L(s) = 1 | + (−1.42 − 0.981i)3-s + (−0.212 − 0.791i)5-s + (−0.149 + 0.258i)7-s + (1.07 + 2.80i)9-s + 1.40·11-s + (2.07 − 0.556i)13-s + (−0.474 + 1.33i)15-s + (4.03 + 1.08i)17-s + (−4.30 + 1.15i)19-s + (0.466 − 0.222i)21-s + (3.40 − 3.40i)23-s + (3.74 − 2.16i)25-s + (1.21 − 5.05i)27-s + (−2.74 − 2.74i)29-s + (−0.659 + 0.659i)31-s + ⋯ |
L(s) = 1 | + (−0.823 − 0.566i)3-s + (−0.0948 − 0.353i)5-s + (−0.0563 + 0.0976i)7-s + (0.357 + 0.933i)9-s + 0.423·11-s + (0.575 − 0.154i)13-s + (−0.122 + 0.345i)15-s + (0.978 + 0.262i)17-s + (−0.987 + 0.264i)19-s + (0.101 − 0.0485i)21-s + (0.709 − 0.709i)23-s + (0.749 − 0.432i)25-s + (0.234 − 0.972i)27-s + (−0.509 − 0.509i)29-s + (−0.118 + 0.118i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 888 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.323 + 0.946i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 888 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.323 + 0.946i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.932729 - 0.666930i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.932729 - 0.666930i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (1.42 + 0.981i)T \) |
| 37 | \( 1 + (3.30 - 5.10i)T \) |
good | 5 | \( 1 + (0.212 + 0.791i)T + (-4.33 + 2.5i)T^{2} \) |
| 7 | \( 1 + (0.149 - 0.258i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 - 1.40T + 11T^{2} \) |
| 13 | \( 1 + (-2.07 + 0.556i)T + (11.2 - 6.5i)T^{2} \) |
| 17 | \( 1 + (-4.03 - 1.08i)T + (14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (4.30 - 1.15i)T + (16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (-3.40 + 3.40i)T - 23iT^{2} \) |
| 29 | \( 1 + (2.74 + 2.74i)T + 29iT^{2} \) |
| 31 | \( 1 + (0.659 - 0.659i)T - 31iT^{2} \) |
| 41 | \( 1 + (-5.90 + 10.2i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (4.89 + 4.89i)T + 43iT^{2} \) |
| 47 | \( 1 + 10.9iT - 47T^{2} \) |
| 53 | \( 1 + (-6.63 + 3.83i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (1.53 + 0.410i)T + (51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (0.777 + 2.89i)T + (-52.8 + 30.5i)T^{2} \) |
| 67 | \( 1 + (1.51 + 0.876i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (2.84 + 1.64i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 0.542iT - 73T^{2} \) |
| 79 | \( 1 + (-4.66 + 1.25i)T + (68.4 - 39.5i)T^{2} \) |
| 83 | \( 1 + (-7.59 + 4.38i)T + (41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-1.75 + 6.56i)T + (-77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (-7.62 - 7.62i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.30050801680302800421703661924, −8.937468468024474010412238320411, −8.309741617155465545144100356853, −7.28351555558119940349528936460, −6.45892552459626531831865804440, −5.68490437175496791938983731357, −4.77314583155875044191777600059, −3.65820144249366712043588433709, −2.05367257210922205383313421129, −0.74391181968017738048426866658,
1.19902680700939438088855879724, 3.11219382164208766520684891188, 4.01731948542766680640832237822, 5.02834141755174273636096608881, 5.95359585183855662576910317697, 6.73791751776090655503901177989, 7.58573197579442707616729426178, 8.886734694343509331237716006672, 9.486376274964251585910394134514, 10.46505279485074921480648483081