870 q^{12} -2.19166 q^{13} -0.532475 q^{14} -0.200940 q^{15} +2.37921 q^{16} -1.28158 q^{17} -0.0578377 q^{18} +8.34525 q^{19} +0.202839 q^{20} -1.70041 q^{21} -2.78254 q^{22} -9.05966 q^{23} -3.36498 q^{24} -4.98604 q^{25} -1.16700 q^{26} -5.28592 q^{27} +1.71647 q^{28} -9.26366 q^{29} -0.106996 q^{30} +6.76707 q^{31} +5.22473 q^{32} -8.88577 q^{33} -0.682411 q^{34} +0.118172 q^{35} +0.186444 q^{36} +6.01829 q^{37} +4.44364 q^{38} -3.72670 q^{39} +0.233854 q^{40} -4.32714 q^{41} -0.905424 q^{42} +2.14731 q^{43} +8.96972 q^{44} +0.0128359 q^{45} -4.82404 q^{46} +1.79425 q^{47} +4.04562 q^{48} +1.00000 q^{49} -2.65494 q^{50} -2.17921 q^{51} +3.76191 q^{52} +4.27074 q^{53} -2.81462 q^{54} +0.617528 q^{55} +1.97893 q^{56} +14.1903 q^{57} -4.93267 q^{58} +11.1673 q^{59} +0.344908 q^{60} -10.4330 q^{61} +3.60330 q^{62} +0.108620 q^{63} -1.97638 q^{64} +0.258992 q^{65} -4.73145 q^{66} -14.4350 q^{67} +2.19980 q^{68} -15.4051 q^{69} +0.0629236 q^{70} -4.12479 q^{71} +0.214952 q^{72} +16.5937 q^{73} +3.20459 q^{74} -8.47828 q^{75} -14.3244 q^{76} +5.22568 q^{77} -1.98438 q^{78} -11.3780 q^{79} -0.281156 q^{80} -8.66234 q^{81} -2.30410 q^{82} +6.41125 q^{83} +2.91870 q^{84} +0.151447 q^{85} +1.14339 q^{86} -15.7520 q^{87} +10.3412 q^{88} -3.69932 q^{89} +0.00683479 q^{90} +2.19166 q^{91} +15.5506 q^{92} +11.5068 q^{93} +0.955391 q^{94} -0.986174 q^{95} +8.88415 q^{96} +6.10975 q^{97} +0.532475 q^{98} +0.567615 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{2} - 4 q^{3} + 12 q^{4} - 9 q^{5} - 12 q^{6} - 16 q^{7} - 6 q^{8} + 14 q^{9} - 2 q^{10} - 22 q^{11} - 10 q^{12} - 4 q^{13} + 2 q^{14} - 14 q^{15} + 12 q^{16} - 18 q^{17} - 5 q^{18} - 15 q^{19}+ \cdots - 73 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.532475 0.376517 0.188258 0.982120i \(-0.439716\pi\)
0.188258 + 0.982120i \(0.439716\pi\)
\(3\) 1.70041 0.981730 0.490865 0.871236i \(-0.336681\pi\)
0.490865 + 0.871236i \(0.336681\pi\)
\(4\) −1.71647 −0.858235
\(5\) −0.118172 −0.0528481 −0.0264241 0.999651i \(-0.508412\pi\)
−0.0264241 + 0.999651i \(0.508412\pi\)
\(6\) 0.905424 0.369638
\(7\) −1.00000 −0.377964
\(8\) −1.97893 −0.699657
\(9\) −0.108620 −0.0362068
\(10\) −0.0629236 −0.0198982
\(11\) −5.22568 −1.57560 −0.787800 0.615931i \(-0.788780\pi\)
−0.787800 + 0.615931i \(0.788780\pi\)
\(12\) −2.91870 −0.842555
\(13\) −2.19166 −0.607856 −0.303928 0.952695i \(-0.598298\pi\)
−0.303928 + 0.952695i \(0.598298\pi\)
\(14\) −0.532475 −0.142310
\(15\) −0.200940 −0.0518826
\(16\) 2.37921 0.594803
\(17\) −1.28158 −0.310829 −0.155415 0.987849i \(-0.549671\pi\)
−0.155415 + 0.987849i \(0.549671\pi\)
\(18\) −0.0578377 −0.0136325
\(19\) 8.34525 1.91453 0.957266 0.289210i \(-0.0933925\pi\)
0.957266 + 0.289210i \(0.0933925\pi\)
\(20\) 0.202839 0.0453561
\(21\) −1.70041 −0.371059
\(22\) −2.78254 −0.593240
\(23\) −9.05966 −1.88907 −0.944535 0.328412i \(-0.893487\pi\)
−0.944535 + 0.328412i \(0.893487\pi\)
\(24\) −3.36498 −0.686874
\(25\) −4.98604 −0.997207
\(26\) −1.16700 −0.228868
\(27\) −5.28592 −1.01727
\(28\) 1.71647 0.324382
\(29\) −9.26366 −1.72022 −0.860109 0.510111i \(-0.829604\pi\)
−0.860109 + 0.510111i \(0.829604\pi\)
\(30\) −0.106996 −0.0195346
\(31\) 6.76707 1.21540 0.607701 0.794166i \(-0.292092\pi\)
0.607701 + 0.794166i \(0.292092\pi\)
\(32\) 5.22473 0.923610
\(33\) −8.88577 −1.54681
\(34\) −0.682411 −0.117033
\(35\) 0.118172 0.0199747
\(36\) 0.186444 0.0310740
\(37\) 6.01829 0.989401 0.494700 0.869064i \(-0.335278\pi\)
0.494700 + 0.869064i \(0.335278\pi\)
\(38\) 4.44364 0.720853
\(39\) −3.72670 −0.596750
\(40\) 0.233854 0.0369755
\(41\) −4.32714 −0.675786 −0.337893 0.941184i \(-0.609714\pi\)
−0.337893 + 0.941184i \(0.609714\pi\)
\(42\) −0.905424 −0.139710
\(43\) 2.14731 0.327461 0.163730 0.986505i \(-0.447647\pi\)
0.163730 + 0.986505i \(0.447647\pi\)
\(44\) 8.96972 1.35224
\(45\) 0.0128359 0.00191346
\(46\) −4.82404 −0.711266
\(47\) 1.79425 0.261718 0.130859 0.991401i \(-0.458227\pi\)
0.130859 + 0.991401i \(0.458227\pi\)
\(48\) 4.04562 0.583935
\(49\) 1.00000 0.142857
\(50\) −2.65494 −0.375465
\(51\) −2.17921 −0.305151
\(52\) 3.76191 0.521683
\(53\) 4.27074 0.586631 0.293315 0.956016i \(-0.405241\pi\)
0.293315 + 0.956016i \(0.405241\pi\)
\(54\) −2.81462 −0.383021
\(55\) 0.617528 0.0832675
\(56\) 1.97893 0.264445
\(57\) 14.1903 1.87955
\(58\) −4.93267 −0.647691
\(59\) 11.1673 1.45386 0.726931 0.686710i \(-0.240946\pi\)
0.726931 + 0.686710i \(0.240946\pi\)
\(60\) 0.344908 0.0445274
\(61\) −10.4330 −1.33581 −0.667907 0.744245i \(-0.732810\pi\)
−0.667907 + 0.744245i \(0.732810\pi\)
\(62\) 3.60330 0.457619
\(63\) 0.108620 0.0136849
\(64\) −1.97638 −0.247048
\(65\) 0.258992 0.0321240
\(66\) −4.73145 −0.582401
\(67\) −14.4350 −1.76352 −0.881760 0.471699i \(-0.843641\pi\)
−0.881760 + 0.471699i \(0.843641\pi\)
\(68\) 2.19980 0.266765
\(69\) −15.4051 −1.85456
\(70\) 0.0629236 0.00752081
\(71\) −4.12479 −0.489523 −0.244761 0.969583i \(-0.578710\pi\)
−0.244761 + 0.969583i \(0.578710\pi\)
\(72\) 0.214952 0.0253323
\(73\) 16.5937 1.94215 0.971075 0.238774i \(-0.0767454\pi\)
0.971075 + 0.238774i \(0.0767454\pi\)
\(74\) 3.20459 0.372526
\(75\) −8.47828 −0.978988
\(76\) −14.3244 −1.64312
\(77\) 5.22568 0.595521
\(78\) −1.98438 −0.224686
\(79\) −11.3780 −1.28012 −0.640060 0.768325i \(-0.721091\pi\)
−0.640060 + 0.768325i \(0.721091\pi\)
\(80\) −0.281156 −0.0314342
\(81\) −8.66234 −0.962482
\(82\) −2.30410 −0.254445
\(83\) 6.41125 0.703727 0.351863 0.936051i \(-0.385548\pi\)
0.351863 + 0.936051i \(0.385548\pi\)
\(84\) 2.91870 0.318456
\(85\) 0.151447 0.0164267
\(86\) 1.14339 0.123295
\(87\) −15.7520 −1.68879
\(88\) 10.3412 1.10238
\(89\) −3.69932 −0.392127 −0.196064 0.980591i \(-0.562816\pi\)
−0.196064 + 0.980591i \(0.562816\pi\)
\(90\) 0.00683479 0.000720450 0
\(91\) 2.19166 0.229748
\(92\) 15.5506 1.62127
\(93\) 11.5068 1.19320
\(94\) 0.955391 0.0985410
\(95\) −0.986174 −0.101179
\(96\) 8.88415 0.906735
\(97\) 6.10975 0.620351 0.310176 0.950679i \(-0.399612\pi\)
0.310176 + 0.950679i \(0.399612\pi\)
\(98\) 0.532475 0.0537881
\(99\) 0.567615 0.0570475
\(100\) 8.55838 0.855838
\(101\) 0.593672 0.0590726 0.0295363 0.999564i \(-0.490597\pi\)
0.0295363 + 0.999564i \(0.490597\pi\)
\(102\) −1.16038 −0.114894
\(103\) 7.82074 0.770600 0.385300 0.922791i \(-0.374098\pi\)
0.385300 + 0.922791i \(0.374098\pi\)
\(104\) 4.33713 0.425290
\(105\) 0.200940 0.0196098
\(106\) 2.27406 0.220876
\(107\) −11.0220 −1.06553 −0.532767 0.846262i \(-0.678848\pi\)
−0.532767 + 0.846262i \(0.678848\pi\)
\(108\) 9.07312 0.873061
\(109\) −0.329550 −0.0315652 −0.0157826 0.999875i \(-0.505024\pi\)
−0.0157826 + 0.999875i \(0.505024\pi\)
\(110\) 0.328818 0.0313516
\(111\) 10.2335 0.971324
\(112\) −2.37921 −0.224814
\(113\) −1.82578 −0.171755 −0.0858777 0.996306i \(-0.527369\pi\)
−0.0858777 + 0.996306i \(0.527369\pi\)
\(114\) 7.55599 0.707683
\(115\) 1.07060 0.0998337
\(116\) 15.9008 1.47635
\(117\) 0.238059 0.0220085
\(118\) 5.94632 0.547404
\(119\) 1.28158 0.117482
\(120\) 0.397646 0.0363000
\(121\) 16.3077 1.48252
\(122\) −5.55533 −0.502956
\(123\) −7.35790 −0.663440
\(124\) −11.6155 −1.04310
\(125\) 1.18007 0.105549
\(126\) 0.0578377 0.00515259
\(127\) −1.00000 −0.0887357
\(128\) −11.5018 −1.01663
\(129\) 3.65129 0.321478
\(130\) 0.137907 0.0120952
\(131\) −8.23408 −0.719415 −0.359707 0.933065i \(-0.617123\pi\)
−0.359707 + 0.933065i \(0.617123\pi\)
\(132\) 15.2522 1.32753
\(133\) −8.34525 −0.723625
\(134\) −7.68629 −0.663994
\(135\) 0.624647 0.0537611
\(136\) 2.53616 0.217474
\(137\) −3.79688 −0.324390 −0.162195 0.986759i \(-0.551857\pi\)
−0.162195 + 0.986759i \(0.551857\pi\)
\(138\) −8.20283 −0.698271
\(139\) −4.53910 −0.385001 −0.192501 0.981297i \(-0.561660\pi\)
−0.192501 + 0.981297i \(0.561660\pi\)
\(140\) −0.202839 −0.0171430
\(141\) 3.05094 0.256936
\(142\) −2.19635 −0.184314
\(143\) 11.4529 0.957738
\(144\) −0.258431 −0.0215359
\(145\) 1.09470 0.0909102
\(146\) 8.83575 0.731252
\(147\) 1.70041 0.140247
\(148\) −10.3302 −0.849138
\(149\) −4.89325 −0.400871 −0.200435 0.979707i \(-0.564236\pi\)
−0.200435 + 0.979707i \(0.564236\pi\)
\(150\) −4.51447 −0.368605
\(151\) 11.1366 0.906286 0.453143 0.891438i \(-0.350303\pi\)
0.453143 + 0.891438i \(0.350303\pi\)
\(152\) −16.5146 −1.33951
\(153\) 0.139206 0.0112541
\(154\) 2.78254 0.224224
\(155\) −0.799678 −0.0642317
\(156\) 6.39678 0.512152
\(157\) −15.9627 −1.27397 −0.636983 0.770878i \(-0.719818\pi\)
−0.636983 + 0.770878i \(0.719818\pi\)
\(158\) −6.05848 −0.481987
\(159\) 7.26198 0.575913
\(160\) −0.617416 −0.0488110
\(161\) 9.05966 0.714001
\(162\) −4.61248 −0.362391
\(163\) −11.4892 −0.899906 −0.449953 0.893052i \(-0.648559\pi\)
−0.449953 + 0.893052i \(0.648559\pi\)
\(164\) 7.42741 0.579984
\(165\) 1.05005 0.0817462
\(166\) 3.41383 0.264965
\(167\) −14.2726 −1.10445 −0.552223 0.833697i \(-0.686220\pi\)
−0.552223 + 0.833697i \(0.686220\pi\)
\(168\) 3.36498 0.259614
\(169\) −8.19665 −0.630511
\(170\) 0.0806418 0.00618495
\(171\) −0.906465 −0.0693191
\(172\) −3.68579 −0.281039
\(173\) 3.15204 0.239645 0.119823 0.992795i \(-0.461767\pi\)
0.119823 + 0.992795i \(0.461767\pi\)
\(174\) −8.38753 −0.635857
\(175\) 4.98604 0.376909
\(176\) −12.4330 −0.937171
\(177\) 18.9890 1.42730
\(178\) −1.96980 −0.147642
\(179\) 22.0690 1.64951 0.824757 0.565488i \(-0.191312\pi\)
0.824757 + 0.565488i \(0.191312\pi\)
\(180\) −0.0220324 −0.00164220
\(181\) 17.7881 1.32218 0.661089 0.750307i \(-0.270094\pi\)
0.661089 + 0.750307i \(0.270094\pi\)
\(182\) 1.16700 0.0865039
\(183\) −17.7404 −1.31141
\(184\) 17.9284 1.32170
\(185\) −0.711193 −0.0522879
\(186\) 6.12706 0.449258
\(187\) 6.69713 0.489743
\(188\) −3.07977 −0.224615
\(189\) 5.28592 0.384494
\(190\) −0.525113 −0.0380957
\(191\) 9.64651 0.697997 0.348999 0.937123i \(-0.386522\pi\)
0.348999 + 0.937123i \(0.386522\pi\)
\(192\) −3.36066 −0.242534
\(193\) 12.1823 0.876901 0.438451 0.898755i \(-0.355527\pi\)
0.438451 + 0.898755i \(0.355527\pi\)
\(194\) 3.25329 0.233573
\(195\) 0.440392 0.0315371
\(196\) −1.71647 −0.122605
\(197\) 5.07522 0.361595 0.180797 0.983520i \(-0.442132\pi\)
0.180797 + 0.983520i \(0.442132\pi\)
\(198\) 0.302241 0.0214793
\(199\) 3.43881 0.243771 0.121885 0.992544i \(-0.461106\pi\)
0.121885 + 0.992544i \(0.461106\pi\)
\(200\) 9.86700 0.697703
\(201\) −24.5454 −1.73130
\(202\) 0.316116 0.0222418
\(203\) 9.26366 0.650181
\(204\) 3.74055 0.261891
\(205\) 0.511347 0.0357140
\(206\) 4.16435 0.290144
\(207\) 0.984064 0.0683972
\(208\) −5.21441 −0.361554
\(209\) −43.6096 −3.01654
\(210\) 0.106996 0.00738340
\(211\) −13.3818 −0.921243 −0.460621 0.887597i \(-0.652373\pi\)
−0.460621 + 0.887597i \(0.652373\pi\)
\(212\) −7.33059 −0.503467
\(213\) −7.01382 −0.480579
\(214\) −5.86892 −0.401191
\(215\) −0.253751 −0.0173057
\(216\) 10.4604 0.711743
\(217\) −6.76707 −0.459379
\(218\) −0.175477 −0.0118848
\(219\) 28.2161 1.90667
\(220\) −1.05997 −0.0714631
\(221\) 2.80879 0.188940
\(222\) 5.44910 0.365720
\(223\) −3.72789 −0.249638 −0.124819 0.992180i \(-0.539835\pi\)
−0.124819 + 0.992180i \(0.539835\pi\)
\(224\) −5.22473 −0.349092
\(225\) 0.541585 0.0361057
\(226\) −0.972184 −0.0646687
\(227\) 7.52598 0.499517 0.249759 0.968308i \(-0.419649\pi\)
0.249759 + 0.968308i \(0.419649\pi\)
\(228\) −24.3572 −1.61310
\(229\) −0.811157 −0.0536027 −0.0268014 0.999641i \(-0.508532\pi\)
−0.0268014 + 0.999641i \(0.508532\pi\)
\(230\) 0.570066 0.0375891
\(231\) 8.88577 0.584641
\(232\) 18.3321 1.20356
\(233\) 21.7672 1.42602 0.713008 0.701156i \(-0.247332\pi\)
0.713008 + 0.701156i \(0.247332\pi\)
\(234\) 0.126760 0.00828658
\(235\) −0.212029 −0.0138313
\(236\) −19.1684 −1.24776
\(237\) −19.3472 −1.25673
\(238\) 0.682411 0.0442341
\(239\) 10.2516 0.663119 0.331559 0.943434i \(-0.392425\pi\)
0.331559 + 0.943434i \(0.392425\pi\)
\(240\) −0.478079 −0.0308599
\(241\) 12.4960 0.804938 0.402469 0.915434i \(-0.368152\pi\)
0.402469 + 0.915434i \(0.368152\pi\)
\(242\) 8.68343 0.558192
\(243\) 1.12826 0.0723776
\(244\) 17.9080 1.14644
\(245\) −0.118172 −0.00754973
\(246\) −3.91790 −0.249796
\(247\) −18.2899 −1.16376
\(248\) −13.3915 −0.850364
\(249\) 10.9017 0.690869
\(250\) 0.628358 0.0397408
\(251\) −21.5708 −1.36154 −0.680769 0.732498i \(-0.738354\pi\)
−0.680769 + 0.732498i \(0.738354\pi\)
\(252\) −0.186444 −0.0117449
\(253\) 47.3428 2.97642
\(254\) −0.532475 −0.0334105
\(255\) 0.257522 0.0161266
\(256\) −2.17167 −0.135729
\(257\) −19.5843 −1.22163 −0.610817 0.791772i \(-0.709159\pi\)
−0.610817 + 0.791772i \(0.709159\pi\)
\(258\) 1.94422 0.121042
\(259\) −6.01829 −0.373958
\(260\) −0.444552 −0.0275700
\(261\) 1.00622 0.0622836
\(262\) −4.38444 −0.270872
\(263\) −7.21804 −0.445083 −0.222542 0.974923i \(-0.571435\pi\)
−0.222542 + 0.974923i \(0.571435\pi\)
\(264\) 17.5843 1.08224
\(265\) −0.504681 −0.0310023
\(266\) −4.44364 −0.272457
\(267\) −6.29034 −0.384963
\(268\) 24.7773 1.51351
\(269\) −14.4911 −0.883538 −0.441769 0.897129i \(-0.645649\pi\)
−0.441769 + 0.897129i \(0.645649\pi\)
\(270\) 0.332609 0.0202419
\(271\) −17.3584 −1.05445 −0.527224 0.849726i \(-0.676767\pi\)
−0.527224 + 0.849726i \(0.676767\pi\)
\(272\) −3.04916 −0.184882
\(273\) 3.72670 0.225550
\(274\) −2.02175 −0.122138
\(275\) 26.0554 1.57120
\(276\) 26.4424 1.59164
\(277\) −25.4371 −1.52836 −0.764182 0.645000i \(-0.776857\pi\)
−0.764182 + 0.645000i \(0.776857\pi\)
\(278\) −2.41696 −0.144959
\(279\) −0.735042 −0.0440058
\(280\) −0.233854 −0.0139754
\(281\) 10.7927 0.643837 0.321918 0.946767i \(-0.395672\pi\)
0.321918 + 0.946767i \(0.395672\pi\)
\(282\) 1.62455 0.0967407
\(283\) 1.47440 0.0876441 0.0438220 0.999039i \(-0.486047\pi\)
0.0438220 + 0.999039i \(0.486047\pi\)
\(284\) 7.08009 0.420126
\(285\) −1.67690 −0.0993308
\(286\) 6.09837 0.360604
\(287\) 4.32714 0.255423
\(288\) −0.567512 −0.0334410
\(289\) −15.3575 −0.903385
\(290\) 0.582903 0.0342292
\(291\) 10.3891 0.609017
\(292\) −28.4827 −1.66682
\(293\) 12.6888 0.741290 0.370645 0.928775i \(-0.379137\pi\)
0.370645 + 0.928775i \(0.379137\pi\)
\(294\) 0.905424 0.0528054
\(295\) −1.31966 −0.0768339
\(296\) −11.9098 −0.692241
\(297\) 27.6225 1.60282
\(298\) −2.60553 −0.150934
\(299\) 19.8557 1.14828
\(300\) 14.5527 0.840202
\(301\) −2.14731 −0.123769
\(302\) 5.92998 0.341232
\(303\) 1.00948 0.0579933
\(304\) 19.8551 1.13877
\(305\) 1.23289 0.0705952
\(306\) 0.0741238 0.00423737
\(307\) −7.60261 −0.433904 −0.216952 0.976182i \(-0.569612\pi\)
−0.216952 + 0.976182i \(0.569612\pi\)
\(308\) −8.96972 −0.511097
\(309\) 13.2984 0.756521
\(310\) −0.425808 −0.0241843
\(311\) −34.6469 −1.96465 −0.982324 0.187190i \(-0.940062\pi\)
−0.982324 + 0.187190i \(0.940062\pi\)
\(312\) 7.37488 0.417520
\(313\) −13.4142 −0.758216 −0.379108 0.925352i \(-0.623769\pi\)
−0.379108 + 0.925352i \(0.623769\pi\)
\(314\) −8.49977 −0.479670
\(315\) −0.0128359 −0.000723221 0
\(316\) 19.5299 1.09864
\(317\) −25.3786 −1.42540 −0.712702 0.701467i \(-0.752529\pi\)
−0.712702 + 0.701467i \(0.752529\pi\)
\(318\) 3.86683 0.216841
\(319\) 48.4089 2.71038
\(320\) 0.233553 0.0130560
\(321\) −18.7418 −1.04607
\(322\) 4.82404 0.268833
\(323\) −10.6951 −0.595093
\(324\) 14.8686 0.826036
\(325\) 10.9277 0.606158
\(326\) −6.11773 −0.338830
\(327\) −0.560369 −0.0309885
\(328\) 8.56311 0.472818
\(329\) −1.79425 −0.0989199
\(330\) 0.559125 0.0307788
\(331\) 4.32910 0.237949 0.118974 0.992897i \(-0.462039\pi\)
0.118974 + 0.992897i \(0.462039\pi\)
\(332\) −11.0047 −0.603963
\(333\) −0.653709 −0.0358230
\(334\) −7.59979 −0.415842
\(335\) 1.70582 0.0931986
\(336\) −4.04562 −0.220707
\(337\) −30.9193 −1.68428 −0.842141 0.539257i \(-0.818705\pi\)
−0.842141 + 0.539257i \(0.818705\pi\)
\(338\) −4.36451 −0.237398
\(339\) −3.10457 −0.168617
\(340\) −0.259954 −0.0140980
\(341\) −35.3625 −1.91499
\(342\) −0.482670 −0.0260998
\(343\) −1.00000 −0.0539949
\(344\) −4.24936 −0.229110
\(345\) 1.82045 0.0980097
\(346\) 1.67838 0.0902304
\(347\) 11.4166 0.612873 0.306436 0.951891i \(-0.400863\pi\)
0.306436 + 0.951891i \(0.400863\pi\)
\(348\) 27.0378 1.44938
\(349\) −25.1259 −1.34496 −0.672479 0.740116i \(-0.734771\pi\)
−0.672479 + 0.740116i \(0.734771\pi\)
\(350\) 2.65494 0.141912
\(351\) 11.5849 0.618357
\(352\) −27.3027 −1.45524
\(353\) 16.4066 0.873234 0.436617 0.899647i \(-0.356176\pi\)
0.436617 + 0.899647i \(0.356176\pi\)
\(354\) 10.1112 0.537402
\(355\) 0.487435 0.0258704
\(356\) 6.34977 0.336537
\(357\) 2.17921 0.115336
\(358\) 11.7512 0.621069
\(359\) −17.7879 −0.938809 −0.469404 0.882983i \(-0.655531\pi\)
−0.469404 + 0.882983i \(0.655531\pi\)
\(360\) −0.0254013 −0.00133877
\(361\) 50.6432 2.66543
\(362\) 9.47172 0.497822
\(363\) 27.7297 1.45543
\(364\) −3.76191 −0.197178
\(365\) −1.96091 −0.102639
\(366\) −9.44632 −0.493767
\(367\) −23.9393 −1.24962 −0.624812 0.780776i \(-0.714824\pi\)
−0.624812 + 0.780776i \(0.714824\pi\)
\(368\) −21.5548 −1.12362
\(369\) 0.470016 0.0244681
\(370\) −0.378693 −0.0196873
\(371\) −4.27074 −0.221726
\(372\) −19.7510 −1.02404
\(373\) 24.1062 1.24817 0.624085 0.781356i \(-0.285472\pi\)
0.624085 + 0.781356i \(0.285472\pi\)
\(374\) 3.56606 0.184396
\(375\) 2.00660 0.103620
\(376\) −3.55068 −0.183112
\(377\) 20.3027 1.04564
\(378\) 2.81462 0.144768
\(379\) −9.74899 −0.500772 −0.250386 0.968146i \(-0.580558\pi\)
−0.250386 + 0.968146i \(0.580558\pi\)
\(380\) 1.69274 0.0868357
\(381\) −1.70041 −0.0871144
\(382\) 5.13653 0.262808
\(383\) 21.0940 1.07785 0.538925 0.842354i \(-0.318831\pi\)
0.538925 + 0.842354i \(0.318831\pi\)
\(384\) −19.5578 −0.998053
\(385\) −0.617528 −0.0314722
\(386\) 6.48677 0.330168
\(387\) −0.233241 −0.0118563
\(388\) −10.4872 −0.532407
\(389\) 11.4795 0.582032 0.291016 0.956718i \(-0.406007\pi\)
0.291016 + 0.956718i \(0.406007\pi\)
\(390\) 0.234498 0.0118743
\(391\) 11.6107 0.587178
\(392\) −1.97893 −0.0999510
\(393\) −14.0013 −0.706271
\(394\) 2.70243 0.136146
\(395\) 1.34456 0.0676520
\(396\) −0.974295 −0.0489601
\(397\) 33.4207 1.67734 0.838668 0.544643i \(-0.183335\pi\)
0.838668 + 0.544643i \(0.183335\pi\)
\(398\) 1.83108 0.0917838
\(399\) −14.1903 −0.710404
\(400\) −11.8628 −0.593141
\(401\) 0.506322 0.0252845 0.0126423 0.999920i \(-0.495976\pi\)
0.0126423 + 0.999920i \(0.495976\pi\)
\(402\) −13.0698 −0.651863
\(403\) −14.8311 −0.738789
\(404\) −1.01902 −0.0506982
\(405\) 1.02365 0.0508654
\(406\) 4.93267 0.244804
\(407\) −31.4496 −1.55890
\(408\) 4.31250 0.213501
\(409\) 27.6889 1.36913 0.684563 0.728953i \(-0.259993\pi\)
0.684563 + 0.728953i \(0.259993\pi\)
\(410\) 0.272280 0.0134469
\(411\) −6.45624 −0.318463
\(412\) −13.4241 −0.661356
\(413\) −11.1673 −0.549508
\(414\) 0.523990 0.0257527
\(415\) −0.757631 −0.0371906
\(416\) −11.4508 −0.561422
\(417\) −7.71830 −0.377967
\(418\) −23.2210 −1.13578
\(419\) 5.22108 0.255067 0.127533 0.991834i \(-0.459294\pi\)
0.127533 + 0.991834i \(0.459294\pi\)
\(420\) −0.344908 −0.0168298
\(421\) −30.2687 −1.47521 −0.737603 0.675235i \(-0.764042\pi\)
−0.737603 + 0.675235i \(0.764042\pi\)
\(422\) −7.12549 −0.346863
\(423\) −0.194892 −0.00947596
\(424\) −8.45148 −0.410440
\(425\) 6.39002 0.309961
\(426\) −3.73469 −0.180946
\(427\) 10.4330 0.504890
\(428\) 18.9189 0.914479
\(429\) 19.4745 0.940240
\(430\) −0.135116 −0.00651588
\(431\) −12.4316 −0.598807 −0.299403 0.954127i \(-0.596788\pi\)
−0.299403 + 0.954127i \(0.596788\pi\)
\(432\) −12.5763 −0.605078
\(433\) 27.6679 1.32964 0.664818 0.747006i \(-0.268509\pi\)
0.664818 + 0.747006i \(0.268509\pi\)
\(434\) −3.60330 −0.172964
\(435\) 1.86144 0.0892493
\(436\) 0.565664 0.0270904
\(437\) −75.6051 −3.61668
\(438\) 15.0244 0.717892
\(439\) 5.41016 0.258213 0.129106 0.991631i \(-0.458789\pi\)
0.129106 + 0.991631i \(0.458789\pi\)
\(440\) −1.22204 −0.0582587
\(441\) −0.108620 −0.00517240
\(442\) 1.49561 0.0711389
\(443\) −11.5485 −0.548686 −0.274343 0.961632i \(-0.588460\pi\)
−0.274343 + 0.961632i \(0.588460\pi\)
\(444\) −17.5656 −0.833624
\(445\) 0.437156 0.0207232
\(446\) −1.98501 −0.0939930
\(447\) −8.32051 −0.393547
\(448\) 1.97638 0.0933754
\(449\) −37.7469 −1.78138 −0.890692 0.454607i \(-0.849780\pi\)
−0.890692 + 0.454607i \(0.849780\pi\)
\(450\) 0.288381 0.0135944
\(451\) 22.6123 1.06477
\(452\) 3.13390 0.147406
\(453\) 18.9368 0.889728
\(454\) 4.00740 0.188077
\(455\) −0.258992 −0.0121417
\(456\) −28.0816 −1.31504
\(457\) −4.86171 −0.227421 −0.113711 0.993514i \(-0.536274\pi\)
−0.113711 + 0.993514i \(0.536274\pi\)
\(458\) −0.431921 −0.0201823
\(459\) 6.77434 0.316199
\(460\) −1.83765 −0.0856808
\(461\) −22.2371 −1.03569 −0.517843 0.855475i \(-0.673265\pi\)
−0.517843 + 0.855475i \(0.673265\pi\)
\(462\) 4.73145 0.220127
\(463\) −34.0919 −1.58439 −0.792193 0.610271i \(-0.791061\pi\)
−0.792193 + 0.610271i \(0.791061\pi\)
\(464\) −22.0402 −1.02319
\(465\) −1.35978 −0.0630581
\(466\) 11.5905 0.536919
\(467\) −18.0906 −0.837131 −0.418566 0.908187i \(-0.637467\pi\)
−0.418566 + 0.908187i \(0.637467\pi\)
\(468\) −0.408621 −0.0188885
\(469\) 14.4350 0.666548
\(470\) −0.112900 −0.00520771
\(471\) −27.1431 −1.25069
\(472\) −22.0993 −1.01720
\(473\) −11.2211 −0.515948
\(474\) −10.3019 −0.473181
\(475\) −41.6097 −1.90918
\(476\) −2.19980 −0.100828
\(477\) −0.463889 −0.0212400
\(478\) 5.45871 0.249675
\(479\) 13.8985 0.635037 0.317519 0.948252i \(-0.397150\pi\)
0.317519 + 0.948252i \(0.397150\pi\)
\(480\) −1.04986 −0.0479192
\(481\) −13.1900 −0.601413
\(482\) 6.65380 0.303072
\(483\) 15.4051 0.700956
\(484\) −27.9916 −1.27235
\(485\) −0.722001 −0.0327844
\(486\) 0.600768 0.0272514
\(487\) −1.46671 −0.0664628 −0.0332314 0.999448i \(-0.510580\pi\)
−0.0332314 + 0.999448i \(0.510580\pi\)
\(488\) 20.6462 0.934611
\(489\) −19.5363 −0.883464
\(490\) −0.0629236 −0.00284260
\(491\) 13.3834 0.603983 0.301992 0.953311i \(-0.402349\pi\)
0.301992 + 0.953311i \(0.402349\pi\)
\(492\) 12.6296 0.569387
\(493\) 11.8721 0.534694
\(494\) −9.73892 −0.438175
\(495\) −0.0670762 −0.00301485
\(496\) 16.1003 0.722924
\(497\) 4.12479 0.185022
\(498\) 5.80490 0.260124
\(499\) 21.8737 0.979201 0.489601 0.871947i \(-0.337143\pi\)
0.489601 + 0.871947i \(0.337143\pi\)
\(500\) −2.02555 −0.0905855
\(501\) −24.2692 −1.08427
\(502\) −11.4859 −0.512642
\(503\) −41.4018 −1.84601 −0.923007 0.384784i \(-0.874276\pi\)
−0.923007 + 0.384784i \(0.874276\pi\)
\(504\) −0.214952 −0.00957473
\(505\) −0.0701554 −0.00312187
\(506\) 25.2089 1.12067
\(507\) −13.9376 −0.618992
\(508\) 1.71647 0.0761561
\(509\) 12.5384 0.555757 0.277878 0.960616i \(-0.410369\pi\)
0.277878 + 0.960616i \(0.410369\pi\)
\(510\) 0.137124 0.00607194
\(511\) −16.5937 −0.734064
\(512\) 21.8473 0.965523
\(513\) −44.1123 −1.94761
\(514\) −10.4281 −0.459965
\(515\) −0.924192 −0.0407248
\(516\) −6.26733 −0.275904
\(517\) −9.37614 −0.412362
\(518\) −3.20459 −0.140802
\(519\) 5.35975 0.235267
\(520\) −0.512527 −0.0224758
\(521\) −25.5657 −1.12006 −0.560028 0.828474i \(-0.689210\pi\)
−0.560028 + 0.828474i \(0.689210\pi\)
\(522\) 0.535788 0.0234508
\(523\) −0.965570 −0.0422214 −0.0211107 0.999777i \(-0.506720\pi\)
−0.0211107 + 0.999777i \(0.506720\pi\)
\(524\) 14.1335 0.617427
\(525\) 8.47828 0.370023
\(526\) −3.84343 −0.167581
\(527\) −8.67256 −0.377783
\(528\) −21.1411 −0.920049
\(529\) 59.0774 2.56858
\(530\) −0.268730 −0.0116729
\(531\) −1.21300 −0.0526397
\(532\) 14.3244 0.621040
\(533\) 9.48361 0.410781
\(534\) −3.34945 −0.144945
\(535\) 1.30249 0.0563115
\(536\) 28.5659 1.23386
\(537\) 37.5262 1.61938
\(538\) −7.71615 −0.332667
\(539\) −5.22568 −0.225086
\(540\) −1.07219 −0.0461396
\(541\) −1.43271 −0.0615970 −0.0307985 0.999526i \(-0.509805\pi\)
−0.0307985 + 0.999526i \(0.509805\pi\)
\(542\) −9.24292 −0.397017
\(543\) 30.2470 1.29802
\(544\) −6.69592 −0.287085
\(545\) 0.0389436 0.00166816
\(546\) 1.98438 0.0849235
\(547\) −13.4988 −0.577167 −0.288584 0.957455i \(-0.593184\pi\)
−0.288584 + 0.957455i \(0.593184\pi\)
\(548\) 6.51724 0.278403
\(549\) 1.13324 0.0483656
\(550\) 13.8739 0.591583
\(551\) −77.3075 −3.29341
\(552\) 30.4856 1.29755
\(553\) 11.3780 0.483840
\(554\) −13.5446 −0.575455
\(555\) −1.20932 −0.0513326
\(556\) 7.79122 0.330421
\(557\) 29.6076 1.25451 0.627257 0.778812i \(-0.284178\pi\)
0.627257 + 0.778812i \(0.284178\pi\)
\(558\) −0.391392 −0.0165689
\(559\) −4.70615 −0.199049
\(560\) 0.281156 0.0118810
\(561\) 11.3878 0.480795
\(562\) 5.74683 0.242415
\(563\) 18.3169 0.771963 0.385982 0.922506i \(-0.373863\pi\)
0.385982 + 0.922506i \(0.373863\pi\)
\(564\) −5.23686 −0.220511
\(565\) 0.215756 0.00907694
\(566\) 0.785082 0.0329995
\(567\) 8.66234 0.363784
\(568\) 8.16267 0.342498
\(569\) −35.3075 −1.48017 −0.740083 0.672516i \(-0.765214\pi\)
−0.740083 + 0.672516i \(0.765214\pi\)
\(570\) −0.892906 −0.0373997
\(571\) 3.93893 0.164839 0.0824196 0.996598i \(-0.473735\pi\)
0.0824196 + 0.996598i \(0.473735\pi\)
\(572\) −19.6585 −0.821964
\(573\) 16.4030 0.685245
\(574\) 2.30410 0.0961711
\(575\) 45.1718 1.88379
\(576\) 0.214676 0.00894483
\(577\) 33.2150 1.38276 0.691380 0.722492i \(-0.257003\pi\)
0.691380 + 0.722492i \(0.257003\pi\)
\(578\) −8.17751 −0.340140
\(579\) 20.7149 0.860880
\(580\) −1.87903 −0.0780224
\(581\) −6.41125 −0.265984
\(582\) 5.53191 0.229305
\(583\) −22.3175 −0.924296
\(584\) −32.8378 −1.35884
\(585\) −0.0281319 −0.00116311
\(586\) 6.75649 0.279108
\(587\) 24.6822 1.01874 0.509372 0.860546i \(-0.329878\pi\)
0.509372 + 0.860546i \(0.329878\pi\)
\(588\) −2.91870 −0.120365
\(589\) 56.4729 2.32692
\(590\) −0.702689 −0.0289292
\(591\) 8.62994 0.354988
\(592\) 14.3188 0.588498
\(593\) 6.61375 0.271594 0.135797 0.990737i \(-0.456640\pi\)
0.135797 + 0.990737i \(0.456640\pi\)
\(594\) 14.7083 0.603488
\(595\) −0.151447 −0.00620873
\(596\) 8.39912 0.344041
\(597\) 5.84737 0.239317
\(598\) 10.5726 0.432347
\(599\) −25.3672 −1.03648 −0.518239 0.855236i \(-0.673412\pi\)
−0.518239 + 0.855236i \(0.673412\pi\)
\(600\) 16.7779 0.684955
\(601\) −10.2704 −0.418940 −0.209470 0.977815i \(-0.567174\pi\)
−0.209470 + 0.977815i \(0.567174\pi\)
\(602\) −1.14339 −0.0466010
\(603\) 1.56794 0.0638514
\(604\) −19.1157 −0.777807
\(605\) −1.92711 −0.0783482
\(606\) 0.537525 0.0218355
\(607\) −0.280009 −0.0113652 −0.00568261 0.999984i \(-0.501809\pi\)
−0.00568261 + 0.999984i \(0.501809\pi\)
\(608\) 43.6016 1.76828
\(609\) 15.7520 0.638302
\(610\) 0.656485 0.0265803
\(611\) −3.93237 −0.159087
\(612\) −0.238943 −0.00965870
\(613\) −34.3249 −1.38637 −0.693185 0.720760i \(-0.743793\pi\)
−0.693185 + 0.720760i \(0.743793\pi\)
\(614\) −4.04820 −0.163372
\(615\) 0.869498 0.0350615
\(616\) −10.3412 −0.416660
\(617\) −7.14920 −0.287816 −0.143908 0.989591i \(-0.545967\pi\)
−0.143908 + 0.989591i \(0.545967\pi\)
\(618\) 7.08108 0.284843
\(619\) 10.8686 0.436846 0.218423 0.975854i \(-0.429909\pi\)
0.218423 + 0.975854i \(0.429909\pi\)
\(620\) 1.37262 0.0551259
\(621\) 47.8886 1.92170
\(622\) −18.4486 −0.739723
\(623\) 3.69932 0.148210
\(624\) −8.86661 −0.354949
\(625\) 24.7907 0.991629
\(626\) −7.14273 −0.285481
\(627\) −74.1539 −2.96142
\(628\) 27.3996 1.09336
\(629\) −7.71293 −0.307535
\(630\) −0.00683479 −0.000272305 0
\(631\) −46.4839 −1.85050 −0.925248 0.379362i \(-0.876143\pi\)
−0.925248 + 0.379362i \(0.876143\pi\)
\(632\) 22.5162 0.895645
\(633\) −22.7545 −0.904411
\(634\) −13.5135 −0.536689
\(635\) 0.118172 0.00468951
\(636\) −12.4650 −0.494269
\(637\) −2.19166 −0.0868366
\(638\) 25.7765 1.02050
\(639\) 0.448037 0.0177241
\(640\) 1.35919 0.0537268
\(641\) 13.4471 0.531127 0.265563 0.964093i \(-0.414442\pi\)
0.265563 + 0.964093i \(0.414442\pi\)
\(642\) −9.97955 −0.393862
\(643\) −40.9464 −1.61477 −0.807383 0.590027i \(-0.799117\pi\)
−0.807383 + 0.590027i \(0.799117\pi\)
\(644\) −15.5506 −0.612781
\(645\) −0.431480 −0.0169895
\(646\) −5.69489 −0.224062
\(647\) −9.04141 −0.355454 −0.177727 0.984080i \(-0.556874\pi\)
−0.177727 + 0.984080i \(0.556874\pi\)
\(648\) 17.1421 0.673407
\(649\) −58.3568 −2.29071
\(650\) 5.81871 0.228229
\(651\) −11.5068 −0.450986
\(652\) 19.7209 0.772331
\(653\) −9.65099 −0.377672 −0.188836 0.982009i \(-0.560472\pi\)
−0.188836 + 0.982009i \(0.560472\pi\)
\(654\) −0.298383 −0.0116677
\(655\) 0.973037 0.0380197
\(656\) −10.2952 −0.401960
\(657\) −1.80242 −0.0703191
\(658\) −0.955391 −0.0372450
\(659\) −25.6398 −0.998786 −0.499393 0.866376i \(-0.666444\pi\)
−0.499393 + 0.866376i \(0.666444\pi\)
\(660\) −1.80238 −0.0701574
\(661\) 5.36192 0.208555 0.104277 0.994548i \(-0.466747\pi\)
0.104277 + 0.994548i \(0.466747\pi\)
\(662\) 2.30514 0.0895918
\(663\) 4.77608 0.185488
\(664\) −12.6874 −0.492367
\(665\) 0.986174 0.0382422
\(666\) −0.348084 −0.0134880
\(667\) 83.9256 3.24961
\(668\) 24.4985 0.947874
\(669\) −6.33893 −0.245077
\(670\) 0.908304 0.0350908
\(671\) 54.5197 2.10471
\(672\) −8.88415 −0.342714
\(673\) 10.4649 0.403392 0.201696 0.979448i \(-0.435355\pi\)
0.201696 + 0.979448i \(0.435355\pi\)
\(674\) −16.4638 −0.634161
\(675\) 26.3558 1.01443
\(676\) 14.0693 0.541127
\(677\) 9.28929 0.357017 0.178508 0.983938i \(-0.442873\pi\)
0.178508 + 0.983938i \(0.442873\pi\)
\(678\) −1.65311 −0.0634872
\(679\) −6.10975 −0.234471
\(680\) −0.299703 −0.0114931
\(681\) 12.7972 0.490391
\(682\) −18.8297 −0.721025
\(683\) −16.7140 −0.639544 −0.319772 0.947494i \(-0.603606\pi\)
−0.319772 + 0.947494i \(0.603606\pi\)
\(684\) 1.55592 0.0594921
\(685\) 0.448685 0.0171434
\(686\) −0.532475 −0.0203300
\(687\) −1.37930 −0.0526234
\(688\) 5.10889 0.194775
\(689\) −9.35998 −0.356587
\(690\) 0.969344 0.0369023
\(691\) 32.0986 1.22109 0.610544 0.791982i \(-0.290951\pi\)
0.610544 + 0.791982i \(0.290951\pi\)
\(692\) −5.41038 −0.205672
\(693\) −0.567615 −0.0215619
\(694\) 6.07903 0.230757
\(695\) 0.536394 0.0203466
\(696\) 31.1720 1.18157
\(697\) 5.54559 0.210054
\(698\) −13.3789 −0.506399
\(699\) 37.0131 1.39996
\(700\) −8.55838 −0.323476
\(701\) 8.24121 0.311266 0.155633 0.987815i \(-0.450258\pi\)
0.155633 + 0.987815i \(0.450258\pi\)
\(702\) 6.16867 0.232822
\(703\) 50.2241 1.89424
\(704\) 10.3279 0.389249
\(705\) −0.360536 −0.0135786
\(706\) 8.73610 0.328787
\(707\) −0.593672 −0.0223273
\(708\) −32.5940 −1.22496
\(709\) 18.5251 0.695723 0.347862 0.937546i \(-0.386908\pi\)
0.347862 + 0.937546i \(0.386908\pi\)
\(710\) 0.259547 0.00974062
\(711\) 1.23588 0.0463491
\(712\) 7.32069 0.274354
\(713\) −61.3073 −2.29598
\(714\) 1.16038 0.0434260
\(715\) −1.35341 −0.0506146
\(716\) −37.8807 −1.41567
\(717\) 17.4318 0.651004
\(718\) −9.47161 −0.353477
\(719\) −29.8462 −1.11308 −0.556538 0.830822i \(-0.687871\pi\)
−0.556538 + 0.830822i \(0.687871\pi\)
\(720\) 0.0305393 0.00113813
\(721\) −7.82074 −0.291260
\(722\) 26.9662 1.00358
\(723\) 21.2483 0.790231
\(724\) −30.5327 −1.13474
\(725\) 46.1889 1.71541
\(726\) 14.7654 0.547994
\(727\) −42.7041 −1.58381 −0.791904 0.610645i \(-0.790910\pi\)
−0.791904 + 0.610645i \(0.790910\pi\)
\(728\) −4.33713 −0.160745
\(729\) 27.9055 1.03354
\(730\) −1.04414 −0.0386453
\(731\) −2.75195 −0.101785
\(732\) 30.4509 1.12550
\(733\) 13.0748 0.482930 0.241465 0.970409i \(-0.422372\pi\)
0.241465 + 0.970409i \(0.422372\pi\)
\(734\) −12.7471 −0.470504
\(735\) −0.200940 −0.00741179
\(736\) −47.3342 −1.74476
\(737\) 75.4328 2.77860
\(738\) 0.250272 0.00921264
\(739\) −11.8892 −0.437351 −0.218676 0.975798i \(-0.570174\pi\)
−0.218676 + 0.975798i \(0.570174\pi\)
\(740\) 1.22074 0.0448753
\(741\) −31.1003 −1.14250
\(742\) −2.27406 −0.0834834
\(743\) 24.3686 0.893998 0.446999 0.894534i \(-0.352493\pi\)
0.446999 + 0.894534i \(0.352493\pi\)
\(744\) −22.7711 −0.834827
\(745\) 0.578245 0.0211853
\(746\) 12.8359 0.469957
\(747\) −0.696393 −0.0254797
\(748\) −11.4954 −0.420315
\(749\) 11.0220 0.402734
\(750\) 1.06846 0.0390147
\(751\) 14.6876 0.535957 0.267978 0.963425i \(-0.413644\pi\)
0.267978 + 0.963425i \(0.413644\pi\)
\(752\) 4.26889 0.155670
\(753\) −36.6791 −1.33666
\(754\) 10.8107 0.393703
\(755\) −1.31604 −0.0478955
\(756\) −9.07312 −0.329986
\(757\) −2.79722 −0.101667 −0.0508334 0.998707i \(-0.516188\pi\)
−0.0508334 + 0.998707i \(0.516188\pi\)
\(758\) −5.19110 −0.188549
\(759\) 80.5020 2.92204
\(760\) 1.95157 0.0707908
\(761\) 36.1872 1.31179 0.655893 0.754854i \(-0.272292\pi\)
0.655893 + 0.754854i \(0.272292\pi\)
\(762\) −0.905424 −0.0328000
\(763\) 0.329550 0.0119305
\(764\) −16.5580 −0.599046
\(765\) −0.0164503 −0.000594760 0
\(766\) 11.2320 0.405829
\(767\) −24.4749 −0.883739
\(768\) −3.69272 −0.133249
\(769\) −9.22886 −0.332801 −0.166401 0.986058i \(-0.553214\pi\)
−0.166401 + 0.986058i \(0.553214\pi\)
\(770\) −0.328818 −0.0118498
\(771\) −33.3012 −1.19931
\(772\) −20.9106 −0.752588
\(773\) −4.09236 −0.147192 −0.0735959 0.997288i \(-0.523448\pi\)
−0.0735959 + 0.997288i \(0.523448\pi\)
\(774\) −0.124195 −0.00446410
\(775\) −33.7408 −1.21201
\(776\) −12.0908 −0.434033
\(777\) −10.2335 −0.367126
\(778\) 6.11253 0.219145
\(779\) −36.1111 −1.29381
\(780\) −0.755920 −0.0270663
\(781\) 21.5548 0.771293
\(782\) 6.18241 0.221083
\(783\) 48.9669 1.74993
\(784\) 2.37921 0.0849718
\(785\) 1.88635 0.0673267
\(786\) −7.45533 −0.265923
\(787\) −10.3020 −0.367225 −0.183613 0.982999i \(-0.558779\pi\)
−0.183613 + 0.982999i \(0.558779\pi\)
\(788\) −8.71147 −0.310333
\(789\) −12.2736 −0.436952
\(790\) 0.715943 0.0254721
\(791\) 1.82578 0.0649174
\(792\) −1.12327 −0.0399136
\(793\) 22.8656 0.811982
\(794\) 17.7957 0.631545
\(795\) −0.858163 −0.0304359
\(796\) −5.90262 −0.209213
\(797\) 40.9311 1.44986 0.724928 0.688825i \(-0.241873\pi\)
0.724928 + 0.688825i \(0.241873\pi\)
\(798\) −7.55599 −0.267479
\(799\) −2.29947 −0.0813495
\(800\) −26.0507 −0.921030
\(801\) 0.401822 0.0141977
\(802\) 0.269604 0.00952004
\(803\) −86.7135 −3.06005
\(804\) 42.1314 1.48586
\(805\) −1.07060 −0.0377336
\(806\) −7.89718 −0.278166
\(807\) −24.6408 −0.867396
\(808\) −1.17483 −0.0413305
\(809\) 9.34786 0.328653 0.164327 0.986406i \(-0.447455\pi\)
0.164327 + 0.986406i \(0.447455\pi\)
\(810\) 0.545066 0.0191517
\(811\) −10.7341 −0.376925 −0.188463 0.982080i \(-0.560350\pi\)
−0.188463 + 0.982080i \(0.560350\pi\)
\(812\) −15.9008 −0.558008
\(813\) −29.5163 −1.03518
\(814\) −16.7461 −0.586952
\(815\) 1.35770 0.0475583
\(816\) −5.18480 −0.181504
\(817\) 17.9198 0.626934
\(818\) 14.7436 0.515499
\(819\) −0.238059 −0.00831844
\(820\) −0.877712 −0.0306510
\(821\) 13.9500 0.486859 0.243430 0.969919i \(-0.421728\pi\)
0.243430 + 0.969919i \(0.421728\pi\)
\(822\) −3.43779 −0.119907
\(823\) −7.62995 −0.265963 −0.132982 0.991119i \(-0.542455\pi\)
−0.132982 + 0.991119i \(0.542455\pi\)
\(824\) −15.4767 −0.539156
\(825\) 44.3048 1.54249
\(826\) −5.94632 −0.206899
\(827\) −50.6423 −1.76101 −0.880503 0.474040i \(-0.842795\pi\)
−0.880503 + 0.474040i \(0.842795\pi\)
\(828\) −1.68912 −0.0587009
\(829\) 27.1635 0.943428 0.471714 0.881752i \(-0.343635\pi\)
0.471714 + 0.881752i \(0.343635\pi\)
\(830\) −0.403419 −0.0140029
\(831\) −43.2533 −1.50044
\(832\) 4.33155 0.150170
\(833\) −1.28158 −0.0444042
\(834\) −4.10980 −0.142311
\(835\) 1.68662 0.0583678
\(836\) 74.8545 2.58890
\(837\) −35.7702 −1.23640
\(838\) 2.78010 0.0960368
\(839\) 18.7378 0.646900 0.323450 0.946245i \(-0.395157\pi\)
0.323450 + 0.946245i \(0.395157\pi\)
\(840\) −0.397646 −0.0137201
\(841\) 56.8153 1.95915
\(842\) −16.1173 −0.555440
\(843\) 18.3519 0.632074
\(844\) 22.9695 0.790643
\(845\) 0.968614 0.0333213
\(846\) −0.103775 −0.00356786
\(847\) −16.3077 −0.560339
\(848\) 10.1610 0.348930
\(849\) 2.50708 0.0860428
\(850\) 3.40252 0.116706
\(851\) −54.5236 −1.86905
\(852\) 12.0390 0.412450
\(853\) 49.8498 1.70682 0.853412 0.521238i \(-0.174530\pi\)
0.853412 + 0.521238i \(0.174530\pi\)
\(854\) 5.55533 0.190100
\(855\) 0.107119 0.00366338
\(856\) 21.8117 0.745508
\(857\) 39.2898 1.34211 0.671057 0.741406i \(-0.265841\pi\)
0.671057 + 0.741406i \(0.265841\pi\)
\(858\) 10.3697 0.354016
\(859\) 37.3922 1.27581 0.637903 0.770117i \(-0.279802\pi\)
0.637903 + 0.770117i \(0.279802\pi\)
\(860\) 0.435556 0.0148524
\(861\) 7.35790 0.250757
\(862\) −6.61949 −0.225461
\(863\) 41.1465 1.40064 0.700322 0.713827i \(-0.253040\pi\)
0.700322 + 0.713827i \(0.253040\pi\)
\(864\) −27.6175 −0.939565
\(865\) −0.372483 −0.0126648
\(866\) 14.7325 0.500630
\(867\) −26.1141 −0.886880
\(868\) 11.6155 0.394255
\(869\) 59.4575 2.01696
\(870\) 0.991171 0.0336039
\(871\) 31.6366 1.07197
\(872\) 0.652157 0.0220848
\(873\) −0.663644 −0.0224609
\(874\) −40.2578 −1.36174
\(875\) −1.18007 −0.0398936
\(876\) −48.4321 −1.63637
\(877\) −40.2479 −1.35907 −0.679537 0.733641i \(-0.737819\pi\)
−0.679537 + 0.733641i \(0.737819\pi\)
\(878\) 2.88077 0.0972214
\(879\) 21.5762 0.727746
\(880\) 1.46923 0.0495277
\(881\) 45.5773 1.53554 0.767769 0.640727i \(-0.221367\pi\)
0.767769 + 0.640727i \(0.221367\pi\)
\(882\) −0.0578377 −0.00194750
\(883\) 11.2401 0.378259 0.189130 0.981952i \(-0.439433\pi\)
0.189130 + 0.981952i \(0.439433\pi\)
\(884\) −4.82120 −0.162155
\(885\) −2.24397 −0.0754301
\(886\) −6.14929 −0.206589
\(887\) 18.7760 0.630437 0.315219 0.949019i \(-0.397922\pi\)
0.315219 + 0.949019i \(0.397922\pi\)
\(888\) −20.2514 −0.679593
\(889\) 1.00000 0.0335389
\(890\) 0.232775 0.00780262
\(891\) 45.2666 1.51649
\(892\) 6.39882 0.214248
\(893\) 14.9734 0.501066
\(894\) −4.43046 −0.148177
\(895\) −2.60793 −0.0871736
\(896\) 11.5018 0.384249
\(897\) 33.7627 1.12730
\(898\) −20.0993 −0.670721
\(899\) −62.6878 −2.09076
\(900\) −0.929615 −0.0309872
\(901\) −5.47330 −0.182342
\(902\) 12.0405 0.400903
\(903\) −3.65129 −0.121507
\(904\) 3.61309 0.120170
\(905\) −2.10205 −0.0698746
\(906\) 10.0834 0.334998
\(907\) −28.0916 −0.932767 −0.466383 0.884583i \(-0.654443\pi\)
−0.466383 + 0.884583i \(0.654443\pi\)
\(908\) −12.9181 −0.428703
\(909\) −0.0644849 −0.00213883
\(910\) −0.137907 −0.00457157
\(911\) −11.5012 −0.381053 −0.190526 0.981682i \(-0.561019\pi\)
−0.190526 + 0.981682i \(0.561019\pi\)
\(912\) 33.7617 1.11796
\(913\) −33.5031 −1.10879
\(914\) −2.58874 −0.0856279
\(915\) 2.09642 0.0693054
\(916\) 1.39233 0.0460038
\(917\) 8.23408 0.271913
\(918\) 3.60717 0.119054
\(919\) −21.4575 −0.707818 −0.353909 0.935280i \(-0.615148\pi\)
−0.353909 + 0.935280i \(0.615148\pi\)
\(920\) −2.11864 −0.0698493
\(921\) −12.9275 −0.425976
\(922\) −11.8407 −0.389953
\(923\) 9.04013 0.297559
\(924\) −15.2522 −0.501759
\(925\) −30.0074 −0.986637
\(926\) −18.1531 −0.596548
\(927\) −0.849492 −0.0279010
\(928\) −48.4001 −1.58881
\(929\) 58.5953 1.92245 0.961225 0.275766i \(-0.0889316\pi\)
0.961225 + 0.275766i \(0.0889316\pi\)
\(930\) −0.724047 −0.0237424
\(931\) 8.34525 0.273504
\(932\) −37.3628 −1.22386
\(933\) −58.9138 −1.92875
\(934\) −9.63277 −0.315194
\(935\) −0.791413 −0.0258820
\(936\) −0.471101 −0.0153984
\(937\) −37.4295 −1.22277 −0.611384 0.791334i \(-0.709387\pi\)
−0.611384 + 0.791334i \(0.709387\pi\)
\(938\) 7.68629 0.250966
\(939\) −22.8096 −0.744363
\(940\) 0.363942 0.0118705
\(941\) −44.8032 −1.46054 −0.730272 0.683157i \(-0.760607\pi\)
−0.730272 + 0.683157i \(0.760607\pi\)
\(942\) −14.4530 −0.470906
\(943\) 39.2024 1.27661
\(944\) 26.5694 0.864761
\(945\) −0.624647 −0.0203198
\(946\) −5.97497 −0.194263
\(947\) 30.9990 1.00733 0.503666 0.863898i \(-0.331984\pi\)
0.503666 + 0.863898i \(0.331984\pi\)
\(948\) 33.2088 1.07857
\(949\) −36.3678 −1.18055
\(950\) −22.1561 −0.718840
\(951\) −43.1539 −1.39936
\(952\) −2.53616 −0.0821974
\(953\) 45.1029 1.46103 0.730513 0.682899i \(-0.239281\pi\)
0.730513 + 0.682899i \(0.239281\pi\)
\(954\) −0.247010 −0.00799723
\(955\) −1.13995 −0.0368878
\(956\) −17.5965 −0.569112
\(957\) 82.3147 2.66086
\(958\) 7.40059 0.239102
\(959\) 3.79688 0.122608
\(960\) 0.397135 0.0128175
\(961\) 14.7932 0.477201
\(962\) −7.02335 −0.226442
\(963\) 1.19721 0.0385796
\(964\) −21.4490 −0.690826
\(965\) −1.43961 −0.0463426
\(966\) 8.20283 0.263922
\(967\) 57.9650 1.86403 0.932015 0.362420i \(-0.118049\pi\)
0.932015 + 0.362420i \(0.118049\pi\)
\(968\) −32.2717 −1.03725
\(969\) −18.1861 −0.584220
\(970\) −0.384448 −0.0123439
\(971\) 48.9510 1.57091 0.785457 0.618916i \(-0.212428\pi\)
0.785457 + 0.618916i \(0.212428\pi\)
\(972\) −1.93662 −0.0621170
\(973\) 4.53910 0.145517
\(974\) −0.780984 −0.0250243
\(975\) 18.5815 0.595084
\(976\) −24.8224 −0.794546
\(977\) 38.2915 1.22505 0.612526 0.790450i \(-0.290153\pi\)
0.612526 + 0.790450i \(0.290153\pi\)
\(978\) −10.4026 −0.332639
\(979\) 19.3314 0.617836
\(980\) 0.202839 0.00647944
\(981\) 0.0357959 0.00114288
\(982\) 7.12632 0.227410
\(983\) −4.26394 −0.135999 −0.0679993 0.997685i \(-0.521662\pi\)
−0.0679993 + 0.997685i \(0.521662\pi\)
\(984\) 14.5608 0.464180
\(985\) −0.599749 −0.0191096
\(986\) 6.32162 0.201321
\(987\) −3.05094 −0.0971126
\(988\) 31.3941 0.998779
\(989\) −19.4539 −0.618596
\(990\) −0.0357164 −0.00113514
\(991\) 8.67251 0.275491 0.137746 0.990468i \(-0.456014\pi\)
0.137746 + 0.990468i \(0.456014\pi\)
\(992\) 35.3561 1.12256
\(993\) 7.36123 0.233602
\(994\) 2.19635 0.0696640
\(995\) −0.406371 −0.0128828
\(996\) −18.7125 −0.592928
\(997\) 31.2119 0.988492 0.494246 0.869322i \(-0.335444\pi\)
0.494246 + 0.869322i \(0.335444\pi\)
\(998\) 11.6472 0.368686
\(999\) −31.8122 −1.00649
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 889.2.a.c.1.11 16
3.2 odd 2 8001.2.a.t.1.6 16
7.6 odd 2 6223.2.a.k.1.11 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
889.2.a.c.1.11 16 1.1 even 1 trivial
6223.2.a.k.1.11 16 7.6 odd 2
8001.2.a.t.1.6 16 3.2 odd 2