Properties

Label 888.2.br.a.785.8
Level $888$
Weight $2$
Character 888.785
Analytic conductor $7.091$
Analytic rank $0$
Dimension $152$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [888,2,Mod(473,888)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("888.473"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(888, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 0, 6, 7])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 888 = 2^{3} \cdot 3 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 888.br (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.09071569949\)
Analytic rank: \(0\)
Dimension: \(152\)
Relative dimension: \(38\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 785.8
Character \(\chi\) \(=\) 888.785
Dual form 888.2.br.a.569.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.42713 - 0.981484i) q^{3} +(-0.212050 - 0.791381i) q^{5} +(-0.149206 + 0.258432i) q^{7} +(1.07338 + 2.80140i) q^{9} +1.40612 q^{11} +(2.07555 - 0.556143i) q^{13} +(-0.474106 + 1.33752i) q^{15} +(4.03302 + 1.08064i) q^{17} +(-4.30531 + 1.15360i) q^{19} +(0.466582 - 0.222372i) q^{21} +(3.40295 - 3.40295i) q^{23} +(3.74881 - 2.16438i) q^{25} +(1.21769 - 5.05146i) q^{27} +(-2.74173 - 2.74173i) q^{29} +(-0.659194 + 0.659194i) q^{31} +(-2.00671 - 1.38008i) q^{33} +(0.236157 + 0.0632781i) q^{35} +(-3.30552 + 5.10622i) q^{37} +(-3.50792 - 1.24344i) q^{39} +(5.90794 - 10.2328i) q^{41} +(-4.89804 - 4.89804i) q^{43} +(1.98937 - 1.44349i) q^{45} -10.9310i q^{47} +(3.45548 + 5.98506i) q^{49} +(-4.69499 - 5.50055i) q^{51} +(6.63976 - 3.83347i) q^{53} +(-0.298167 - 1.11277i) q^{55} +(7.27646 + 2.57925i) q^{57} +(-1.53365 - 0.410939i) q^{59} +(-0.777010 - 2.89984i) q^{61} +(-0.884126 - 0.140590i) q^{63} +(-0.880242 - 1.52462i) q^{65} +(-1.51826 - 0.876567i) q^{67} +(-8.19637 + 1.51650i) q^{69} +(-2.84275 - 1.64126i) q^{71} -0.542470i q^{73} +(-7.47432 - 0.590559i) q^{75} +(-0.209801 + 0.363386i) q^{77} +(4.66772 - 1.25071i) q^{79} +(-6.69572 + 6.01393i) q^{81} +(7.59339 - 4.38405i) q^{83} -3.42080i q^{85} +(1.22183 + 6.60376i) q^{87} +(1.75938 - 6.56608i) q^{89} +(-0.165959 + 0.619369i) q^{91} +(1.58774 - 0.293765i) q^{93} +(1.82588 + 3.16252i) q^{95} +(7.62300 + 7.62300i) q^{97} +(1.50930 + 3.93910i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 152 q + 4 q^{13} - 12 q^{15} + 4 q^{19} - 44 q^{31} - 12 q^{39} + 28 q^{43} + 20 q^{45} - 80 q^{49} - 12 q^{51} - 8 q^{55} - 40 q^{57} - 28 q^{61} + 48 q^{63} + 56 q^{69} + 64 q^{75} + 20 q^{79} + 16 q^{81}+ \cdots - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/888\mathbb{Z}\right)^\times\).

\(n\) \(223\) \(409\) \(445\) \(593\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{12}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.42713 0.981484i −0.823952 0.566660i
\(4\) 0 0
\(5\) −0.212050 0.791381i −0.0948316 0.353916i 0.902162 0.431397i \(-0.141979\pi\)
−0.996994 + 0.0774806i \(0.975312\pi\)
\(6\) 0 0
\(7\) −0.149206 + 0.258432i −0.0563945 + 0.0976781i −0.892844 0.450365i \(-0.851294\pi\)
0.836450 + 0.548043i \(0.184627\pi\)
\(8\) 0 0
\(9\) 1.07338 + 2.80140i 0.357793 + 0.933801i
\(10\) 0 0
\(11\) 1.40612 0.423961 0.211980 0.977274i \(-0.432009\pi\)
0.211980 + 0.977274i \(0.432009\pi\)
\(12\) 0 0
\(13\) 2.07555 0.556143i 0.575655 0.154246i 0.0407662 0.999169i \(-0.487020\pi\)
0.534889 + 0.844922i \(0.320353\pi\)
\(14\) 0 0
\(15\) −0.474106 + 1.33752i −0.122414 + 0.345347i
\(16\) 0 0
\(17\) 4.03302 + 1.08064i 0.978150 + 0.262094i 0.712265 0.701910i \(-0.247669\pi\)
0.265885 + 0.964005i \(0.414336\pi\)
\(18\) 0 0
\(19\) −4.30531 + 1.15360i −0.987706 + 0.264655i −0.716287 0.697806i \(-0.754160\pi\)
−0.271419 + 0.962461i \(0.587493\pi\)
\(20\) 0 0
\(21\) 0.466582 0.222372i 0.101817 0.0485255i
\(22\) 0 0
\(23\) 3.40295 3.40295i 0.709564 0.709564i −0.256880 0.966443i \(-0.582694\pi\)
0.966443 + 0.256880i \(0.0826944\pi\)
\(24\) 0 0
\(25\) 3.74881 2.16438i 0.749762 0.432875i
\(26\) 0 0
\(27\) 1.21769 5.05146i 0.234344 0.972154i
\(28\) 0 0
\(29\) −2.74173 2.74173i −0.509126 0.509126i 0.405132 0.914258i \(-0.367226\pi\)
−0.914258 + 0.405132i \(0.867226\pi\)
\(30\) 0 0
\(31\) −0.659194 + 0.659194i −0.118395 + 0.118395i −0.763822 0.645427i \(-0.776679\pi\)
0.645427 + 0.763822i \(0.276679\pi\)
\(32\) 0 0
\(33\) −2.00671 1.38008i −0.349323 0.240242i
\(34\) 0 0
\(35\) 0.236157 + 0.0632781i 0.0399178 + 0.0106959i
\(36\) 0 0
\(37\) −3.30552 + 5.10622i −0.543425 + 0.839458i
\(38\) 0 0
\(39\) −3.50792 1.24344i −0.561717 0.199109i
\(40\) 0 0
\(41\) 5.90794 10.2328i 0.922665 1.59810i 0.127390 0.991853i \(-0.459340\pi\)
0.795275 0.606249i \(-0.207327\pi\)
\(42\) 0 0
\(43\) −4.89804 4.89804i −0.746945 0.746945i 0.226960 0.973904i \(-0.427121\pi\)
−0.973904 + 0.226960i \(0.927121\pi\)
\(44\) 0 0
\(45\) 1.98937 1.44349i 0.296557 0.215182i
\(46\) 0 0
\(47\) 10.9310i 1.59444i −0.603687 0.797222i \(-0.706302\pi\)
0.603687 0.797222i \(-0.293698\pi\)
\(48\) 0 0
\(49\) 3.45548 + 5.98506i 0.493639 + 0.855008i
\(50\) 0 0
\(51\) −4.69499 5.50055i −0.657430 0.770232i
\(52\) 0 0
\(53\) 6.63976 3.83347i 0.912041 0.526567i 0.0309539 0.999521i \(-0.490145\pi\)
0.881087 + 0.472954i \(0.156812\pi\)
\(54\) 0 0
\(55\) −0.298167 1.11277i −0.0402048 0.150047i
\(56\) 0 0
\(57\) 7.27646 + 2.57925i 0.963791 + 0.341631i
\(58\) 0 0
\(59\) −1.53365 0.410939i −0.199664 0.0534997i 0.157601 0.987503i \(-0.449624\pi\)
−0.357265 + 0.934003i \(0.616291\pi\)
\(60\) 0 0
\(61\) −0.777010 2.89984i −0.0994859 0.371287i 0.898175 0.439637i \(-0.144893\pi\)
−0.997661 + 0.0683507i \(0.978226\pi\)
\(62\) 0 0
\(63\) −0.884126 0.140590i −0.111389 0.0177127i
\(64\) 0 0
\(65\) −0.880242 1.52462i −0.109181 0.189106i
\(66\) 0 0
\(67\) −1.51826 0.876567i −0.185485 0.107090i 0.404382 0.914590i \(-0.367487\pi\)
−0.589867 + 0.807500i \(0.700820\pi\)
\(68\) 0 0
\(69\) −8.19637 + 1.51650i −0.986727 + 0.182565i
\(70\) 0 0
\(71\) −2.84275 1.64126i −0.337372 0.194782i 0.321737 0.946829i \(-0.395733\pi\)
−0.659109 + 0.752047i \(0.729067\pi\)
\(72\) 0 0
\(73\) 0.542470i 0.0634913i −0.999496 0.0317457i \(-0.989893\pi\)
0.999496 0.0317457i \(-0.0101067\pi\)
\(74\) 0 0
\(75\) −7.47432 0.590559i −0.863061 0.0681919i
\(76\) 0 0
\(77\) −0.209801 + 0.363386i −0.0239090 + 0.0414116i
\(78\) 0 0
\(79\) 4.66772 1.25071i 0.525159 0.140716i 0.0135071 0.999909i \(-0.495700\pi\)
0.511652 + 0.859193i \(0.329034\pi\)
\(80\) 0 0
\(81\) −6.69572 + 6.01393i −0.743969 + 0.668214i
\(82\) 0 0
\(83\) 7.59339 4.38405i 0.833483 0.481212i −0.0215608 0.999768i \(-0.506864\pi\)
0.855044 + 0.518556i \(0.173530\pi\)
\(84\) 0 0
\(85\) 3.42080i 0.371038i
\(86\) 0 0
\(87\) 1.22183 + 6.60376i 0.130994 + 0.707997i
\(88\) 0 0
\(89\) 1.75938 6.56608i 0.186494 0.696004i −0.807812 0.589440i \(-0.799349\pi\)
0.994306 0.106564i \(-0.0339848\pi\)
\(90\) 0 0
\(91\) −0.165959 + 0.619369i −0.0173973 + 0.0649275i
\(92\) 0 0
\(93\) 1.58774 0.293765i 0.164641 0.0304620i
\(94\) 0 0
\(95\) 1.82588 + 3.16252i 0.187331 + 0.324467i
\(96\) 0 0
\(97\) 7.62300 + 7.62300i 0.773998 + 0.773998i 0.978803 0.204805i \(-0.0656559\pi\)
−0.204805 + 0.978803i \(0.565656\pi\)
\(98\) 0 0
\(99\) 1.50930 + 3.93910i 0.151690 + 0.395895i
\(100\) 0 0
\(101\) 10.6782 1.06252 0.531261 0.847208i \(-0.321718\pi\)
0.531261 + 0.847208i \(0.321718\pi\)
\(102\) 0 0
\(103\) −2.74833 + 2.74833i −0.270801 + 0.270801i −0.829423 0.558621i \(-0.811330\pi\)
0.558621 + 0.829423i \(0.311330\pi\)
\(104\) 0 0
\(105\) −0.274919 0.322090i −0.0268294 0.0314328i
\(106\) 0 0
\(107\) 5.37254 + 3.10184i 0.519383 + 0.299866i 0.736682 0.676239i \(-0.236391\pi\)
−0.217299 + 0.976105i \(0.569725\pi\)
\(108\) 0 0
\(109\) 3.46676 12.9381i 0.332055 1.23925i −0.574971 0.818174i \(-0.694987\pi\)
0.907026 0.421074i \(-0.138347\pi\)
\(110\) 0 0
\(111\) 9.72907 4.04291i 0.923443 0.383736i
\(112\) 0 0
\(113\) −1.51522 + 5.65487i −0.142540 + 0.531965i 0.857313 + 0.514796i \(0.172132\pi\)
−0.999853 + 0.0171696i \(0.994534\pi\)
\(114\) 0 0
\(115\) −3.41462 1.97143i −0.318415 0.183837i
\(116\) 0 0
\(117\) 3.78584 + 5.21751i 0.350001 + 0.482359i
\(118\) 0 0
\(119\) −0.881022 + 0.881022i −0.0807631 + 0.0807631i
\(120\) 0 0
\(121\) −9.02283 −0.820257
\(122\) 0 0
\(123\) −18.4747 + 8.80502i −1.66581 + 0.793922i
\(124\) 0 0
\(125\) −5.40443 5.40443i −0.483387 0.483387i
\(126\) 0 0
\(127\) 1.72200 + 2.98260i 0.152803 + 0.264663i 0.932257 0.361797i \(-0.117837\pi\)
−0.779454 + 0.626460i \(0.784503\pi\)
\(128\) 0 0
\(129\) 2.18277 + 11.7975i 0.192183 + 1.03871i
\(130\) 0 0
\(131\) −0.105122 + 0.392319i −0.00918451 + 0.0342771i −0.970366 0.241640i \(-0.922315\pi\)
0.961182 + 0.275917i \(0.0889814\pi\)
\(132\) 0 0
\(133\) 0.344249 1.28475i 0.0298501 0.111402i
\(134\) 0 0
\(135\) −4.25584 + 0.107507i −0.366284 + 0.00925277i
\(136\) 0 0
\(137\) 13.8431i 1.18269i 0.806418 + 0.591346i \(0.201403\pi\)
−0.806418 + 0.591346i \(0.798597\pi\)
\(138\) 0 0
\(139\) −4.02327 + 2.32284i −0.341250 + 0.197021i −0.660825 0.750540i \(-0.729793\pi\)
0.319575 + 0.947561i \(0.396460\pi\)
\(140\) 0 0
\(141\) −10.7286 + 15.5998i −0.903507 + 1.31374i
\(142\) 0 0
\(143\) 2.91847 0.782003i 0.244055 0.0653944i
\(144\) 0 0
\(145\) −1.58837 + 2.75113i −0.131907 + 0.228469i
\(146\) 0 0
\(147\) 0.942841 11.9329i 0.0777642 0.984211i
\(148\) 0 0
\(149\) 5.47982i 0.448925i 0.974483 + 0.224462i \(0.0720626\pi\)
−0.974483 + 0.224462i \(0.927937\pi\)
\(150\) 0 0
\(151\) 11.8910 + 6.86525i 0.967672 + 0.558686i 0.898526 0.438921i \(-0.144639\pi\)
0.0691465 + 0.997607i \(0.477972\pi\)
\(152\) 0 0
\(153\) 1.30163 + 12.4580i 0.105231 + 1.00717i
\(154\) 0 0
\(155\) 0.661456 + 0.381892i 0.0531294 + 0.0306743i
\(156\) 0 0
\(157\) −8.21847 14.2348i −0.655906 1.13606i −0.981666 0.190609i \(-0.938954\pi\)
0.325760 0.945452i \(-0.394380\pi\)
\(158\) 0 0
\(159\) −13.2383 1.04598i −1.04986 0.0829514i
\(160\) 0 0
\(161\) 0.371691 + 1.38717i 0.0292933 + 0.109324i
\(162\) 0 0
\(163\) 9.11995 + 2.44368i 0.714329 + 0.191404i 0.597640 0.801764i \(-0.296105\pi\)
0.116689 + 0.993168i \(0.462772\pi\)
\(164\) 0 0
\(165\) −0.666649 + 1.88072i −0.0518985 + 0.146414i
\(166\) 0 0
\(167\) 5.71720 + 21.3369i 0.442410 + 1.65110i 0.722684 + 0.691178i \(0.242908\pi\)
−0.280274 + 0.959920i \(0.590425\pi\)
\(168\) 0 0
\(169\) −7.25970 + 4.19139i −0.558438 + 0.322415i
\(170\) 0 0
\(171\) −7.85294 10.8227i −0.600529 0.827629i
\(172\) 0 0
\(173\) 1.15167 + 1.99475i 0.0875600 + 0.151658i 0.906479 0.422250i \(-0.138760\pi\)
−0.818919 + 0.573909i \(0.805426\pi\)
\(174\) 0 0
\(175\) 1.29175i 0.0976470i
\(176\) 0 0
\(177\) 1.78538 + 2.09171i 0.134197 + 0.157223i
\(178\) 0 0
\(179\) −5.02745 5.02745i −0.375769 0.375769i 0.493804 0.869573i \(-0.335606\pi\)
−0.869573 + 0.493804i \(0.835606\pi\)
\(180\) 0 0
\(181\) 1.16321 2.01475i 0.0864610 0.149755i −0.819552 0.573005i \(-0.805778\pi\)
0.906013 + 0.423250i \(0.139111\pi\)
\(182\) 0 0
\(183\) −1.73726 + 4.90106i −0.128422 + 0.362297i
\(184\) 0 0
\(185\) 4.74190 + 1.53315i 0.348632 + 0.112720i
\(186\) 0 0
\(187\) 5.67090 + 1.51951i 0.414697 + 0.111118i
\(188\) 0 0
\(189\) 1.12377 + 1.06840i 0.0817424 + 0.0777143i
\(190\) 0 0
\(191\) 0.422832 0.422832i 0.0305950 0.0305950i −0.691644 0.722239i \(-0.743113\pi\)
0.722239 + 0.691644i \(0.243113\pi\)
\(192\) 0 0
\(193\) 4.99064 + 4.99064i 0.359234 + 0.359234i 0.863531 0.504297i \(-0.168248\pi\)
−0.504297 + 0.863531i \(0.668248\pi\)
\(194\) 0 0
\(195\) −0.240178 + 3.03977i −0.0171995 + 0.217683i
\(196\) 0 0
\(197\) −18.9245 + 10.9261i −1.34831 + 0.778450i −0.988011 0.154386i \(-0.950660\pi\)
−0.360303 + 0.932835i \(0.617327\pi\)
\(198\) 0 0
\(199\) −0.872803 + 0.872803i −0.0618714 + 0.0618714i −0.737365 0.675494i \(-0.763930\pi\)
0.675494 + 0.737365i \(0.263930\pi\)
\(200\) 0 0
\(201\) 1.30641 + 2.74112i 0.0921471 + 0.193344i
\(202\) 0 0
\(203\) 1.11763 0.299469i 0.0784424 0.0210186i
\(204\) 0 0
\(205\) −9.35085 2.50555i −0.653092 0.174995i
\(206\) 0 0
\(207\) 13.1857 + 5.88038i 0.916468 + 0.408715i
\(208\) 0 0
\(209\) −6.05377 + 1.62210i −0.418748 + 0.112203i
\(210\) 0 0
\(211\) 4.17439 0.287377 0.143688 0.989623i \(-0.454104\pi\)
0.143688 + 0.989623i \(0.454104\pi\)
\(212\) 0 0
\(213\) 2.44609 + 5.13240i 0.167603 + 0.351666i
\(214\) 0 0
\(215\) −2.83759 + 4.91485i −0.193522 + 0.335190i
\(216\) 0 0
\(217\) −0.0720013 0.268712i −0.00488776 0.0182414i
\(218\) 0 0
\(219\) −0.532426 + 0.774173i −0.0359780 + 0.0523138i
\(220\) 0 0
\(221\) 8.97174 0.603504
\(222\) 0 0
\(223\) 8.30690 0.556271 0.278136 0.960542i \(-0.410284\pi\)
0.278136 + 0.960542i \(0.410284\pi\)
\(224\) 0 0
\(225\) 10.0872 + 8.17873i 0.672479 + 0.545249i
\(226\) 0 0
\(227\) 5.82278 + 21.7309i 0.386472 + 1.44233i 0.835834 + 0.548983i \(0.184985\pi\)
−0.449362 + 0.893350i \(0.648349\pi\)
\(228\) 0 0
\(229\) 4.74287 8.21490i 0.313418 0.542856i −0.665682 0.746236i \(-0.731859\pi\)
0.979100 + 0.203380i \(0.0651926\pi\)
\(230\) 0 0
\(231\) 0.656070 0.312681i 0.0431662 0.0205729i
\(232\) 0 0
\(233\) −16.8897 −1.10648 −0.553242 0.833021i \(-0.686610\pi\)
−0.553242 + 0.833021i \(0.686610\pi\)
\(234\) 0 0
\(235\) −8.65054 + 2.31791i −0.564299 + 0.151204i
\(236\) 0 0
\(237\) −7.88897 2.79637i −0.512444 0.181644i
\(238\) 0 0
\(239\) −10.0320 2.68805i −0.648913 0.173876i −0.0806757 0.996740i \(-0.525708\pi\)
−0.568237 + 0.822865i \(0.692374\pi\)
\(240\) 0 0
\(241\) 0.834899 0.223710i 0.0537806 0.0144105i −0.231828 0.972757i \(-0.574471\pi\)
0.285609 + 0.958346i \(0.407804\pi\)
\(242\) 0 0
\(243\) 15.4582 2.01090i 0.991645 0.128999i
\(244\) 0 0
\(245\) 4.00373 4.00373i 0.255789 0.255789i
\(246\) 0 0
\(247\) −8.29433 + 4.78874i −0.527756 + 0.304700i
\(248\) 0 0
\(249\) −15.1396 1.19620i −0.959433 0.0758064i
\(250\) 0 0
\(251\) −12.8319 12.8319i −0.809941 0.809941i 0.174684 0.984625i \(-0.444110\pi\)
−0.984625 + 0.174684i \(0.944110\pi\)
\(252\) 0 0
\(253\) 4.78495 4.78495i 0.300827 0.300827i
\(254\) 0 0
\(255\) −3.35746 + 4.88191i −0.210252 + 0.305717i
\(256\) 0 0
\(257\) 19.1017 + 5.11828i 1.19153 + 0.319270i 0.799491 0.600679i \(-0.205103\pi\)
0.392040 + 0.919948i \(0.371770\pi\)
\(258\) 0 0
\(259\) −0.826408 1.61613i −0.0513505 0.100421i
\(260\) 0 0
\(261\) 4.73778 10.6236i 0.293261 0.657584i
\(262\) 0 0
\(263\) 4.10210 7.10505i 0.252946 0.438116i −0.711389 0.702798i \(-0.751934\pi\)
0.964336 + 0.264682i \(0.0852671\pi\)
\(264\) 0 0
\(265\) −4.44169 4.44169i −0.272851 0.272851i
\(266\) 0 0
\(267\) −8.95536 + 7.64383i −0.548059 + 0.467795i
\(268\) 0 0
\(269\) 25.5860i 1.56001i −0.625775 0.780004i \(-0.715217\pi\)
0.625775 0.780004i \(-0.284783\pi\)
\(270\) 0 0
\(271\) −1.63277 2.82804i −0.0991836 0.171791i 0.812163 0.583430i \(-0.198290\pi\)
−0.911347 + 0.411639i \(0.864956\pi\)
\(272\) 0 0
\(273\) 0.844746 0.721031i 0.0511264 0.0436388i
\(274\) 0 0
\(275\) 5.27127 3.04337i 0.317869 0.183522i
\(276\) 0 0
\(277\) −1.51976 5.67181i −0.0913134 0.340786i 0.905121 0.425153i \(-0.139780\pi\)
−0.996435 + 0.0843671i \(0.973113\pi\)
\(278\) 0 0
\(279\) −2.55423 1.13910i −0.152918 0.0681964i
\(280\) 0 0
\(281\) −3.39223 0.908944i −0.202363 0.0542231i 0.156214 0.987723i \(-0.450071\pi\)
−0.358577 + 0.933500i \(0.616738\pi\)
\(282\) 0 0
\(283\) 6.29626 + 23.4980i 0.374274 + 1.39681i 0.854403 + 0.519611i \(0.173923\pi\)
−0.480130 + 0.877198i \(0.659410\pi\)
\(284\) 0 0
\(285\) 0.498199 6.30538i 0.0295108 0.373499i
\(286\) 0 0
\(287\) 1.76300 + 3.05360i 0.104066 + 0.180248i
\(288\) 0 0
\(289\) 0.374993 + 0.216503i 0.0220584 + 0.0127354i
\(290\) 0 0
\(291\) −3.39713 18.3608i −0.199143 1.07633i
\(292\) 0 0
\(293\) −7.86659 4.54178i −0.459571 0.265334i 0.252293 0.967651i \(-0.418815\pi\)
−0.711864 + 0.702317i \(0.752149\pi\)
\(294\) 0 0
\(295\) 1.30084i 0.0757376i
\(296\) 0 0
\(297\) 1.71221 7.10295i 0.0993526 0.412155i
\(298\) 0 0
\(299\) 5.17048 8.95553i 0.299016 0.517912i
\(300\) 0 0
\(301\) 1.99663 0.534994i 0.115084 0.0308366i
\(302\) 0 0
\(303\) −15.2392 10.4805i −0.875467 0.602089i
\(304\) 0 0
\(305\) −2.13011 + 1.22982i −0.121970 + 0.0704194i
\(306\) 0 0
\(307\) 26.7723i 1.52797i 0.645232 + 0.763987i \(0.276761\pi\)
−0.645232 + 0.763987i \(0.723239\pi\)
\(308\) 0 0
\(309\) 6.61967 1.22477i 0.376580 0.0696749i
\(310\) 0 0
\(311\) 7.60714 28.3902i 0.431361 1.60986i −0.318265 0.948002i \(-0.603100\pi\)
0.749627 0.661861i \(-0.230233\pi\)
\(312\) 0 0
\(313\) −1.97533 + 7.37201i −0.111652 + 0.416691i −0.999015 0.0443812i \(-0.985868\pi\)
0.887363 + 0.461072i \(0.152535\pi\)
\(314\) 0 0
\(315\) 0.0762184 + 0.729492i 0.00429442 + 0.0411022i
\(316\) 0 0
\(317\) 15.8478 + 27.4492i 0.890103 + 1.54170i 0.839751 + 0.542971i \(0.182701\pi\)
0.0503515 + 0.998732i \(0.483966\pi\)
\(318\) 0 0
\(319\) −3.85520 3.85520i −0.215850 0.215850i
\(320\) 0 0
\(321\) −4.62289 9.69978i −0.258025 0.541389i
\(322\) 0 0
\(323\) −18.6100 −1.03549
\(324\) 0 0
\(325\) 6.57715 6.57715i 0.364835 0.364835i
\(326\) 0 0
\(327\) −17.6461 + 15.0618i −0.975829 + 0.832917i
\(328\) 0 0
\(329\) 2.82491 + 1.63096i 0.155742 + 0.0899178i
\(330\) 0 0
\(331\) −2.66274 + 9.93749i −0.146358 + 0.546214i 0.853334 + 0.521365i \(0.174577\pi\)
−0.999691 + 0.0248487i \(0.992090\pi\)
\(332\) 0 0
\(333\) −17.8527 3.77919i −0.978320 0.207098i
\(334\) 0 0
\(335\) −0.371752 + 1.38740i −0.0203110 + 0.0758016i
\(336\) 0 0
\(337\) 12.1148 + 6.99446i 0.659933 + 0.381013i 0.792251 0.610195i \(-0.208909\pi\)
−0.132318 + 0.991207i \(0.542242\pi\)
\(338\) 0 0
\(339\) 7.71257 6.58305i 0.418889 0.357542i
\(340\) 0 0
\(341\) −0.926905 + 0.926905i −0.0501947 + 0.0501947i
\(342\) 0 0
\(343\) −4.15119 −0.224143
\(344\) 0 0
\(345\) 2.93817 + 6.16488i 0.158186 + 0.331906i
\(346\) 0 0
\(347\) 11.0258 + 11.0258i 0.591895 + 0.591895i 0.938143 0.346248i \(-0.112544\pi\)
−0.346248 + 0.938143i \(0.612544\pi\)
\(348\) 0 0
\(349\) −17.1968 29.7857i −0.920522 1.59439i −0.798609 0.601850i \(-0.794431\pi\)
−0.121913 0.992541i \(-0.538903\pi\)
\(350\) 0 0
\(351\) −0.281960 11.1618i −0.0150499 0.595772i
\(352\) 0 0
\(353\) 4.29977 16.0470i 0.228854 0.854093i −0.751970 0.659197i \(-0.770896\pi\)
0.980824 0.194896i \(-0.0624370\pi\)
\(354\) 0 0
\(355\) −0.696059 + 2.59773i −0.0369430 + 0.137873i
\(356\) 0 0
\(357\) 2.12204 0.392620i 0.112310 0.0207797i
\(358\) 0 0
\(359\) 11.4435i 0.603967i −0.953313 0.301983i \(-0.902351\pi\)
0.953313 0.301983i \(-0.0976487\pi\)
\(360\) 0 0
\(361\) 0.750403 0.433245i 0.0394949 0.0228024i
\(362\) 0 0
\(363\) 12.8767 + 8.85577i 0.675852 + 0.464807i
\(364\) 0 0
\(365\) −0.429300 + 0.115031i −0.0224706 + 0.00602098i
\(366\) 0 0
\(367\) 15.7524 27.2839i 0.822267 1.42421i −0.0817226 0.996655i \(-0.526042\pi\)
0.903990 0.427554i \(-0.140625\pi\)
\(368\) 0 0
\(369\) 35.0078 + 5.56680i 1.82243 + 0.289796i
\(370\) 0 0
\(371\) 2.28790i 0.118782i
\(372\) 0 0
\(373\) −24.4872 14.1377i −1.26790 0.732021i −0.293308 0.956018i \(-0.594756\pi\)
−0.974590 + 0.223997i \(0.928089\pi\)
\(374\) 0 0
\(375\) 2.40844 + 13.0172i 0.124371 + 0.672204i
\(376\) 0 0
\(377\) −7.21540 4.16581i −0.371612 0.214550i
\(378\) 0 0
\(379\) 16.7954 + 29.0905i 0.862721 + 1.49428i 0.869293 + 0.494298i \(0.164575\pi\)
−0.00657182 + 0.999978i \(0.502092\pi\)
\(380\) 0 0
\(381\) 0.469856 5.94667i 0.0240714 0.304657i
\(382\) 0 0
\(383\) 5.84657 + 21.8197i 0.298746 + 1.11493i 0.938197 + 0.346103i \(0.112495\pi\)
−0.639451 + 0.768832i \(0.720838\pi\)
\(384\) 0 0
\(385\) 0.332065 + 0.0889765i 0.0169236 + 0.00453466i
\(386\) 0 0
\(387\) 8.46394 18.9788i 0.430246 0.964749i
\(388\) 0 0
\(389\) 2.21911 + 8.28182i 0.112513 + 0.419905i 0.999089 0.0426787i \(-0.0135892\pi\)
−0.886576 + 0.462584i \(0.846923\pi\)
\(390\) 0 0
\(391\) 17.4015 10.0468i 0.880032 0.508087i
\(392\) 0 0
\(393\) 0.535076 0.456713i 0.0269910 0.0230381i
\(394\) 0 0
\(395\) −1.97958 3.42873i −0.0996033 0.172518i
\(396\) 0 0
\(397\) 21.3332i 1.07068i −0.844636 0.535342i \(-0.820183\pi\)
0.844636 0.535342i \(-0.179817\pi\)
\(398\) 0 0
\(399\) −1.75225 + 1.49563i −0.0877223 + 0.0748752i
\(400\) 0 0
\(401\) −27.1195 27.1195i −1.35428 1.35428i −0.880804 0.473480i \(-0.842997\pi\)
−0.473480 0.880804i \(-0.657003\pi\)
\(402\) 0 0
\(403\) −1.00159 + 1.73480i −0.0498926 + 0.0864166i
\(404\) 0 0
\(405\) 6.17913 + 4.02361i 0.307044 + 0.199935i
\(406\) 0 0
\(407\) −4.64796 + 7.17995i −0.230391 + 0.355897i
\(408\) 0 0
\(409\) 9.39205 + 2.51659i 0.464407 + 0.124437i 0.483433 0.875382i \(-0.339390\pi\)
−0.0190257 + 0.999819i \(0.506056\pi\)
\(410\) 0 0
\(411\) 13.5867 19.7558i 0.670184 0.974481i
\(412\) 0 0
\(413\) 0.335028 0.335028i 0.0164857 0.0164857i
\(414\) 0 0
\(415\) −5.07963 5.07963i −0.249349 0.249349i
\(416\) 0 0
\(417\) 8.02155 + 0.633796i 0.392817 + 0.0310371i
\(418\) 0 0
\(419\) −12.0661 + 6.96639i −0.589469 + 0.340330i −0.764888 0.644164i \(-0.777206\pi\)
0.175418 + 0.984494i \(0.443872\pi\)
\(420\) 0 0
\(421\) −24.6291 + 24.6291i −1.20035 + 1.20035i −0.226291 + 0.974060i \(0.572660\pi\)
−0.974060 + 0.226291i \(0.927340\pi\)
\(422\) 0 0
\(423\) 30.6220 11.7330i 1.48889 0.570480i
\(424\) 0 0
\(425\) 17.4579 4.67784i 0.846834 0.226908i
\(426\) 0 0
\(427\) 0.865346 + 0.231869i 0.0418770 + 0.0112209i
\(428\) 0 0
\(429\) −4.93255 1.74842i −0.238146 0.0844145i
\(430\) 0 0
\(431\) −28.8429 + 7.72842i −1.38931 + 0.372265i −0.874495 0.485035i \(-0.838807\pi\)
−0.514817 + 0.857300i \(0.672140\pi\)
\(432\) 0 0
\(433\) −15.7590 −0.757329 −0.378665 0.925534i \(-0.623617\pi\)
−0.378665 + 0.925534i \(0.623617\pi\)
\(434\) 0 0
\(435\) 4.96700 2.36726i 0.238149 0.113501i
\(436\) 0 0
\(437\) −10.7251 + 18.5764i −0.513050 + 0.888630i
\(438\) 0 0
\(439\) −0.284234 1.06078i −0.0135658 0.0506281i 0.958811 0.284044i \(-0.0916762\pi\)
−0.972377 + 0.233416i \(0.925010\pi\)
\(440\) 0 0
\(441\) −13.0575 + 16.1044i −0.621787 + 0.766877i
\(442\) 0 0
\(443\) 27.6138 1.31197 0.655985 0.754774i \(-0.272253\pi\)
0.655985 + 0.754774i \(0.272253\pi\)
\(444\) 0 0
\(445\) −5.56935 −0.264012
\(446\) 0 0
\(447\) 5.37836 7.82040i 0.254388 0.369892i
\(448\) 0 0
\(449\) 7.02491 + 26.2173i 0.331526 + 1.23727i 0.907587 + 0.419865i \(0.137922\pi\)
−0.576061 + 0.817407i \(0.695411\pi\)
\(450\) 0 0
\(451\) 8.30726 14.3886i 0.391173 0.677532i
\(452\) 0 0
\(453\) −10.2318 21.4684i −0.480730 1.00867i
\(454\) 0 0
\(455\) 0.525348 0.0246287
\(456\) 0 0
\(457\) 13.4969 3.61649i 0.631359 0.169172i 0.0710728 0.997471i \(-0.477358\pi\)
0.560286 + 0.828299i \(0.310691\pi\)
\(458\) 0 0
\(459\) 10.3698 19.0567i 0.484020 0.889492i
\(460\) 0 0
\(461\) −7.45297 1.99702i −0.347120 0.0930104i 0.0810469 0.996710i \(-0.474174\pi\)
−0.428166 + 0.903700i \(0.640840\pi\)
\(462\) 0 0
\(463\) 3.20406 0.858525i 0.148905 0.0398990i −0.183596 0.983002i \(-0.558774\pi\)
0.332502 + 0.943103i \(0.392107\pi\)
\(464\) 0 0
\(465\) −0.569160 1.19422i −0.0263942 0.0553804i
\(466\) 0 0
\(467\) 6.52807 6.52807i 0.302083 0.302083i −0.539745 0.841828i \(-0.681479\pi\)
0.841828 + 0.539745i \(0.181479\pi\)
\(468\) 0 0
\(469\) 0.453066 0.261578i 0.0209206 0.0120785i
\(470\) 0 0
\(471\) −2.24244 + 28.3812i −0.103326 + 1.30774i
\(472\) 0 0
\(473\) −6.88723 6.88723i −0.316675 0.316675i
\(474\) 0 0
\(475\) −13.6429 + 13.6429i −0.625981 + 0.625981i
\(476\) 0 0
\(477\) 17.8661 + 14.4859i 0.818031 + 0.663263i
\(478\) 0 0
\(479\) 15.0944 + 4.04453i 0.689680 + 0.184799i 0.586604 0.809874i \(-0.300465\pi\)
0.103077 + 0.994673i \(0.467131\pi\)
\(480\) 0 0
\(481\) −4.02100 + 12.4366i −0.183342 + 0.567060i
\(482\) 0 0
\(483\) 0.831035 2.34447i 0.0378134 0.106677i
\(484\) 0 0
\(485\) 4.41624 7.64915i 0.200531 0.347330i
\(486\) 0 0
\(487\) 8.22774 + 8.22774i 0.372834 + 0.372834i 0.868509 0.495674i \(-0.165079\pi\)
−0.495674 + 0.868509i \(0.665079\pi\)
\(488\) 0 0
\(489\) −10.6169 12.4385i −0.480112 0.562490i
\(490\) 0 0
\(491\) 14.8640i 0.670802i −0.942076 0.335401i \(-0.891128\pi\)
0.942076 0.335401i \(-0.108872\pi\)
\(492\) 0 0
\(493\) −8.09461 14.0203i −0.364563 0.631441i
\(494\) 0 0
\(495\) 2.79728 2.02971i 0.125729 0.0912289i
\(496\) 0 0
\(497\) 0.848309 0.489771i 0.0380519 0.0219693i
\(498\) 0 0
\(499\) 6.32351 + 23.5997i 0.283079 + 1.05647i 0.950232 + 0.311545i \(0.100846\pi\)
−0.667152 + 0.744921i \(0.732487\pi\)
\(500\) 0 0
\(501\) 12.7826 36.0618i 0.571087 1.61112i
\(502\) 0 0
\(503\) −37.5229 10.0542i −1.67307 0.448297i −0.707131 0.707083i \(-0.750011\pi\)
−0.965935 + 0.258786i \(0.916677\pi\)
\(504\) 0 0
\(505\) −2.26431 8.45054i −0.100761 0.376044i
\(506\) 0 0
\(507\) 14.4743 + 1.14364i 0.642826 + 0.0507907i
\(508\) 0 0
\(509\) −7.49010 12.9732i −0.331993 0.575029i 0.650910 0.759155i \(-0.274388\pi\)
−0.982903 + 0.184127i \(0.941054\pi\)
\(510\) 0 0
\(511\) 0.140192 + 0.0809396i 0.00620171 + 0.00358056i
\(512\) 0 0
\(513\) 0.584867 + 23.1528i 0.0258225 + 1.02222i
\(514\) 0 0
\(515\) 2.75776 + 1.59219i 0.121522 + 0.0701605i
\(516\) 0 0
\(517\) 15.3702i 0.675981i
\(518\) 0 0
\(519\) 0.314238 3.97711i 0.0137935 0.174576i
\(520\) 0 0
\(521\) 2.27386 3.93844i 0.0996197 0.172546i −0.811908 0.583786i \(-0.801571\pi\)
0.911527 + 0.411240i \(0.134904\pi\)
\(522\) 0 0
\(523\) 14.4021 3.85902i 0.629759 0.168743i 0.0701985 0.997533i \(-0.477637\pi\)
0.559560 + 0.828790i \(0.310970\pi\)
\(524\) 0 0
\(525\) 1.26783 1.84349i 0.0553327 0.0804564i
\(526\) 0 0
\(527\) −3.37090 + 1.94619i −0.146839 + 0.0847773i
\(528\) 0 0
\(529\) 0.160103i 0.00696099i
\(530\) 0 0
\(531\) −0.494975 4.73745i −0.0214801 0.205588i
\(532\) 0 0
\(533\) 6.57132 24.5245i 0.284635 1.06227i
\(534\) 0 0
\(535\) 1.31549 4.90947i 0.0568735 0.212255i
\(536\) 0 0
\(537\) 2.24044 + 12.1092i 0.0966823 + 0.522549i
\(538\) 0 0
\(539\) 4.85881 + 8.41570i 0.209284 + 0.362490i
\(540\) 0 0
\(541\) −13.1303 13.1303i −0.564516 0.564516i 0.366071 0.930587i \(-0.380703\pi\)
−0.930587 + 0.366071i \(0.880703\pi\)
\(542\) 0 0
\(543\) −3.63749 + 1.73362i −0.156100 + 0.0743968i
\(544\) 0 0
\(545\) −10.9741 −0.470079
\(546\) 0 0
\(547\) 16.2813 16.2813i 0.696137 0.696137i −0.267438 0.963575i \(-0.586177\pi\)
0.963575 + 0.267438i \(0.0861771\pi\)
\(548\) 0 0
\(549\) 7.28960 5.28934i 0.311112 0.225744i
\(550\) 0 0
\(551\) 14.9669 + 8.64112i 0.637610 + 0.368124i
\(552\) 0 0
\(553\) −0.373226 + 1.39290i −0.0158712 + 0.0592321i
\(554\) 0 0
\(555\) −5.26253 6.84210i −0.223382 0.290431i
\(556\) 0 0
\(557\) −3.62511 + 13.5291i −0.153601 + 0.573247i 0.845620 + 0.533785i \(0.179231\pi\)
−0.999221 + 0.0394614i \(0.987436\pi\)
\(558\) 0 0
\(559\) −12.8902 7.44214i −0.545196 0.314769i
\(560\) 0 0
\(561\) −6.60171 7.73443i −0.278724 0.326548i
\(562\) 0 0
\(563\) 20.4328 20.4328i 0.861139 0.861139i −0.130331 0.991471i \(-0.541604\pi\)
0.991471 + 0.130331i \(0.0416041\pi\)
\(564\) 0 0
\(565\) 4.79645 0.201788
\(566\) 0 0
\(567\) −0.555152 2.62770i −0.0233142 0.110353i
\(568\) 0 0
\(569\) 8.73461 + 8.73461i 0.366174 + 0.366174i 0.866080 0.499906i \(-0.166632\pi\)
−0.499906 + 0.866080i \(0.666632\pi\)
\(570\) 0 0
\(571\) 19.8386 + 34.3615i 0.830220 + 1.43798i 0.897864 + 0.440274i \(0.145119\pi\)
−0.0676438 + 0.997710i \(0.521548\pi\)
\(572\) 0 0
\(573\) −1.01844 + 0.188432i −0.0425458 + 0.00787185i
\(574\) 0 0
\(575\) 5.39174 20.1223i 0.224851 0.839156i
\(576\) 0 0
\(577\) −5.97998 + 22.3176i −0.248950 + 0.929093i 0.722407 + 0.691468i \(0.243036\pi\)
−0.971357 + 0.237625i \(0.923631\pi\)
\(578\) 0 0
\(579\) −2.22404 12.0205i −0.0924279 0.499555i
\(580\) 0 0
\(581\) 2.61650i 0.108551i
\(582\) 0 0
\(583\) 9.33629 5.39031i 0.386670 0.223244i
\(584\) 0 0
\(585\) 3.32625 4.10241i 0.137524 0.169614i
\(586\) 0 0
\(587\) −42.6232 + 11.4209i −1.75925 + 0.471389i −0.986560 0.163397i \(-0.947755\pi\)
−0.772688 + 0.634786i \(0.781088\pi\)
\(588\) 0 0
\(589\) 2.07759 3.59849i 0.0856055 0.148273i
\(590\) 0 0
\(591\) 37.7314 + 2.98122i 1.55206 + 0.122631i
\(592\) 0 0
\(593\) 21.8316i 0.896517i −0.893904 0.448259i \(-0.852044\pi\)
0.893904 0.448259i \(-0.147956\pi\)
\(594\) 0 0
\(595\) 0.884044 + 0.510403i 0.0362423 + 0.0209245i
\(596\) 0 0
\(597\) 2.10224 0.388958i 0.0860391 0.0159190i
\(598\) 0 0
\(599\) 10.8724 + 6.27716i 0.444232 + 0.256478i 0.705391 0.708818i \(-0.250771\pi\)
−0.261159 + 0.965296i \(0.584105\pi\)
\(600\) 0 0
\(601\) −8.80478 15.2503i −0.359155 0.622074i 0.628665 0.777676i \(-0.283602\pi\)
−0.987820 + 0.155602i \(0.950268\pi\)
\(602\) 0 0
\(603\) 0.825952 5.19414i 0.0336354 0.211522i
\(604\) 0 0
\(605\) 1.91329 + 7.14049i 0.0777863 + 0.290302i
\(606\) 0 0
\(607\) −38.0509 10.1957i −1.54444 0.413831i −0.616741 0.787166i \(-0.711547\pi\)
−0.927696 + 0.373336i \(0.878214\pi\)
\(608\) 0 0
\(609\) −1.88893 0.669558i −0.0765431 0.0271319i
\(610\) 0 0
\(611\) −6.07917 22.6878i −0.245937 0.917850i
\(612\) 0 0
\(613\) −11.4577 + 6.61513i −0.462774 + 0.267183i −0.713210 0.700951i \(-0.752759\pi\)
0.250436 + 0.968133i \(0.419426\pi\)
\(614\) 0 0
\(615\) 10.8857 + 12.7535i 0.438953 + 0.514269i
\(616\) 0 0
\(617\) 14.4682 + 25.0597i 0.582468 + 1.00886i 0.995186 + 0.0980057i \(0.0312463\pi\)
−0.412717 + 0.910859i \(0.635420\pi\)
\(618\) 0 0
\(619\) 23.9466i 0.962496i 0.876585 + 0.481248i \(0.159816\pi\)
−0.876585 + 0.481248i \(0.840184\pi\)
\(620\) 0 0
\(621\) −13.0461 21.3336i −0.523523 0.856087i
\(622\) 0 0
\(623\) 1.43438 + 1.43438i 0.0574671 + 0.0574671i
\(624\) 0 0
\(625\) 7.69092 13.3211i 0.307637 0.532843i
\(626\) 0 0
\(627\) 10.2316 + 3.62674i 0.408609 + 0.144838i
\(628\) 0 0
\(629\) −18.8492 + 17.0214i −0.751568 + 0.678687i
\(630\) 0 0
\(631\) −19.0966 5.11693i −0.760225 0.203702i −0.142176 0.989841i \(-0.545410\pi\)
−0.618049 + 0.786140i \(0.712077\pi\)
\(632\) 0 0
\(633\) −5.95738 4.09710i −0.236785 0.162845i
\(634\) 0 0
\(635\) 1.99522 1.99522i 0.0791779 0.0791779i
\(636\) 0 0
\(637\) 10.5006 + 10.5006i 0.416048 + 0.416048i
\(638\) 0 0
\(639\) 1.54649 9.72538i 0.0611783 0.384730i
\(640\) 0 0
\(641\) −6.17813 + 3.56695i −0.244022 + 0.140886i −0.617024 0.786945i \(-0.711662\pi\)
0.373002 + 0.927830i \(0.378328\pi\)
\(642\) 0 0
\(643\) 16.5674 16.5674i 0.653354 0.653354i −0.300445 0.953799i \(-0.597135\pi\)
0.953799 + 0.300445i \(0.0971352\pi\)
\(644\) 0 0
\(645\) 8.87344 4.22906i 0.349391 0.166519i
\(646\) 0 0
\(647\) −13.6620 + 3.66072i −0.537108 + 0.143918i −0.517169 0.855883i \(-0.673014\pi\)
−0.0199395 + 0.999801i \(0.506347\pi\)
\(648\) 0 0
\(649\) −2.15649 0.577829i −0.0846495 0.0226818i
\(650\) 0 0
\(651\) −0.160982 + 0.454155i −0.00630938 + 0.0177997i
\(652\) 0 0
\(653\) −26.2947 + 7.04565i −1.02899 + 0.275717i −0.733544 0.679642i \(-0.762135\pi\)
−0.295447 + 0.955359i \(0.595469\pi\)
\(654\) 0 0
\(655\) 0.332764 0.0130022
\(656\) 0 0
\(657\) 1.51968 0.582275i 0.0592883 0.0227167i
\(658\) 0 0
\(659\) −24.4337 + 42.3204i −0.951802 + 1.64857i −0.210278 + 0.977642i \(0.567437\pi\)
−0.741523 + 0.670927i \(0.765896\pi\)
\(660\) 0 0
\(661\) 7.04581 + 26.2953i 0.274050 + 1.02277i 0.956475 + 0.291814i \(0.0942587\pi\)
−0.682425 + 0.730956i \(0.739075\pi\)
\(662\) 0 0
\(663\) −12.8038 8.80561i −0.497258 0.341982i
\(664\) 0 0
\(665\) −1.08973 −0.0422578
\(666\) 0 0
\(667\) −18.6599 −0.722515
\(668\) 0 0
\(669\) −11.8550 8.15309i −0.458340 0.315217i
\(670\) 0 0
\(671\) −1.09257 4.07752i −0.0421781 0.157411i
\(672\) 0 0
\(673\) −19.3772 + 33.5623i −0.746936 + 1.29373i 0.202349 + 0.979314i \(0.435143\pi\)
−0.949285 + 0.314418i \(0.898191\pi\)
\(674\) 0 0
\(675\) −6.36838 21.5725i −0.245119 0.830325i
\(676\) 0 0
\(677\) 20.2088 0.776688 0.388344 0.921515i \(-0.373047\pi\)
0.388344 + 0.921515i \(0.373047\pi\)
\(678\) 0 0
\(679\) −3.10742 + 0.832631i −0.119252 + 0.0319534i
\(680\) 0 0
\(681\) 13.0187 36.7277i 0.498878 1.40741i
\(682\) 0 0
\(683\) −21.4254 5.74093i −0.819821 0.219670i −0.175553 0.984470i \(-0.556171\pi\)
−0.644268 + 0.764799i \(0.722838\pi\)
\(684\) 0 0
\(685\) 10.9551 2.93542i 0.418574 0.112157i
\(686\) 0 0
\(687\) −14.8315 + 7.06864i −0.565856 + 0.269686i
\(688\) 0 0
\(689\) 11.6492 11.6492i 0.443800 0.443800i
\(690\) 0 0
\(691\) −9.14650 + 5.28074i −0.347949 + 0.200889i −0.663782 0.747926i \(-0.731050\pi\)
0.315832 + 0.948815i \(0.397716\pi\)
\(692\) 0 0
\(693\) −1.24319 0.197686i −0.0472247 0.00750949i
\(694\) 0 0
\(695\) 2.69138 + 2.69138i 0.102090 + 0.102090i
\(696\) 0 0
\(697\) 34.8849 34.8849i 1.32136 1.32136i
\(698\) 0 0
\(699\) 24.1038 + 16.5770i 0.911689 + 0.627000i
\(700\) 0 0
\(701\) −31.0480 8.31929i −1.17267 0.314215i −0.380653 0.924718i \(-0.624301\pi\)
−0.792014 + 0.610503i \(0.790968\pi\)
\(702\) 0 0
\(703\) 8.34074 25.7971i 0.314577 0.972957i
\(704\) 0 0
\(705\) 14.6204 + 5.18243i 0.550636 + 0.195181i
\(706\) 0 0
\(707\) −1.59325 + 2.75959i −0.0599204 + 0.103785i
\(708\) 0 0
\(709\) 18.6822 + 18.6822i 0.701626 + 0.701626i 0.964760 0.263133i \(-0.0847558\pi\)
−0.263133 + 0.964760i \(0.584756\pi\)
\(710\) 0 0
\(711\) 8.51397 + 11.7337i 0.319299 + 0.440047i
\(712\) 0 0
\(713\) 4.48641i 0.168017i
\(714\) 0 0
\(715\) −1.23772 2.14380i −0.0462883 0.0801736i
\(716\) 0 0
\(717\) 11.6786 + 13.6824i 0.436145 + 0.510978i
\(718\) 0 0
\(719\) −6.20481 + 3.58235i −0.231400 + 0.133599i −0.611218 0.791462i \(-0.709320\pi\)
0.379818 + 0.925061i \(0.375987\pi\)
\(720\) 0 0
\(721\) −0.300190 1.12032i −0.0111797 0.0417231i
\(722\) 0 0
\(723\) −1.41107 0.500177i −0.0524784 0.0186018i
\(724\) 0 0
\(725\) −16.2124 4.34409i −0.602112 0.161335i
\(726\) 0 0
\(727\) −3.31953 12.3887i −0.123115 0.459470i 0.876651 0.481127i \(-0.159772\pi\)
−0.999765 + 0.0216571i \(0.993106\pi\)
\(728\) 0 0
\(729\) −24.0345 12.3022i −0.890166 0.455637i
\(730\) 0 0
\(731\) −14.4608 25.0469i −0.534854 0.926394i
\(732\) 0 0
\(733\) 5.32634 + 3.07517i 0.196733 + 0.113584i 0.595131 0.803629i \(-0.297100\pi\)
−0.398398 + 0.917213i \(0.630434\pi\)
\(734\) 0 0
\(735\) −9.64342 + 1.78423i −0.355703 + 0.0658123i
\(736\) 0 0
\(737\) −2.13485 1.23256i −0.0786383 0.0454018i
\(738\) 0 0
\(739\) 21.5878i 0.794122i −0.917792 0.397061i \(-0.870030\pi\)
0.917792 0.397061i \(-0.129970\pi\)
\(740\) 0 0
\(741\) 16.5371 + 1.30663i 0.607507 + 0.0480001i
\(742\) 0 0
\(743\) −0.811485 + 1.40553i −0.0297705 + 0.0515640i −0.880527 0.473996i \(-0.842811\pi\)
0.850756 + 0.525560i \(0.176144\pi\)
\(744\) 0 0
\(745\) 4.33663 1.16200i 0.158882 0.0425722i
\(746\) 0 0
\(747\) 20.4321 + 16.5664i 0.747570 + 0.606133i
\(748\) 0 0
\(749\) −1.60323 + 0.925624i −0.0585807 + 0.0338216i
\(750\) 0 0
\(751\) 32.7253i 1.19416i −0.802180 0.597082i \(-0.796327\pi\)
0.802180 0.597082i \(-0.203673\pi\)
\(752\) 0 0
\(753\) 5.71842 + 30.9070i 0.208391 + 1.12631i
\(754\) 0 0
\(755\) 2.91155 10.8660i 0.105962 0.395456i
\(756\) 0 0
\(757\) −10.9136 + 40.7301i −0.396662 + 1.48036i 0.422270 + 0.906470i \(0.361233\pi\)
−0.818932 + 0.573891i \(0.805433\pi\)
\(758\) 0 0
\(759\) −11.5251 + 2.13237i −0.418334 + 0.0774003i
\(760\) 0 0
\(761\) 21.3210 + 36.9291i 0.772887 + 1.33868i 0.935975 + 0.352068i \(0.114521\pi\)
−0.163088 + 0.986612i \(0.552145\pi\)
\(762\) 0 0
\(763\) 2.82636 + 2.82636i 0.102321 + 0.102321i
\(764\) 0 0
\(765\) 9.58304 3.67181i 0.346476 0.132755i
\(766\) 0 0
\(767\) −3.41170 −0.123190
\(768\) 0 0
\(769\) −21.7401 + 21.7401i −0.783970 + 0.783970i −0.980498 0.196529i \(-0.937033\pi\)
0.196529 + 0.980498i \(0.437033\pi\)
\(770\) 0 0
\(771\) −22.2370 26.0524i −0.800846 0.938255i
\(772\) 0 0
\(773\) 24.2155 + 13.9808i 0.870972 + 0.502856i 0.867671 0.497138i \(-0.165616\pi\)
0.00330113 + 0.999995i \(0.498949\pi\)
\(774\) 0 0
\(775\) −1.04445 + 3.89794i −0.0375177 + 0.140018i
\(776\) 0 0
\(777\) −0.406817 + 3.11753i −0.0145945 + 0.111841i
\(778\) 0 0
\(779\) −13.6308 + 50.8710i −0.488376 + 1.82264i
\(780\) 0 0
\(781\) −3.99724 2.30781i −0.143033 0.0825799i
\(782\) 0 0
\(783\) −17.1883 + 10.5112i −0.614260 + 0.375638i
\(784\) 0 0
\(785\) −9.52243 + 9.52243i −0.339870 + 0.339870i
\(786\) 0 0
\(787\) −49.1038 −1.75036 −0.875180 0.483797i \(-0.839257\pi\)
−0.875180 + 0.483797i \(0.839257\pi\)
\(788\) 0 0
\(789\) −12.8277 + 6.11365i −0.456678 + 0.217652i
\(790\) 0 0
\(791\) −1.23532 1.23532i −0.0439229 0.0439229i
\(792\) 0 0
\(793\) −3.22545 5.58665i −0.114539 0.198388i
\(794\) 0 0
\(795\) 1.97941 + 10.6983i 0.0702023 + 0.379430i
\(796\) 0 0
\(797\) 2.53843 9.47356i 0.0899159 0.335571i −0.906284 0.422670i \(-0.861093\pi\)
0.996200 + 0.0870990i \(0.0277597\pi\)
\(798\) 0 0
\(799\) 11.8125 44.0847i 0.417895 1.55960i
\(800\) 0 0
\(801\) 20.2827 2.11917i 0.716655 0.0748771i
\(802\) 0 0
\(803\) 0.762777i 0.0269178i
\(804\) 0 0
\(805\) 1.01896 0.588298i 0.0359137 0.0207348i
\(806\) 0 0
\(807\) −25.1123 + 36.5145i −0.883994 + 1.28537i
\(808\) 0 0
\(809\) −47.0890 + 12.6175i −1.65556 + 0.443607i −0.961163 0.275983i \(-0.910997\pi\)
−0.694400 + 0.719589i \(0.744330\pi\)
\(810\) 0 0
\(811\) −11.9267 + 20.6576i −0.418803 + 0.725387i −0.995819 0.0913450i \(-0.970883\pi\)
0.577017 + 0.816732i \(0.304217\pi\)
\(812\) 0 0
\(813\) −0.445507 + 5.63850i −0.0156246 + 0.197751i
\(814\) 0 0
\(815\) 7.73553i 0.270964i
\(816\) 0 0
\(817\) 26.7380 + 15.4372i 0.935444 + 0.540079i
\(818\) 0 0
\(819\) −1.91324 + 0.199898i −0.0668540 + 0.00698500i
\(820\) 0 0
\(821\) −9.44861 5.45516i −0.329759 0.190386i 0.325975 0.945378i \(-0.394307\pi\)
−0.655734 + 0.754992i \(0.727641\pi\)
\(822\) 0 0
\(823\) 19.5227 + 33.8144i 0.680520 + 1.17869i 0.974822 + 0.222983i \(0.0715793\pi\)
−0.294303 + 0.955712i \(0.595087\pi\)
\(824\) 0 0
\(825\) −10.5098 0.830395i −0.365904 0.0289107i
\(826\) 0 0
\(827\) 13.4961 + 50.3680i 0.469304 + 1.75147i 0.642212 + 0.766527i \(0.278017\pi\)
−0.172908 + 0.984938i \(0.555316\pi\)
\(828\) 0 0
\(829\) 35.3785 + 9.47963i 1.22874 + 0.329241i 0.814091 0.580738i \(-0.197236\pi\)
0.414654 + 0.909979i \(0.363903\pi\)
\(830\) 0 0
\(831\) −3.39791 + 9.58601i −0.117872 + 0.332535i
\(832\) 0 0
\(833\) 7.46827 + 27.8720i 0.258760 + 0.965707i
\(834\) 0 0
\(835\) 15.6733 9.04897i 0.542396 0.313152i
\(836\) 0 0
\(837\) 2.52720 + 4.13259i 0.0873529 + 0.142843i
\(838\) 0 0
\(839\) 18.0726 + 31.3027i 0.623936 + 1.08069i 0.988745 + 0.149607i \(0.0478010\pi\)
−0.364809 + 0.931082i \(0.618866\pi\)
\(840\) 0 0
\(841\) 13.9658i 0.481581i
\(842\) 0 0
\(843\) 3.94902 + 4.62659i 0.136012 + 0.159348i
\(844\) 0 0
\(845\) 4.85640 + 4.85640i 0.167065 + 0.167065i
\(846\) 0 0
\(847\) 1.34626 2.33179i 0.0462580 0.0801212i
\(848\) 0 0
\(849\) 14.0773 39.7142i 0.483132 1.36299i
\(850\) 0 0
\(851\) 6.12769 + 28.6247i 0.210055 + 0.981243i
\(852\) 0 0
\(853\) 18.7517 + 5.02449i 0.642044 + 0.172035i 0.565129 0.825002i \(-0.308826\pi\)
0.0769151 + 0.997038i \(0.475493\pi\)
\(854\) 0 0
\(855\) −6.89963 + 8.50960i −0.235962 + 0.291022i
\(856\) 0 0
\(857\) 3.80945 3.80945i 0.130128 0.130128i −0.639043 0.769171i \(-0.720669\pi\)
0.769171 + 0.639043i \(0.220669\pi\)
\(858\) 0 0
\(859\) 14.3197 + 14.3197i 0.488582 + 0.488582i 0.907859 0.419276i \(-0.137716\pi\)
−0.419276 + 0.907859i \(0.637716\pi\)
\(860\) 0 0
\(861\) 0.481041 6.08822i 0.0163938 0.207486i
\(862\) 0 0
\(863\) −36.7084 + 21.1936i −1.24957 + 0.721438i −0.971023 0.238985i \(-0.923185\pi\)
−0.278544 + 0.960423i \(0.589852\pi\)
\(864\) 0 0
\(865\) 1.33440 1.33440i 0.0453709 0.0453709i
\(866\) 0 0
\(867\) −0.322669 0.677026i −0.0109584 0.0229930i
\(868\) 0 0
\(869\) 6.56336 1.75865i 0.222647 0.0596580i
\(870\) 0 0
\(871\) −3.63873 0.974994i −0.123294 0.0330364i
\(872\) 0 0
\(873\) −13.1727 + 29.5375i −0.445829 + 0.999691i
\(874\) 0 0
\(875\) 2.20305 0.590306i 0.0744767 0.0199560i
\(876\) 0 0
\(877\) 37.4443 1.26441 0.632203 0.774803i \(-0.282151\pi\)
0.632203 + 0.774803i \(0.282151\pi\)
\(878\) 0 0
\(879\) 6.76894 + 14.2026i 0.228311 + 0.479043i
\(880\) 0 0
\(881\) −21.9509 + 38.0200i −0.739543 + 1.28093i 0.213158 + 0.977018i \(0.431625\pi\)
−0.952701 + 0.303909i \(0.901708\pi\)
\(882\) 0 0
\(883\) −10.2424 38.2251i −0.344684 1.28638i −0.892981 0.450094i \(-0.851390\pi\)
0.548297 0.836284i \(-0.315276\pi\)
\(884\) 0 0
\(885\) 1.27675 1.85646i 0.0429175 0.0624042i
\(886\) 0 0
\(887\) 44.5643 1.49632 0.748161 0.663517i \(-0.230937\pi\)
0.748161 + 0.663517i \(0.230937\pi\)
\(888\) 0 0
\(889\) −1.02773 −0.0344690
\(890\) 0 0
\(891\) −9.41497 + 8.45630i −0.315413 + 0.283297i
\(892\) 0 0
\(893\) 12.6100 + 47.0611i 0.421977 + 1.57484i
\(894\) 0 0
\(895\) −2.91256 + 5.04470i −0.0973560 + 0.168626i
\(896\) 0 0
\(897\) −16.1686 + 7.70593i −0.539855 + 0.257293i
\(898\) 0 0
\(899\) 3.61467 0.120556
\(900\) 0 0
\(901\) 30.9209 8.28522i 1.03012 0.276021i
\(902\) 0 0
\(903\) −3.37453 1.19615i −0.112297 0.0398055i
\(904\) 0 0
\(905\) −1.84109 0.493319i −0.0611999 0.0163985i
\(906\) 0 0
\(907\) −42.7218 + 11.4473i −1.41855 + 0.380100i −0.884971 0.465647i \(-0.845822\pi\)
−0.533584 + 0.845747i \(0.679155\pi\)
\(908\) 0 0
\(909\) 11.4618 + 29.9140i 0.380163 + 0.992185i
\(910\) 0 0
\(911\) 4.93313 4.93313i 0.163442 0.163442i −0.620648 0.784090i \(-0.713130\pi\)
0.784090 + 0.620648i \(0.213130\pi\)
\(912\) 0 0
\(913\) 10.6772 6.16449i 0.353364 0.204015i
\(914\) 0 0
\(915\) 4.24699 + 0.335562i 0.140401 + 0.0110933i
\(916\) 0 0
\(917\) −0.0857029 0.0857029i −0.00283016 0.00283016i
\(918\) 0 0
\(919\) −22.8842 + 22.8842i −0.754881 + 0.754881i −0.975386 0.220505i \(-0.929229\pi\)
0.220505 + 0.975386i \(0.429229\pi\)
\(920\) 0 0
\(921\) 26.2765 38.2074i 0.865841 1.25898i
\(922\) 0 0
\(923\) −6.81306 1.82555i −0.224255 0.0600888i
\(924\) 0 0
\(925\) −1.33999 + 26.2966i −0.0440585 + 0.864628i
\(926\) 0 0
\(927\) −10.6492 4.74919i −0.349765 0.155984i
\(928\) 0 0
\(929\) 3.39347 5.87766i 0.111336 0.192840i −0.804973 0.593311i \(-0.797820\pi\)
0.916309 + 0.400472i \(0.131154\pi\)
\(930\) 0 0
\(931\) −21.7813 21.7813i −0.713853 0.713853i
\(932\) 0 0
\(933\) −38.7209 + 33.0502i −1.26767 + 1.08201i
\(934\) 0 0
\(935\) 4.81005i 0.157305i
\(936\) 0 0
\(937\) 21.5995 + 37.4115i 0.705626 + 1.22218i 0.966465 + 0.256798i \(0.0826676\pi\)
−0.260839 + 0.965382i \(0.583999\pi\)
\(938\) 0 0
\(939\) 10.0546 8.58204i 0.328118 0.280064i
\(940\) 0 0
\(941\) 35.3411 20.4042i 1.15209 0.665158i 0.202692 0.979242i \(-0.435031\pi\)
0.949395 + 0.314085i \(0.101698\pi\)
\(942\) 0 0
\(943\) −14.7174 54.9262i −0.479266 1.78864i
\(944\) 0 0
\(945\) 0.607212 1.11588i 0.0197526 0.0362997i
\(946\) 0 0
\(947\) −22.8777 6.13006i −0.743426 0.199200i −0.132826 0.991139i \(-0.542405\pi\)
−0.610600 + 0.791939i \(0.709072\pi\)
\(948\) 0 0
\(949\) −0.301691 1.12593i −0.00979330 0.0365491i
\(950\) 0 0
\(951\) 4.32414 54.7279i 0.140220 1.77467i
\(952\) 0 0
\(953\) −28.5262 49.4088i −0.924054 1.60051i −0.793075 0.609124i \(-0.791521\pi\)
−0.130979 0.991385i \(-0.541812\pi\)
\(954\) 0 0
\(955\) −0.424282 0.244960i −0.0137295 0.00792670i
\(956\) 0 0
\(957\) 1.71804 + 9.28566i 0.0555363 + 0.300163i
\(958\) 0 0
\(959\) −3.57749 2.06546i −0.115523 0.0666973i
\(960\) 0 0
\(961\) 30.1309i 0.971965i
\(962\) 0 0
\(963\) −2.92273 + 18.3801i −0.0941837 + 0.592291i
\(964\) 0 0
\(965\) 2.89123 5.00776i 0.0930720 0.161205i
\(966\) 0 0
\(967\) −35.8321 + 9.60118i −1.15228 + 0.308753i −0.783880 0.620913i \(-0.786762\pi\)
−0.368403 + 0.929666i \(0.620095\pi\)
\(968\) 0 0
\(969\) 26.5588 + 18.2654i 0.853193 + 0.586770i
\(970\) 0 0
\(971\) 9.59093 5.53733i 0.307788 0.177701i −0.338148 0.941093i \(-0.609801\pi\)
0.645936 + 0.763392i \(0.276467\pi\)
\(972\) 0 0
\(973\) 1.38632i 0.0444435i
\(974\) 0 0
\(975\) −15.8418 + 2.93106i −0.507344 + 0.0938689i
\(976\) 0 0
\(977\) 4.62017 17.2427i 0.147812 0.551643i −0.851802 0.523864i \(-0.824490\pi\)
0.999614 0.0277788i \(-0.00884339\pi\)
\(978\) 0 0
\(979\) 2.47389 9.23269i 0.0790659 0.295078i
\(980\) 0 0
\(981\) 39.9660 4.17571i 1.27602 0.133320i
\(982\) 0 0
\(983\) 20.1423 + 34.8875i 0.642439 + 1.11274i 0.984887 + 0.173200i \(0.0554107\pi\)
−0.342448 + 0.939537i \(0.611256\pi\)
\(984\) 0 0
\(985\) 12.6596 + 12.6596i 0.403369 + 0.403369i
\(986\) 0 0
\(987\) −2.43074 5.10019i −0.0773712 0.162341i
\(988\) 0 0
\(989\) −33.3356 −1.06001
\(990\) 0 0
\(991\) −2.84174 + 2.84174i −0.0902709 + 0.0902709i −0.750800 0.660529i \(-0.770332\pi\)
0.660529 + 0.750800i \(0.270332\pi\)
\(992\) 0 0
\(993\) 13.5536 11.5686i 0.430109 0.367119i
\(994\) 0 0
\(995\) 0.875798 + 0.505642i 0.0277647 + 0.0160299i
\(996\) 0 0
\(997\) −11.5050 + 42.9374i −0.364368 + 1.35984i 0.503908 + 0.863758i \(0.331895\pi\)
−0.868276 + 0.496082i \(0.834771\pi\)
\(998\) 0 0
\(999\) 21.7688 + 22.9155i 0.688734 + 0.725014i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 888.2.br.a.785.8 yes 152
3.2 odd 2 inner 888.2.br.a.785.6 yes 152
37.14 odd 12 inner 888.2.br.a.569.6 152
111.14 even 12 inner 888.2.br.a.569.8 yes 152
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
888.2.br.a.569.6 152 37.14 odd 12 inner
888.2.br.a.569.8 yes 152 111.14 even 12 inner
888.2.br.a.785.6 yes 152 3.2 odd 2 inner
888.2.br.a.785.8 yes 152 1.1 even 1 trivial