Properties

Label 888.2.br.a.569.6
Level $888$
Weight $2$
Character 888.569
Analytic conductor $7.091$
Analytic rank $0$
Dimension $152$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [888,2,Mod(473,888)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(888, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 0, 6, 7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("888.473"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 888 = 2^{3} \cdot 3 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 888.br (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.09071569949\)
Analytic rank: \(0\)
Dimension: \(152\)
Relative dimension: \(38\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 569.6
Character \(\chi\) \(=\) 888.569
Dual form 888.2.br.a.785.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.56355 + 0.745185i) q^{3} +(0.212050 - 0.791381i) q^{5} +(-0.149206 - 0.258432i) q^{7} +(1.88940 - 2.33027i) q^{9} -1.40612 q^{11} +(2.07555 + 0.556143i) q^{13} +(0.258174 + 1.39538i) q^{15} +(-4.03302 + 1.08064i) q^{17} +(-4.30531 - 1.15360i) q^{19} +(0.425871 + 0.292886i) q^{21} +(-3.40295 - 3.40295i) q^{23} +(3.74881 + 2.16438i) q^{25} +(-1.21769 + 5.05146i) q^{27} +(2.74173 - 2.74173i) q^{29} +(-0.659194 - 0.659194i) q^{31} +(2.19854 - 1.04782i) q^{33} +(-0.236157 + 0.0632781i) q^{35} +(-3.30552 - 5.10622i) q^{37} +(-3.65967 + 0.677114i) q^{39} +(-5.90794 - 10.2328i) q^{41} +(-4.89804 + 4.89804i) q^{43} +(-1.44349 - 1.98937i) q^{45} -10.9310i q^{47} +(3.45548 - 5.98506i) q^{49} +(5.50055 - 4.69499i) q^{51} +(-6.63976 - 3.83347i) q^{53} +(-0.298167 + 1.11277i) q^{55} +(7.59123 - 1.40453i) q^{57} +(1.53365 - 0.410939i) q^{59} +(-0.777010 + 2.89984i) q^{61} +(-0.884126 - 0.140590i) q^{63} +(0.880242 - 1.52462i) q^{65} +(-1.51826 + 0.876567i) q^{67} +(7.85652 + 2.78486i) q^{69} +(2.84275 - 1.64126i) q^{71} +0.542470i q^{73} +(-7.47432 - 0.590559i) q^{75} +(0.209801 + 0.363386i) q^{77} +(4.66772 + 1.25071i) q^{79} +(-1.86036 - 8.80563i) q^{81} +(-7.59339 - 4.38405i) q^{83} +3.42080i q^{85} +(-2.24374 + 6.32994i) q^{87} +(-1.75938 - 6.56608i) q^{89} +(-0.165959 - 0.619369i) q^{91} +(1.52191 + 0.539463i) q^{93} +(-1.82588 + 3.16252i) q^{95} +(7.62300 - 7.62300i) q^{97} +(-2.65672 + 3.27664i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 152 q + 4 q^{13} - 12 q^{15} + 4 q^{19} - 44 q^{31} - 12 q^{39} + 28 q^{43} + 20 q^{45} - 80 q^{49} - 12 q^{51} - 8 q^{55} - 40 q^{57} - 28 q^{61} + 48 q^{63} + 56 q^{69} + 64 q^{75} + 20 q^{79} + 16 q^{81}+ \cdots - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/888\mathbb{Z}\right)^\times\).

\(n\) \(223\) \(409\) \(445\) \(593\)
\(\chi(n)\) \(1\) \(e\left(\frac{11}{12}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.56355 + 0.745185i −0.902718 + 0.430233i
\(4\) 0 0
\(5\) 0.212050 0.791381i 0.0948316 0.353916i −0.902162 0.431397i \(-0.858021\pi\)
0.996994 + 0.0774806i \(0.0246876\pi\)
\(6\) 0 0
\(7\) −0.149206 0.258432i −0.0563945 0.0976781i 0.836450 0.548043i \(-0.184627\pi\)
−0.892844 + 0.450365i \(0.851294\pi\)
\(8\) 0 0
\(9\) 1.88940 2.33027i 0.629799 0.776758i
\(10\) 0 0
\(11\) −1.40612 −0.423961 −0.211980 0.977274i \(-0.567991\pi\)
−0.211980 + 0.977274i \(0.567991\pi\)
\(12\) 0 0
\(13\) 2.07555 + 0.556143i 0.575655 + 0.154246i 0.534889 0.844922i \(-0.320353\pi\)
0.0407662 + 0.999169i \(0.487020\pi\)
\(14\) 0 0
\(15\) 0.258174 + 1.39538i 0.0666603 + 0.360286i
\(16\) 0 0
\(17\) −4.03302 + 1.08064i −0.978150 + 0.262094i −0.712265 0.701910i \(-0.752331\pi\)
−0.265885 + 0.964005i \(0.585664\pi\)
\(18\) 0 0
\(19\) −4.30531 1.15360i −0.987706 0.264655i −0.271419 0.962461i \(-0.587493\pi\)
−0.716287 + 0.697806i \(0.754160\pi\)
\(20\) 0 0
\(21\) 0.425871 + 0.292886i 0.0929326 + 0.0639130i
\(22\) 0 0
\(23\) −3.40295 3.40295i −0.709564 0.709564i 0.256880 0.966443i \(-0.417306\pi\)
−0.966443 + 0.256880i \(0.917306\pi\)
\(24\) 0 0
\(25\) 3.74881 + 2.16438i 0.749762 + 0.432875i
\(26\) 0 0
\(27\) −1.21769 + 5.05146i −0.234344 + 0.972154i
\(28\) 0 0
\(29\) 2.74173 2.74173i 0.509126 0.509126i −0.405132 0.914258i \(-0.632774\pi\)
0.914258 + 0.405132i \(0.132774\pi\)
\(30\) 0 0
\(31\) −0.659194 0.659194i −0.118395 0.118395i 0.645427 0.763822i \(-0.276679\pi\)
−0.763822 + 0.645427i \(0.776679\pi\)
\(32\) 0 0
\(33\) 2.19854 1.04782i 0.382717 0.182402i
\(34\) 0 0
\(35\) −0.236157 + 0.0632781i −0.0399178 + 0.0106959i
\(36\) 0 0
\(37\) −3.30552 5.10622i −0.543425 0.839458i
\(38\) 0 0
\(39\) −3.65967 + 0.677114i −0.586016 + 0.108425i
\(40\) 0 0
\(41\) −5.90794 10.2328i −0.922665 1.59810i −0.795275 0.606249i \(-0.792673\pi\)
−0.127390 0.991853i \(-0.540660\pi\)
\(42\) 0 0
\(43\) −4.89804 + 4.89804i −0.746945 + 0.746945i −0.973904 0.226960i \(-0.927121\pi\)
0.226960 + 0.973904i \(0.427121\pi\)
\(44\) 0 0
\(45\) −1.44349 1.98937i −0.215182 0.296557i
\(46\) 0 0
\(47\) 10.9310i 1.59444i −0.603687 0.797222i \(-0.706302\pi\)
0.603687 0.797222i \(-0.293698\pi\)
\(48\) 0 0
\(49\) 3.45548 5.98506i 0.493639 0.855008i
\(50\) 0 0
\(51\) 5.50055 4.69499i 0.770232 0.657430i
\(52\) 0 0
\(53\) −6.63976 3.83347i −0.912041 0.526567i −0.0309539 0.999521i \(-0.509855\pi\)
−0.881087 + 0.472954i \(0.843188\pi\)
\(54\) 0 0
\(55\) −0.298167 + 1.11277i −0.0402048 + 0.150047i
\(56\) 0 0
\(57\) 7.59123 1.40453i 1.00548 0.186035i
\(58\) 0 0
\(59\) 1.53365 0.410939i 0.199664 0.0534997i −0.157601 0.987503i \(-0.550376\pi\)
0.357265 + 0.934003i \(0.383709\pi\)
\(60\) 0 0
\(61\) −0.777010 + 2.89984i −0.0994859 + 0.371287i −0.997661 0.0683507i \(-0.978226\pi\)
0.898175 + 0.439637i \(0.144893\pi\)
\(62\) 0 0
\(63\) −0.884126 0.140590i −0.111389 0.0177127i
\(64\) 0 0
\(65\) 0.880242 1.52462i 0.109181 0.189106i
\(66\) 0 0
\(67\) −1.51826 + 0.876567i −0.185485 + 0.107090i −0.589867 0.807500i \(-0.700820\pi\)
0.404382 + 0.914590i \(0.367487\pi\)
\(68\) 0 0
\(69\) 7.85652 + 2.78486i 0.945813 + 0.335258i
\(70\) 0 0
\(71\) 2.84275 1.64126i 0.337372 0.194782i −0.321737 0.946829i \(-0.604267\pi\)
0.659109 + 0.752047i \(0.270933\pi\)
\(72\) 0 0
\(73\) 0.542470i 0.0634913i 0.999496 + 0.0317457i \(0.0101067\pi\)
−0.999496 + 0.0317457i \(0.989893\pi\)
\(74\) 0 0
\(75\) −7.47432 0.590559i −0.863061 0.0681919i
\(76\) 0 0
\(77\) 0.209801 + 0.363386i 0.0239090 + 0.0414116i
\(78\) 0 0
\(79\) 4.66772 + 1.25071i 0.525159 + 0.140716i 0.511652 0.859193i \(-0.329034\pi\)
0.0135071 + 0.999909i \(0.495700\pi\)
\(80\) 0 0
\(81\) −1.86036 8.80563i −0.206706 0.978403i
\(82\) 0 0
\(83\) −7.59339 4.38405i −0.833483 0.481212i 0.0215608 0.999768i \(-0.493136\pi\)
−0.855044 + 0.518556i \(0.826470\pi\)
\(84\) 0 0
\(85\) 3.42080i 0.371038i
\(86\) 0 0
\(87\) −2.24374 + 6.32994i −0.240554 + 0.678640i
\(88\) 0 0
\(89\) −1.75938 6.56608i −0.186494 0.696004i −0.994306 0.106564i \(-0.966015\pi\)
0.807812 0.589440i \(-0.200651\pi\)
\(90\) 0 0
\(91\) −0.165959 0.619369i −0.0173973 0.0649275i
\(92\) 0 0
\(93\) 1.52191 + 0.539463i 0.157814 + 0.0559398i
\(94\) 0 0
\(95\) −1.82588 + 3.16252i −0.187331 + 0.324467i
\(96\) 0 0
\(97\) 7.62300 7.62300i 0.773998 0.773998i −0.204805 0.978803i \(-0.565656\pi\)
0.978803 + 0.204805i \(0.0656559\pi\)
\(98\) 0 0
\(99\) −2.65672 + 3.27664i −0.267010 + 0.329315i
\(100\) 0 0
\(101\) −10.6782 −1.06252 −0.531261 0.847208i \(-0.678282\pi\)
−0.531261 + 0.847208i \(0.678282\pi\)
\(102\) 0 0
\(103\) −2.74833 2.74833i −0.270801 0.270801i 0.558621 0.829423i \(-0.311330\pi\)
−0.829423 + 0.558621i \(0.811330\pi\)
\(104\) 0 0
\(105\) 0.322090 0.274919i 0.0314328 0.0268294i
\(106\) 0 0
\(107\) −5.37254 + 3.10184i −0.519383 + 0.299866i −0.736682 0.676239i \(-0.763609\pi\)
0.217299 + 0.976105i \(0.430275\pi\)
\(108\) 0 0
\(109\) 3.46676 + 12.9381i 0.332055 + 1.23925i 0.907026 + 0.421074i \(0.138347\pi\)
−0.574971 + 0.818174i \(0.694987\pi\)
\(110\) 0 0
\(111\) 8.97344 + 5.52062i 0.851722 + 0.523995i
\(112\) 0 0
\(113\) 1.51522 + 5.65487i 0.142540 + 0.531965i 0.999853 + 0.0171696i \(0.00546551\pi\)
−0.857313 + 0.514796i \(0.827868\pi\)
\(114\) 0 0
\(115\) −3.41462 + 1.97143i −0.318415 + 0.183837i
\(116\) 0 0
\(117\) 5.21751 3.78584i 0.482359 0.350001i
\(118\) 0 0
\(119\) 0.881022 + 0.881022i 0.0807631 + 0.0807631i
\(120\) 0 0
\(121\) −9.02283 −0.820257
\(122\) 0 0
\(123\) 16.8627 + 11.5971i 1.52046 + 1.04567i
\(124\) 0 0
\(125\) 5.40443 5.40443i 0.483387 0.483387i
\(126\) 0 0
\(127\) 1.72200 2.98260i 0.152803 0.264663i −0.779454 0.626460i \(-0.784503\pi\)
0.932257 + 0.361797i \(0.117837\pi\)
\(128\) 0 0
\(129\) 4.00840 11.3083i 0.352920 0.995641i
\(130\) 0 0
\(131\) 0.105122 + 0.392319i 0.00918451 + 0.0342771i 0.970366 0.241640i \(-0.0776852\pi\)
−0.961182 + 0.275917i \(0.911019\pi\)
\(132\) 0 0
\(133\) 0.344249 + 1.28475i 0.0298501 + 0.111402i
\(134\) 0 0
\(135\) 3.73942 + 2.03481i 0.321838 + 0.175129i
\(136\) 0 0
\(137\) 13.8431i 1.18269i 0.806418 + 0.591346i \(0.201403\pi\)
−0.806418 + 0.591346i \(0.798597\pi\)
\(138\) 0 0
\(139\) −4.02327 2.32284i −0.341250 0.197021i 0.319575 0.947561i \(-0.396460\pi\)
−0.660825 + 0.750540i \(0.729793\pi\)
\(140\) 0 0
\(141\) 8.14559 + 17.0911i 0.685982 + 1.43933i
\(142\) 0 0
\(143\) −2.91847 0.782003i −0.244055 0.0653944i
\(144\) 0 0
\(145\) −1.58837 2.75113i −0.131907 0.228469i
\(146\) 0 0
\(147\) −0.942841 + 11.9329i −0.0777642 + 0.984211i
\(148\) 0 0
\(149\) 5.47982i 0.448925i 0.974483 + 0.224462i \(0.0720626\pi\)
−0.974483 + 0.224462i \(0.927937\pi\)
\(150\) 0 0
\(151\) 11.8910 6.86525i 0.967672 0.558686i 0.0691465 0.997607i \(-0.477972\pi\)
0.898526 + 0.438921i \(0.144639\pi\)
\(152\) 0 0
\(153\) −5.10177 + 11.4398i −0.412454 + 0.924853i
\(154\) 0 0
\(155\) −0.661456 + 0.381892i −0.0531294 + 0.0306743i
\(156\) 0 0
\(157\) −8.21847 + 14.2348i −0.655906 + 1.13606i 0.325760 + 0.945452i \(0.394380\pi\)
−0.981666 + 0.190609i \(0.938954\pi\)
\(158\) 0 0
\(159\) 13.2383 + 1.04598i 1.04986 + 0.0829514i
\(160\) 0 0
\(161\) −0.371691 + 1.38717i −0.0292933 + 0.109324i
\(162\) 0 0
\(163\) 9.11995 2.44368i 0.714329 0.191404i 0.116689 0.993168i \(-0.462772\pi\)
0.597640 + 0.801764i \(0.296105\pi\)
\(164\) 0 0
\(165\) −0.363023 1.96207i −0.0282613 0.152747i
\(166\) 0 0
\(167\) −5.71720 + 21.3369i −0.442410 + 1.65110i 0.280274 + 0.959920i \(0.409575\pi\)
−0.722684 + 0.691178i \(0.757092\pi\)
\(168\) 0 0
\(169\) −7.25970 4.19139i −0.558438 0.322415i
\(170\) 0 0
\(171\) −10.8227 + 7.85294i −0.827629 + 0.600529i
\(172\) 0 0
\(173\) −1.15167 + 1.99475i −0.0875600 + 0.151658i −0.906479 0.422250i \(-0.861240\pi\)
0.818919 + 0.573909i \(0.194574\pi\)
\(174\) 0 0
\(175\) 1.29175i 0.0976470i
\(176\) 0 0
\(177\) −2.09171 + 1.78538i −0.157223 + 0.134197i
\(178\) 0 0
\(179\) 5.02745 5.02745i 0.375769 0.375769i −0.493804 0.869573i \(-0.664394\pi\)
0.869573 + 0.493804i \(0.164394\pi\)
\(180\) 0 0
\(181\) 1.16321 + 2.01475i 0.0864610 + 0.149755i 0.906013 0.423250i \(-0.139111\pi\)
−0.819552 + 0.573005i \(0.805778\pi\)
\(182\) 0 0
\(183\) −0.946023 5.11307i −0.0699320 0.377969i
\(184\) 0 0
\(185\) −4.74190 + 1.53315i −0.348632 + 0.112720i
\(186\) 0 0
\(187\) 5.67090 1.51951i 0.414697 0.111118i
\(188\) 0 0
\(189\) 1.48714 0.439018i 0.108174 0.0319338i
\(190\) 0 0
\(191\) −0.422832 0.422832i −0.0305950 0.0305950i 0.691644 0.722239i \(-0.256887\pi\)
−0.722239 + 0.691644i \(0.756887\pi\)
\(192\) 0 0
\(193\) 4.99064 4.99064i 0.359234 0.359234i −0.504297 0.863531i \(-0.668248\pi\)
0.863531 + 0.504297i \(0.168248\pi\)
\(194\) 0 0
\(195\) −0.240178 + 3.03977i −0.0171995 + 0.217683i
\(196\) 0 0
\(197\) 18.9245 + 10.9261i 1.34831 + 0.778450i 0.988011 0.154386i \(-0.0493398\pi\)
0.360303 + 0.932835i \(0.382673\pi\)
\(198\) 0 0
\(199\) −0.872803 0.872803i −0.0618714 0.0618714i 0.675494 0.737365i \(-0.263930\pi\)
−0.737365 + 0.675494i \(0.763930\pi\)
\(200\) 0 0
\(201\) 1.72067 2.50194i 0.121367 0.176474i
\(202\) 0 0
\(203\) −1.11763 0.299469i −0.0784424 0.0210186i
\(204\) 0 0
\(205\) −9.35085 + 2.50555i −0.653092 + 0.174995i
\(206\) 0 0
\(207\) −14.3593 + 1.50028i −0.998042 + 0.104277i
\(208\) 0 0
\(209\) 6.05377 + 1.62210i 0.418748 + 0.112203i
\(210\) 0 0
\(211\) 4.17439 0.287377 0.143688 0.989623i \(-0.454104\pi\)
0.143688 + 0.989623i \(0.454104\pi\)
\(212\) 0 0
\(213\) −3.22175 + 4.68458i −0.220750 + 0.320982i
\(214\) 0 0
\(215\) 2.83759 + 4.91485i 0.193522 + 0.335190i
\(216\) 0 0
\(217\) −0.0720013 + 0.268712i −0.00488776 + 0.0182414i
\(218\) 0 0
\(219\) −0.404241 0.848181i −0.0273161 0.0573147i
\(220\) 0 0
\(221\) −8.97174 −0.603504
\(222\) 0 0
\(223\) 8.30690 0.556271 0.278136 0.960542i \(-0.410284\pi\)
0.278136 + 0.960542i \(0.410284\pi\)
\(224\) 0 0
\(225\) 12.1266 4.64639i 0.808439 0.309759i
\(226\) 0 0
\(227\) −5.82278 + 21.7309i −0.386472 + 1.44233i 0.449362 + 0.893350i \(0.351651\pi\)
−0.835834 + 0.548983i \(0.815015\pi\)
\(228\) 0 0
\(229\) 4.74287 + 8.21490i 0.313418 + 0.542856i 0.979100 0.203380i \(-0.0651926\pi\)
−0.665682 + 0.746236i \(0.731859\pi\)
\(230\) 0 0
\(231\) −0.598825 0.411832i −0.0393998 0.0270966i
\(232\) 0 0
\(233\) 16.8897 1.10648 0.553242 0.833021i \(-0.313390\pi\)
0.553242 + 0.833021i \(0.313390\pi\)
\(234\) 0 0
\(235\) −8.65054 2.31791i −0.564299 0.151204i
\(236\) 0 0
\(237\) −8.23023 + 1.52276i −0.534611 + 0.0989140i
\(238\) 0 0
\(239\) 10.0320 2.68805i 0.648913 0.173876i 0.0806757 0.996740i \(-0.474292\pi\)
0.568237 + 0.822865i \(0.307626\pi\)
\(240\) 0 0
\(241\) 0.834899 + 0.223710i 0.0537806 + 0.0144105i 0.285609 0.958346i \(-0.407804\pi\)
−0.231828 + 0.972757i \(0.574471\pi\)
\(242\) 0 0
\(243\) 9.47059 + 12.3818i 0.607539 + 0.794290i
\(244\) 0 0
\(245\) −4.00373 4.00373i −0.255789 0.255789i
\(246\) 0 0
\(247\) −8.29433 4.78874i −0.527756 0.304700i
\(248\) 0 0
\(249\) 15.1396 + 1.19620i 0.959433 + 0.0758064i
\(250\) 0 0
\(251\) 12.8319 12.8319i 0.809941 0.809941i −0.174684 0.984625i \(-0.555890\pi\)
0.984625 + 0.174684i \(0.0558904\pi\)
\(252\) 0 0
\(253\) 4.78495 + 4.78495i 0.300827 + 0.300827i
\(254\) 0 0
\(255\) −2.54913 5.34860i −0.159633 0.334943i
\(256\) 0 0
\(257\) −19.1017 + 5.11828i −1.19153 + 0.319270i −0.799491 0.600679i \(-0.794897\pi\)
−0.392040 + 0.919948i \(0.628230\pi\)
\(258\) 0 0
\(259\) −0.826408 + 1.61613i −0.0513505 + 0.100421i
\(260\) 0 0
\(261\) −1.20877 11.5692i −0.0748207 0.716115i
\(262\) 0 0
\(263\) −4.10210 7.10505i −0.252946 0.438116i 0.711389 0.702798i \(-0.248066\pi\)
−0.964336 + 0.264682i \(0.914733\pi\)
\(264\) 0 0
\(265\) −4.44169 + 4.44169i −0.272851 + 0.272851i
\(266\) 0 0
\(267\) 7.64383 + 8.95536i 0.467795 + 0.548059i
\(268\) 0 0
\(269\) 25.5860i 1.56001i −0.625775 0.780004i \(-0.715217\pi\)
0.625775 0.780004i \(-0.284783\pi\)
\(270\) 0 0
\(271\) −1.63277 + 2.82804i −0.0991836 + 0.171791i −0.911347 0.411639i \(-0.864956\pi\)
0.812163 + 0.583430i \(0.198290\pi\)
\(272\) 0 0
\(273\) 0.721031 + 0.844746i 0.0436388 + 0.0511264i
\(274\) 0 0
\(275\) −5.27127 3.04337i −0.317869 0.183522i
\(276\) 0 0
\(277\) −1.51976 + 5.67181i −0.0913134 + 0.340786i −0.996435 0.0843671i \(-0.973113\pi\)
0.905121 + 0.425153i \(0.139780\pi\)
\(278\) 0 0
\(279\) −2.78158 + 0.290624i −0.166529 + 0.0173992i
\(280\) 0 0
\(281\) 3.39223 0.908944i 0.202363 0.0542231i −0.156214 0.987723i \(-0.549929\pi\)
0.358577 + 0.933500i \(0.383262\pi\)
\(282\) 0 0
\(283\) 6.29626 23.4980i 0.374274 1.39681i −0.480130 0.877198i \(-0.659410\pi\)
0.854403 0.519611i \(-0.173923\pi\)
\(284\) 0 0
\(285\) 0.498199 6.30538i 0.0295108 0.373499i
\(286\) 0 0
\(287\) −1.76300 + 3.05360i −0.104066 + 0.180248i
\(288\) 0 0
\(289\) 0.374993 0.216503i 0.0220584 0.0127354i
\(290\) 0 0
\(291\) −6.23842 + 17.5995i −0.365702 + 1.03170i
\(292\) 0 0
\(293\) 7.86659 4.54178i 0.459571 0.265334i −0.252293 0.967651i \(-0.581185\pi\)
0.711864 + 0.702317i \(0.247851\pi\)
\(294\) 0 0
\(295\) 1.30084i 0.0757376i
\(296\) 0 0
\(297\) 1.71221 7.10295i 0.0993526 0.412155i
\(298\) 0 0
\(299\) −5.17048 8.95553i −0.299016 0.517912i
\(300\) 0 0
\(301\) 1.99663 + 0.534994i 0.115084 + 0.0308366i
\(302\) 0 0
\(303\) 16.6960 7.95725i 0.959158 0.457132i
\(304\) 0 0
\(305\) 2.13011 + 1.22982i 0.121970 + 0.0704194i
\(306\) 0 0
\(307\) 26.7723i 1.52797i −0.645232 0.763987i \(-0.723239\pi\)
0.645232 0.763987i \(-0.276761\pi\)
\(308\) 0 0
\(309\) 6.34519 + 2.24915i 0.360965 + 0.127950i
\(310\) 0 0
\(311\) −7.60714 28.3902i −0.431361 1.60986i −0.749627 0.661861i \(-0.769767\pi\)
0.318265 0.948002i \(-0.396900\pi\)
\(312\) 0 0
\(313\) −1.97533 7.37201i −0.111652 0.416691i 0.887363 0.461072i \(-0.152535\pi\)
−0.999015 + 0.0443812i \(0.985868\pi\)
\(314\) 0 0
\(315\) −0.298739 + 0.669868i −0.0168320 + 0.0377428i
\(316\) 0 0
\(317\) −15.8478 + 27.4492i −0.890103 + 1.54170i −0.0503515 + 0.998732i \(0.516034\pi\)
−0.839751 + 0.542971i \(0.817299\pi\)
\(318\) 0 0
\(319\) −3.85520 + 3.85520i −0.215850 + 0.215850i
\(320\) 0 0
\(321\) 6.08881 8.85343i 0.339844 0.494150i
\(322\) 0 0
\(323\) 18.6100 1.03549
\(324\) 0 0
\(325\) 6.57715 + 6.57715i 0.364835 + 0.364835i
\(326\) 0 0
\(327\) −15.0618 17.6461i −0.832917 0.975829i
\(328\) 0 0
\(329\) −2.82491 + 1.63096i −0.155742 + 0.0899178i
\(330\) 0 0
\(331\) −2.66274 9.93749i −0.146358 0.546214i −0.999691 0.0248487i \(-0.992090\pi\)
0.853334 0.521365i \(-0.174577\pi\)
\(332\) 0 0
\(333\) −18.1443 1.94491i −0.994304 0.106580i
\(334\) 0 0
\(335\) 0.371752 + 1.38740i 0.0203110 + 0.0758016i
\(336\) 0 0
\(337\) 12.1148 6.99446i 0.659933 0.381013i −0.132318 0.991207i \(-0.542242\pi\)
0.792251 + 0.610195i \(0.208909\pi\)
\(338\) 0 0
\(339\) −6.58305 7.71257i −0.357542 0.418889i
\(340\) 0 0
\(341\) 0.926905 + 0.926905i 0.0501947 + 0.0501947i
\(342\) 0 0
\(343\) −4.15119 −0.224143
\(344\) 0 0
\(345\) 3.86986 5.62697i 0.208346 0.302946i
\(346\) 0 0
\(347\) −11.0258 + 11.0258i −0.591895 + 0.591895i −0.938143 0.346248i \(-0.887456\pi\)
0.346248 + 0.938143i \(0.387456\pi\)
\(348\) 0 0
\(349\) −17.1968 + 29.7857i −0.920522 + 1.59439i −0.121913 + 0.992541i \(0.538903\pi\)
−0.798609 + 0.601850i \(0.794431\pi\)
\(350\) 0 0
\(351\) −5.33671 + 9.80737i −0.284852 + 0.523479i
\(352\) 0 0
\(353\) −4.29977 16.0470i −0.228854 0.854093i −0.980824 0.194896i \(-0.937563\pi\)
0.751970 0.659197i \(-0.229104\pi\)
\(354\) 0 0
\(355\) −0.696059 2.59773i −0.0369430 0.137873i
\(356\) 0 0
\(357\) −2.03405 0.721000i −0.107653 0.0381593i
\(358\) 0 0
\(359\) 11.4435i 0.603967i −0.953313 0.301983i \(-0.902351\pi\)
0.953313 0.301983i \(-0.0976487\pi\)
\(360\) 0 0
\(361\) 0.750403 + 0.433245i 0.0394949 + 0.0228024i
\(362\) 0 0
\(363\) 14.1077 6.72368i 0.740461 0.352902i
\(364\) 0 0
\(365\) 0.429300 + 0.115031i 0.0224706 + 0.00602098i
\(366\) 0 0
\(367\) 15.7524 + 27.2839i 0.822267 + 1.42421i 0.903990 + 0.427554i \(0.140625\pi\)
−0.0817226 + 0.996655i \(0.526042\pi\)
\(368\) 0 0
\(369\) −35.0078 5.56680i −1.82243 0.289796i
\(370\) 0 0
\(371\) 2.28790i 0.118782i
\(372\) 0 0
\(373\) −24.4872 + 14.1377i −1.26790 + 0.732021i −0.974590 0.223997i \(-0.928089\pi\)
−0.293308 + 0.956018i \(0.594756\pi\)
\(374\) 0 0
\(375\) −4.42281 + 12.4774i −0.228393 + 0.644331i
\(376\) 0 0
\(377\) 7.21540 4.16581i 0.371612 0.214550i
\(378\) 0 0
\(379\) 16.7954 29.0905i 0.862721 1.49428i −0.00657182 0.999978i \(-0.502092\pi\)
0.869293 0.494298i \(-0.164575\pi\)
\(380\) 0 0
\(381\) −0.469856 + 5.94667i −0.0240714 + 0.304657i
\(382\) 0 0
\(383\) −5.84657 + 21.8197i −0.298746 + 1.11493i 0.639451 + 0.768832i \(0.279162\pi\)
−0.938197 + 0.346103i \(0.887505\pi\)
\(384\) 0 0
\(385\) 0.332065 0.0889765i 0.0169236 0.00453466i
\(386\) 0 0
\(387\) 2.15944 + 20.6681i 0.109770 + 1.05062i
\(388\) 0 0
\(389\) −2.21911 + 8.28182i −0.112513 + 0.419905i −0.999089 0.0426787i \(-0.986411\pi\)
0.886576 + 0.462584i \(0.153077\pi\)
\(390\) 0 0
\(391\) 17.4015 + 10.0468i 0.880032 + 0.508087i
\(392\) 0 0
\(393\) −0.456713 0.535076i −0.0230381 0.0269910i
\(394\) 0 0
\(395\) 1.97958 3.42873i 0.0996033 0.172518i
\(396\) 0 0
\(397\) 21.3332i 1.07068i 0.844636 + 0.535342i \(0.179817\pi\)
−0.844636 + 0.535342i \(0.820183\pi\)
\(398\) 0 0
\(399\) −1.49563 1.75225i −0.0748752 0.0877223i
\(400\) 0 0
\(401\) 27.1195 27.1195i 1.35428 1.35428i 0.473480 0.880804i \(-0.342997\pi\)
0.880804 0.473480i \(-0.157003\pi\)
\(402\) 0 0
\(403\) −1.00159 1.73480i −0.0498926 0.0864166i
\(404\) 0 0
\(405\) −7.36309 0.394981i −0.365875 0.0196268i
\(406\) 0 0
\(407\) 4.64796 + 7.17995i 0.230391 + 0.355897i
\(408\) 0 0
\(409\) 9.39205 2.51659i 0.464407 0.124437i −0.0190257 0.999819i \(-0.506056\pi\)
0.483433 + 0.875382i \(0.339390\pi\)
\(410\) 0 0
\(411\) −10.3156 21.6444i −0.508833 1.06764i
\(412\) 0 0
\(413\) −0.335028 0.335028i −0.0164857 0.0164857i
\(414\) 0 0
\(415\) −5.07963 + 5.07963i −0.249349 + 0.249349i
\(416\) 0 0
\(417\) 8.02155 + 0.633796i 0.392817 + 0.0310371i
\(418\) 0 0
\(419\) 12.0661 + 6.96639i 0.589469 + 0.340330i 0.764888 0.644164i \(-0.222794\pi\)
−0.175418 + 0.984494i \(0.556128\pi\)
\(420\) 0 0
\(421\) −24.6291 24.6291i −1.20035 1.20035i −0.974060 0.226291i \(-0.927340\pi\)
−0.226291 0.974060i \(-0.572660\pi\)
\(422\) 0 0
\(423\) −25.4721 20.6529i −1.23850 1.00418i
\(424\) 0 0
\(425\) −17.4579 4.67784i −0.846834 0.226908i
\(426\) 0 0
\(427\) 0.865346 0.231869i 0.0418770 0.0112209i
\(428\) 0 0
\(429\) 5.14593 0.952102i 0.248448 0.0459679i
\(430\) 0 0
\(431\) 28.8429 + 7.72842i 1.38931 + 0.372265i 0.874495 0.485035i \(-0.161193\pi\)
0.514817 + 0.857300i \(0.327860\pi\)
\(432\) 0 0
\(433\) −15.7590 −0.757329 −0.378665 0.925534i \(-0.623617\pi\)
−0.378665 + 0.925534i \(0.623617\pi\)
\(434\) 0 0
\(435\) 4.53360 + 3.11792i 0.217370 + 0.149493i
\(436\) 0 0
\(437\) 10.7251 + 18.5764i 0.513050 + 0.888630i
\(438\) 0 0
\(439\) −0.284234 + 1.06078i −0.0135658 + 0.0506281i −0.972377 0.233416i \(-0.925010\pi\)
0.958811 + 0.284044i \(0.0916762\pi\)
\(440\) 0 0
\(441\) −7.41806 19.3604i −0.353241 0.921922i
\(442\) 0 0
\(443\) −27.6138 −1.31197 −0.655985 0.754774i \(-0.727747\pi\)
−0.655985 + 0.754774i \(0.727747\pi\)
\(444\) 0 0
\(445\) −5.56935 −0.264012
\(446\) 0 0
\(447\) −4.08349 8.56800i −0.193142 0.405252i
\(448\) 0 0
\(449\) −7.02491 + 26.2173i −0.331526 + 1.23727i 0.576061 + 0.817407i \(0.304589\pi\)
−0.907587 + 0.419865i \(0.862078\pi\)
\(450\) 0 0
\(451\) 8.30726 + 14.3886i 0.391173 + 0.677532i
\(452\) 0 0
\(453\) −13.4763 + 19.5951i −0.633170 + 0.920660i
\(454\) 0 0
\(455\) −0.525348 −0.0246287
\(456\) 0 0
\(457\) 13.4969 + 3.61649i 0.631359 + 0.169172i 0.560286 0.828299i \(-0.310691\pi\)
0.0710728 + 0.997471i \(0.477358\pi\)
\(458\) 0 0
\(459\) −0.547877 21.6885i −0.0255727 1.01233i
\(460\) 0 0
\(461\) 7.45297 1.99702i 0.347120 0.0930104i −0.0810469 0.996710i \(-0.525826\pi\)
0.428166 + 0.903700i \(0.359160\pi\)
\(462\) 0 0
\(463\) 3.20406 + 0.858525i 0.148905 + 0.0398990i 0.332502 0.943103i \(-0.392107\pi\)
−0.183596 + 0.983002i \(0.558774\pi\)
\(464\) 0 0
\(465\) 0.749641 1.09002i 0.0347638 0.0505482i
\(466\) 0 0
\(467\) −6.52807 6.52807i −0.302083 0.302083i 0.539745 0.841828i \(-0.318521\pi\)
−0.841828 + 0.539745i \(0.818521\pi\)
\(468\) 0 0
\(469\) 0.453066 + 0.261578i 0.0209206 + 0.0120785i
\(470\) 0 0
\(471\) 2.24244 28.3812i 0.103326 1.30774i
\(472\) 0 0
\(473\) 6.88723 6.88723i 0.316675 0.316675i
\(474\) 0 0
\(475\) −13.6429 13.6429i −0.625981 0.625981i
\(476\) 0 0
\(477\) −21.4782 + 8.22952i −0.983418 + 0.376804i
\(478\) 0 0
\(479\) −15.0944 + 4.04453i −0.689680 + 0.184799i −0.586604 0.809874i \(-0.699535\pi\)
−0.103077 + 0.994673i \(0.532869\pi\)
\(480\) 0 0
\(481\) −4.02100 12.4366i −0.183342 0.567060i
\(482\) 0 0
\(483\) −0.452540 2.44589i −0.0205913 0.111292i
\(484\) 0 0
\(485\) −4.41624 7.64915i −0.200531 0.347330i
\(486\) 0 0
\(487\) 8.22774 8.22774i 0.372834 0.372834i −0.495674 0.868509i \(-0.665079\pi\)
0.868509 + 0.495674i \(0.165079\pi\)
\(488\) 0 0
\(489\) −12.4385 + 10.6169i −0.562490 + 0.480112i
\(490\) 0 0
\(491\) 14.8640i 0.670802i −0.942076 0.335401i \(-0.891128\pi\)
0.942076 0.335401i \(-0.108872\pi\)
\(492\) 0 0
\(493\) −8.09461 + 14.0203i −0.364563 + 0.631441i
\(494\) 0 0
\(495\) 2.02971 + 2.79728i 0.0912289 + 0.125729i
\(496\) 0 0
\(497\) −0.848309 0.489771i −0.0380519 0.0219693i
\(498\) 0 0
\(499\) 6.32351 23.5997i 0.283079 1.05647i −0.667152 0.744921i \(-0.732487\pi\)
0.950232 0.311545i \(-0.100846\pi\)
\(500\) 0 0
\(501\) −6.96079 37.6217i −0.310985 1.68082i
\(502\) 0 0
\(503\) 37.5229 10.0542i 1.67307 0.448297i 0.707131 0.707083i \(-0.249989\pi\)
0.965935 + 0.258786i \(0.0833225\pi\)
\(504\) 0 0
\(505\) −2.26431 + 8.45054i −0.100761 + 0.376044i
\(506\) 0 0
\(507\) 14.4743 + 1.14364i 0.642826 + 0.0507907i
\(508\) 0 0
\(509\) 7.49010 12.9732i 0.331993 0.575029i −0.650910 0.759155i \(-0.725612\pi\)
0.982903 + 0.184127i \(0.0589456\pi\)
\(510\) 0 0
\(511\) 0.140192 0.0809396i 0.00620171 0.00358056i
\(512\) 0 0
\(513\) 11.0699 20.3434i 0.488748 0.898182i
\(514\) 0 0
\(515\) −2.75776 + 1.59219i −0.121522 + 0.0701605i
\(516\) 0 0
\(517\) 15.3702i 0.675981i
\(518\) 0 0
\(519\) 0.314238 3.97711i 0.0137935 0.174576i
\(520\) 0 0
\(521\) −2.27386 3.93844i −0.0996197 0.172546i 0.811908 0.583786i \(-0.198429\pi\)
−0.911527 + 0.411240i \(0.865096\pi\)
\(522\) 0 0
\(523\) 14.4021 + 3.85902i 0.629759 + 0.168743i 0.559560 0.828790i \(-0.310970\pi\)
0.0701985 + 0.997533i \(0.477637\pi\)
\(524\) 0 0
\(525\) 0.962593 + 2.01972i 0.0420110 + 0.0881477i
\(526\) 0 0
\(527\) 3.37090 + 1.94619i 0.146839 + 0.0847773i
\(528\) 0 0
\(529\) 0.160103i 0.00696099i
\(530\) 0 0
\(531\) 1.94006 4.35024i 0.0841916 0.188784i
\(532\) 0 0
\(533\) −6.57132 24.5245i −0.284635 1.06227i
\(534\) 0 0
\(535\) 1.31549 + 4.90947i 0.0568735 + 0.212255i
\(536\) 0 0
\(537\) −4.11430 + 11.6071i −0.177545 + 0.500882i
\(538\) 0 0
\(539\) −4.85881 + 8.41570i −0.209284 + 0.362490i
\(540\) 0 0
\(541\) −13.1303 + 13.1303i −0.564516 + 0.564516i −0.930587 0.366071i \(-0.880703\pi\)
0.366071 + 0.930587i \(0.380703\pi\)
\(542\) 0 0
\(543\) −3.32011 2.28335i −0.142479 0.0979880i
\(544\) 0 0
\(545\) 10.9741 0.470079
\(546\) 0 0
\(547\) 16.2813 + 16.2813i 0.696137 + 0.696137i 0.963575 0.267438i \(-0.0861771\pi\)
−0.267438 + 0.963575i \(0.586177\pi\)
\(548\) 0 0
\(549\) 5.28934 + 7.28960i 0.225744 + 0.311112i
\(550\) 0 0
\(551\) −14.9669 + 8.64112i −0.637610 + 0.368124i
\(552\) 0 0
\(553\) −0.373226 1.39290i −0.0158712 0.0592321i
\(554\) 0 0
\(555\) 6.27173 5.93076i 0.266220 0.251747i
\(556\) 0 0
\(557\) 3.62511 + 13.5291i 0.153601 + 0.573247i 0.999221 + 0.0394614i \(0.0125642\pi\)
−0.845620 + 0.533785i \(0.820769\pi\)
\(558\) 0 0
\(559\) −12.8902 + 7.44214i −0.545196 + 0.314769i
\(560\) 0 0
\(561\) −7.73443 + 6.60171i −0.326548 + 0.278724i
\(562\) 0 0
\(563\) −20.4328 20.4328i −0.861139 0.861139i 0.130331 0.991471i \(-0.458396\pi\)
−0.991471 + 0.130331i \(0.958396\pi\)
\(564\) 0 0
\(565\) 4.79645 0.201788
\(566\) 0 0
\(567\) −1.99808 + 1.79463i −0.0839114 + 0.0753672i
\(568\) 0 0
\(569\) −8.73461 + 8.73461i −0.366174 + 0.366174i −0.866080 0.499906i \(-0.833368\pi\)
0.499906 + 0.866080i \(0.333368\pi\)
\(570\) 0 0
\(571\) 19.8386 34.3615i 0.830220 1.43798i −0.0676438 0.997710i \(-0.521548\pi\)
0.897864 0.440274i \(-0.145119\pi\)
\(572\) 0 0
\(573\) 0.976208 + 0.346032i 0.0407817 + 0.0144557i
\(574\) 0 0
\(575\) −5.39174 20.1223i −0.224851 0.839156i
\(576\) 0 0
\(577\) −5.97998 22.3176i −0.248950 0.929093i −0.971357 0.237625i \(-0.923631\pi\)
0.722407 0.691468i \(-0.243036\pi\)
\(578\) 0 0
\(579\) −4.08418 + 11.5221i −0.169733 + 0.478841i
\(580\) 0 0
\(581\) 2.61650i 0.108551i
\(582\) 0 0
\(583\) 9.33629 + 5.39031i 0.386670 + 0.223244i
\(584\) 0 0
\(585\) −1.88966 4.93182i −0.0781280 0.203906i
\(586\) 0 0
\(587\) 42.6232 + 11.4209i 1.75925 + 0.471389i 0.986560 0.163397i \(-0.0522452\pi\)
0.772688 + 0.634786i \(0.218912\pi\)
\(588\) 0 0
\(589\) 2.07759 + 3.59849i 0.0856055 + 0.148273i
\(590\) 0 0
\(591\) −37.7314 2.98122i −1.55206 0.122631i
\(592\) 0 0
\(593\) 21.8316i 0.896517i −0.893904 0.448259i \(-0.852044\pi\)
0.893904 0.448259i \(-0.147956\pi\)
\(594\) 0 0
\(595\) 0.884044 0.510403i 0.0362423 0.0209245i
\(596\) 0 0
\(597\) 2.01508 + 0.714274i 0.0824715 + 0.0292333i
\(598\) 0 0
\(599\) −10.8724 + 6.27716i −0.444232 + 0.256478i −0.705391 0.708818i \(-0.749229\pi\)
0.261159 + 0.965296i \(0.415895\pi\)
\(600\) 0 0
\(601\) −8.80478 + 15.2503i −0.359155 + 0.622074i −0.987820 0.155602i \(-0.950268\pi\)
0.628665 + 0.777676i \(0.283602\pi\)
\(602\) 0 0
\(603\) −0.825952 + 5.19414i −0.0336354 + 0.211522i
\(604\) 0 0
\(605\) −1.91329 + 7.14049i −0.0777863 + 0.290302i
\(606\) 0 0
\(607\) −38.0509 + 10.1957i −1.54444 + 0.413831i −0.927696 0.373336i \(-0.878214\pi\)
−0.616741 + 0.787166i \(0.711547\pi\)
\(608\) 0 0
\(609\) 1.97064 0.364608i 0.0798542 0.0147747i
\(610\) 0 0
\(611\) 6.07917 22.6878i 0.245937 0.917850i
\(612\) 0 0
\(613\) −11.4577 6.61513i −0.462774 0.267183i 0.250436 0.968133i \(-0.419426\pi\)
−0.713210 + 0.700951i \(0.752759\pi\)
\(614\) 0 0
\(615\) 12.7535 10.8857i 0.514269 0.438953i
\(616\) 0 0
\(617\) −14.4682 + 25.0597i −0.582468 + 1.00886i 0.412717 + 0.910859i \(0.364580\pi\)
−0.995186 + 0.0980057i \(0.968754\pi\)
\(618\) 0 0
\(619\) 23.9466i 0.962496i −0.876585 0.481248i \(-0.840184\pi\)
0.876585 0.481248i \(-0.159816\pi\)
\(620\) 0 0
\(621\) 21.3336 13.0461i 0.856087 0.523523i
\(622\) 0 0
\(623\) −1.43438 + 1.43438i −0.0574671 + 0.0574671i
\(624\) 0 0
\(625\) 7.69092 + 13.3211i 0.307637 + 0.532843i
\(626\) 0 0
\(627\) −10.6742 + 1.97494i −0.426285 + 0.0788715i
\(628\) 0 0
\(629\) 18.8492 + 17.0214i 0.751568 + 0.678687i
\(630\) 0 0
\(631\) −19.0966 + 5.11693i −0.760225 + 0.203702i −0.618049 0.786140i \(-0.712077\pi\)
−0.142176 + 0.989841i \(0.545410\pi\)
\(632\) 0 0
\(633\) −6.52688 + 3.11070i −0.259420 + 0.123639i
\(634\) 0 0
\(635\) −1.99522 1.99522i −0.0791779 0.0791779i
\(636\) 0 0
\(637\) 10.5006 10.5006i 0.416048 0.416048i
\(638\) 0 0
\(639\) 1.54649 9.72538i 0.0611783 0.384730i
\(640\) 0 0
\(641\) 6.17813 + 3.56695i 0.244022 + 0.140886i 0.617024 0.786945i \(-0.288338\pi\)
−0.373002 + 0.927830i \(0.621672\pi\)
\(642\) 0 0
\(643\) 16.5674 + 16.5674i 0.653354 + 0.653354i 0.953799 0.300445i \(-0.0971352\pi\)
−0.300445 + 0.953799i \(0.597135\pi\)
\(644\) 0 0
\(645\) −8.09919 5.57009i −0.318905 0.219322i
\(646\) 0 0
\(647\) 13.6620 + 3.66072i 0.537108 + 0.143918i 0.517169 0.855883i \(-0.326986\pi\)
0.0199395 + 0.999801i \(0.493653\pi\)
\(648\) 0 0
\(649\) −2.15649 + 0.577829i −0.0846495 + 0.0226818i
\(650\) 0 0
\(651\) −0.0876628 0.473800i −0.00343577 0.0185697i
\(652\) 0 0
\(653\) 26.2947 + 7.04565i 1.02899 + 0.275717i 0.733544 0.679642i \(-0.237865\pi\)
0.295447 + 0.955359i \(0.404531\pi\)
\(654\) 0 0
\(655\) 0.332764 0.0130022
\(656\) 0 0
\(657\) 1.26410 + 1.02494i 0.0493174 + 0.0399868i
\(658\) 0 0
\(659\) 24.4337 + 42.3204i 0.951802 + 1.64857i 0.741523 + 0.670927i \(0.234104\pi\)
0.210278 + 0.977642i \(0.432563\pi\)
\(660\) 0 0
\(661\) 7.04581 26.2953i 0.274050 1.02277i −0.682425 0.730956i \(-0.739075\pi\)
0.956475 0.291814i \(-0.0942587\pi\)
\(662\) 0 0
\(663\) 14.0278 6.68561i 0.544794 0.259647i
\(664\) 0 0
\(665\) 1.08973 0.0422578
\(666\) 0 0
\(667\) −18.6599 −0.722515
\(668\) 0 0
\(669\) −12.9883 + 6.19018i −0.502156 + 0.239326i
\(670\) 0 0
\(671\) 1.09257 4.07752i 0.0421781 0.157411i
\(672\) 0 0
\(673\) −19.3772 33.5623i −0.746936 1.29373i −0.949285 0.314418i \(-0.898191\pi\)
0.202349 0.979314i \(-0.435143\pi\)
\(674\) 0 0
\(675\) −15.4981 + 16.3014i −0.596523 + 0.627442i
\(676\) 0 0
\(677\) −20.2088 −0.776688 −0.388344 0.921515i \(-0.626953\pi\)
−0.388344 + 0.921515i \(0.626953\pi\)
\(678\) 0 0
\(679\) −3.10742 0.832631i −0.119252 0.0319534i
\(680\) 0 0
\(681\) −7.08934 38.3165i −0.271664 1.46829i
\(682\) 0 0
\(683\) 21.4254 5.74093i 0.819821 0.219670i 0.175553 0.984470i \(-0.443829\pi\)
0.644268 + 0.764799i \(0.277162\pi\)
\(684\) 0 0
\(685\) 10.9551 + 2.93542i 0.418574 + 0.112157i
\(686\) 0 0
\(687\) −13.5374 9.31011i −0.516482 0.355203i
\(688\) 0 0
\(689\) −11.6492 11.6492i −0.443800 0.443800i
\(690\) 0 0
\(691\) −9.14650 5.28074i −0.347949 0.200889i 0.315832 0.948815i \(-0.397716\pi\)
−0.663782 + 0.747926i \(0.731050\pi\)
\(692\) 0 0
\(693\) 1.24319 + 0.197686i 0.0472247 + 0.00750949i
\(694\) 0 0
\(695\) −2.69138 + 2.69138i −0.102090 + 0.102090i
\(696\) 0 0
\(697\) 34.8849 + 34.8849i 1.32136 + 1.32136i
\(698\) 0 0
\(699\) −26.4080 + 12.5860i −0.998843 + 0.476046i
\(700\) 0 0
\(701\) 31.0480 8.31929i 1.17267 0.314215i 0.380653 0.924718i \(-0.375699\pi\)
0.792014 + 0.610503i \(0.209032\pi\)
\(702\) 0 0
\(703\) 8.34074 + 25.7971i 0.314577 + 0.972957i
\(704\) 0 0
\(705\) 15.2529 2.82209i 0.574456 0.106286i
\(706\) 0 0
\(707\) 1.59325 + 2.75959i 0.0599204 + 0.103785i
\(708\) 0 0
\(709\) 18.6822 18.6822i 0.701626 0.701626i −0.263133 0.964760i \(-0.584756\pi\)
0.964760 + 0.263133i \(0.0847558\pi\)
\(710\) 0 0
\(711\) 11.7337 8.51397i 0.440047 0.319299i
\(712\) 0 0
\(713\) 4.48641i 0.168017i
\(714\) 0 0
\(715\) −1.23772 + 2.14380i −0.0462883 + 0.0801736i
\(716\) 0 0
\(717\) −13.6824 + 11.6786i −0.510978 + 0.436145i
\(718\) 0 0
\(719\) 6.20481 + 3.58235i 0.231400 + 0.133599i 0.611218 0.791462i \(-0.290680\pi\)
−0.379818 + 0.925061i \(0.624013\pi\)
\(720\) 0 0
\(721\) −0.300190 + 1.12032i −0.0111797 + 0.0417231i
\(722\) 0 0
\(723\) −1.47211 + 0.272371i −0.0547485 + 0.0101296i
\(724\) 0 0
\(725\) 16.2124 4.34409i 0.602112 0.161335i
\(726\) 0 0
\(727\) −3.31953 + 12.3887i −0.123115 + 0.459470i −0.999765 0.0216571i \(-0.993106\pi\)
0.876651 + 0.481127i \(0.159772\pi\)
\(728\) 0 0
\(729\) −24.0345 12.3022i −0.890166 0.455637i
\(730\) 0 0
\(731\) 14.4608 25.0469i 0.534854 0.926394i
\(732\) 0 0
\(733\) 5.32634 3.07517i 0.196733 0.113584i −0.398398 0.917213i \(-0.630434\pi\)
0.595131 + 0.803629i \(0.297100\pi\)
\(734\) 0 0
\(735\) 9.24356 + 3.27652i 0.340954 + 0.120856i
\(736\) 0 0
\(737\) 2.13485 1.23256i 0.0786383 0.0454018i
\(738\) 0 0
\(739\) 21.5878i 0.794122i 0.917792 + 0.397061i \(0.129970\pi\)
−0.917792 + 0.397061i \(0.870030\pi\)
\(740\) 0 0
\(741\) 16.5371 + 1.30663i 0.607507 + 0.0480001i
\(742\) 0 0
\(743\) 0.811485 + 1.40553i 0.0297705 + 0.0515640i 0.880527 0.473996i \(-0.157189\pi\)
−0.850756 + 0.525560i \(0.823856\pi\)
\(744\) 0 0
\(745\) 4.33663 + 1.16200i 0.158882 + 0.0425722i
\(746\) 0 0
\(747\) −24.5630 + 9.41148i −0.898712 + 0.344348i
\(748\) 0 0
\(749\) 1.60323 + 0.925624i 0.0585807 + 0.0338216i
\(750\) 0 0
\(751\) 32.7253i 1.19416i 0.802180 + 0.597082i \(0.203673\pi\)
−0.802180 + 0.597082i \(0.796327\pi\)
\(752\) 0 0
\(753\) −10.5012 + 29.6254i −0.382685 + 1.07961i
\(754\) 0 0
\(755\) −2.91155 10.8660i −0.105962 0.395456i
\(756\) 0 0
\(757\) −10.9136 40.7301i −0.396662 1.48036i −0.818932 0.573891i \(-0.805433\pi\)
0.422270 0.906470i \(-0.361233\pi\)
\(758\) 0 0
\(759\) −11.0472 3.91585i −0.400988 0.142136i
\(760\) 0 0
\(761\) −21.3210 + 36.9291i −0.772887 + 1.33868i 0.163088 + 0.986612i \(0.447855\pi\)
−0.935975 + 0.352068i \(0.885479\pi\)
\(762\) 0 0
\(763\) 2.82636 2.82636i 0.102321 0.102321i
\(764\) 0 0
\(765\) 7.97140 + 6.46325i 0.288207 + 0.233679i
\(766\) 0 0
\(767\) 3.41170 0.123190
\(768\) 0 0
\(769\) −21.7401 21.7401i −0.783970 0.783970i 0.196529 0.980498i \(-0.437033\pi\)
−0.980498 + 0.196529i \(0.937033\pi\)
\(770\) 0 0
\(771\) 26.0524 22.2370i 0.938255 0.800846i
\(772\) 0 0
\(773\) −24.2155 + 13.9808i −0.870972 + 0.502856i −0.867671 0.497138i \(-0.834384\pi\)
−0.00330113 + 0.999995i \(0.501051\pi\)
\(774\) 0 0
\(775\) −1.04445 3.89794i −0.0375177 0.140018i
\(776\) 0 0
\(777\) 0.0878162 3.14273i 0.00315039 0.112745i
\(778\) 0 0
\(779\) 13.6308 + 50.8710i 0.488376 + 1.82264i
\(780\) 0 0
\(781\) −3.99724 + 2.30781i −0.143033 + 0.0825799i
\(782\) 0 0
\(783\) 10.5112 + 17.1883i 0.375638 + 0.614260i
\(784\) 0 0
\(785\) 9.52243 + 9.52243i 0.339870 + 0.339870i
\(786\) 0 0
\(787\) −49.1038 −1.75036 −0.875180 0.483797i \(-0.839257\pi\)
−0.875180 + 0.483797i \(0.839257\pi\)
\(788\) 0 0
\(789\) 11.7084 + 8.05229i 0.416831 + 0.286669i
\(790\) 0 0
\(791\) 1.23532 1.23532i 0.0439229 0.0439229i
\(792\) 0 0
\(793\) −3.22545 + 5.58665i −0.114539 + 0.198388i
\(794\) 0 0
\(795\) 3.63494 10.2547i 0.128918 0.363697i
\(796\) 0 0
\(797\) −2.53843 9.47356i −0.0899159 0.335571i 0.906284 0.422670i \(-0.138907\pi\)
−0.996200 + 0.0870990i \(0.972240\pi\)
\(798\) 0 0
\(799\) 11.8125 + 44.0847i 0.417895 + 1.55960i
\(800\) 0 0
\(801\) −18.6249 8.30611i −0.658080 0.293482i
\(802\) 0 0
\(803\) 0.762777i 0.0269178i
\(804\) 0 0
\(805\) 1.01896 + 0.588298i 0.0359137 + 0.0207348i
\(806\) 0 0
\(807\) 19.0663 + 40.0051i 0.671167 + 1.40825i
\(808\) 0 0
\(809\) 47.0890 + 12.6175i 1.65556 + 0.443607i 0.961163 0.275983i \(-0.0890032\pi\)
0.694400 + 0.719589i \(0.255670\pi\)
\(810\) 0 0
\(811\) −11.9267 20.6576i −0.418803 0.725387i 0.577017 0.816732i \(-0.304217\pi\)
−0.995819 + 0.0913450i \(0.970883\pi\)
\(812\) 0 0
\(813\) 0.445507 5.63850i 0.0156246 0.197751i
\(814\) 0 0
\(815\) 7.73553i 0.270964i
\(816\) 0 0
\(817\) 26.7380 15.4372i 0.935444 0.540079i
\(818\) 0 0
\(819\) −1.75686 0.783503i −0.0613898 0.0273778i
\(820\) 0 0
\(821\) 9.44861 5.45516i 0.329759 0.190386i −0.325975 0.945378i \(-0.605693\pi\)
0.655734 + 0.754992i \(0.272359\pi\)
\(822\) 0 0
\(823\) 19.5227 33.8144i 0.680520 1.17869i −0.294303 0.955712i \(-0.595087\pi\)
0.974822 0.222983i \(-0.0715793\pi\)
\(824\) 0 0
\(825\) 10.5098 + 0.830395i 0.365904 + 0.0289107i
\(826\) 0 0
\(827\) −13.4961 + 50.3680i −0.469304 + 1.75147i 0.172908 + 0.984938i \(0.444684\pi\)
−0.642212 + 0.766527i \(0.721983\pi\)
\(828\) 0 0
\(829\) 35.3785 9.47963i 1.22874 0.329241i 0.414654 0.909979i \(-0.363903\pi\)
0.814091 + 0.580738i \(0.197236\pi\)
\(830\) 0 0
\(831\) −1.85033 10.0007i −0.0641873 0.346920i
\(832\) 0 0
\(833\) −7.46827 + 27.8720i −0.258760 + 0.965707i
\(834\) 0 0
\(835\) 15.6733 + 9.04897i 0.542396 + 0.313152i
\(836\) 0 0
\(837\) 4.13259 2.52720i 0.142843 0.0873529i
\(838\) 0 0
\(839\) −18.0726 + 31.3027i −0.623936 + 1.08069i 0.364809 + 0.931082i \(0.381134\pi\)
−0.988745 + 0.149607i \(0.952199\pi\)
\(840\) 0 0
\(841\) 13.9658i 0.481581i
\(842\) 0 0
\(843\) −4.62659 + 3.94902i −0.159348 + 0.136012i
\(844\) 0 0
\(845\) −4.85640 + 4.85640i −0.167065 + 0.167065i
\(846\) 0 0
\(847\) 1.34626 + 2.33179i 0.0462580 + 0.0801212i
\(848\) 0 0
\(849\) 7.66580 + 41.4322i 0.263090 + 1.42195i
\(850\) 0 0
\(851\) −6.12769 + 28.6247i −0.210055 + 0.981243i
\(852\) 0 0
\(853\) 18.7517 5.02449i 0.642044 0.172035i 0.0769151 0.997038i \(-0.475493\pi\)
0.565129 + 0.825002i \(0.308826\pi\)
\(854\) 0 0
\(855\) 3.91972 + 10.2301i 0.134052 + 0.349860i
\(856\) 0 0
\(857\) −3.80945 3.80945i −0.130128 0.130128i 0.639043 0.769171i \(-0.279331\pi\)
−0.769171 + 0.639043i \(0.779331\pi\)
\(858\) 0 0
\(859\) 14.3197 14.3197i 0.488582 0.488582i −0.419276 0.907859i \(-0.637716\pi\)
0.907859 + 0.419276i \(0.137716\pi\)
\(860\) 0 0
\(861\) 0.481041 6.08822i 0.0163938 0.207486i
\(862\) 0 0
\(863\) 36.7084 + 21.1936i 1.24957 + 0.721438i 0.971023 0.238985i \(-0.0768147\pi\)
0.278544 + 0.960423i \(0.410148\pi\)
\(864\) 0 0
\(865\) 1.33440 + 1.33440i 0.0453709 + 0.0453709i
\(866\) 0 0
\(867\) −0.424988 + 0.617953i −0.0144333 + 0.0209868i
\(868\) 0 0
\(869\) −6.56336 1.75865i −0.222647 0.0596580i
\(870\) 0 0
\(871\) −3.63873 + 0.974994i −0.123294 + 0.0330364i
\(872\) 0 0
\(873\) −3.36081 32.1666i −0.113746 1.08867i
\(874\) 0 0
\(875\) −2.20305 0.590306i −0.0744767 0.0199560i
\(876\) 0 0
\(877\) 37.4443 1.26441 0.632203 0.774803i \(-0.282151\pi\)
0.632203 + 0.774803i \(0.282151\pi\)
\(878\) 0 0
\(879\) −8.91537 + 12.9634i −0.300708 + 0.437244i
\(880\) 0 0
\(881\) 21.9509 + 38.0200i 0.739543 + 1.28093i 0.952701 + 0.303909i \(0.0982918\pi\)
−0.213158 + 0.977018i \(0.568375\pi\)
\(882\) 0 0
\(883\) −10.2424 + 38.2251i −0.344684 + 1.28638i 0.548297 + 0.836284i \(0.315276\pi\)
−0.892981 + 0.450094i \(0.851390\pi\)
\(884\) 0 0
\(885\) 0.969365 + 2.03393i 0.0325848 + 0.0683697i
\(886\) 0 0
\(887\) −44.5643 −1.49632 −0.748161 0.663517i \(-0.769063\pi\)
−0.748161 + 0.663517i \(0.769063\pi\)
\(888\) 0 0
\(889\) −1.02773 −0.0344690
\(890\) 0 0
\(891\) 2.61588 + 12.3818i 0.0876353 + 0.414804i
\(892\) 0 0
\(893\) −12.6100 + 47.0611i −0.421977 + 1.57484i
\(894\) 0 0
\(895\) −2.91256 5.04470i −0.0973560 0.168626i
\(896\) 0 0
\(897\) 14.7578 + 10.1495i 0.492750 + 0.338881i
\(898\) 0 0
\(899\) −3.61467 −0.120556
\(900\) 0 0
\(901\) 30.9209 + 8.28522i 1.03012 + 0.276021i
\(902\) 0 0
\(903\) −3.52050 + 0.651365i −0.117155 + 0.0216761i
\(904\) 0 0
\(905\) 1.84109 0.493319i 0.0611999 0.0163985i
\(906\) 0 0
\(907\) −42.7218 11.4473i −1.41855 0.380100i −0.533584 0.845747i \(-0.679155\pi\)
−0.884971 + 0.465647i \(0.845822\pi\)
\(908\) 0 0
\(909\) −20.1754 + 24.8832i −0.669176 + 0.825323i
\(910\) 0 0
\(911\) −4.93313 4.93313i −0.163442 0.163442i 0.620648 0.784090i \(-0.286870\pi\)
−0.784090 + 0.620648i \(0.786870\pi\)
\(912\) 0 0
\(913\) 10.6772 + 6.16449i 0.353364 + 0.204015i
\(914\) 0 0
\(915\) −4.24699 0.335562i −0.140401 0.0110933i
\(916\) 0 0
\(917\) 0.0857029 0.0857029i 0.00283016 0.00283016i
\(918\) 0 0
\(919\) −22.8842 22.8842i −0.754881 0.754881i 0.220505 0.975386i \(-0.429229\pi\)
−0.975386 + 0.220505i \(0.929229\pi\)
\(920\) 0 0
\(921\) 19.9503 + 41.8598i 0.657385 + 1.37933i
\(922\) 0 0
\(923\) 6.81306 1.82555i 0.224255 0.0600888i
\(924\) 0 0
\(925\) −1.33999 26.2966i −0.0440585 0.864628i
\(926\) 0 0
\(927\) −11.5971 + 1.21168i −0.380898 + 0.0397967i
\(928\) 0 0
\(929\) −3.39347 5.87766i −0.111336 0.192840i 0.804973 0.593311i \(-0.202180\pi\)
−0.916309 + 0.400472i \(0.868846\pi\)
\(930\) 0 0
\(931\) −21.7813 + 21.7813i −0.713853 + 0.713853i
\(932\) 0 0
\(933\) 33.0502 + 38.7209i 1.08201 + 1.26767i
\(934\) 0 0
\(935\) 4.81005i 0.157305i
\(936\) 0 0
\(937\) 21.5995 37.4115i 0.705626 1.22218i −0.260839 0.965382i \(-0.583999\pi\)
0.966465 0.256798i \(-0.0826676\pi\)
\(938\) 0 0
\(939\) 8.58204 + 10.0546i 0.280064 + 0.328118i
\(940\) 0 0
\(941\) −35.3411 20.4042i −1.15209 0.665158i −0.202692 0.979242i \(-0.564969\pi\)
−0.949395 + 0.314085i \(0.898302\pi\)
\(942\) 0 0
\(943\) −14.7174 + 54.9262i −0.479266 + 1.78864i
\(944\) 0 0
\(945\) −0.0320815 1.26999i −0.00104361 0.0413128i
\(946\) 0 0
\(947\) 22.8777 6.13006i 0.743426 0.199200i 0.132826 0.991139i \(-0.457595\pi\)
0.610600 + 0.791939i \(0.290928\pi\)
\(948\) 0 0
\(949\) −0.301691 + 1.12593i −0.00979330 + 0.0365491i
\(950\) 0 0
\(951\) 4.32414 54.7279i 0.140220 1.77467i
\(952\) 0 0
\(953\) 28.5262 49.4088i 0.924054 1.60051i 0.130979 0.991385i \(-0.458188\pi\)
0.793075 0.609124i \(-0.208479\pi\)
\(954\) 0 0
\(955\) −0.424282 + 0.244960i −0.0137295 + 0.00792670i
\(956\) 0 0
\(957\) 3.15497 8.90064i 0.101986 0.287717i
\(958\) 0 0
\(959\) 3.57749 2.06546i 0.115523 0.0666973i
\(960\) 0 0
\(961\) 30.1309i 0.971965i
\(962\) 0 0
\(963\) −2.92273 + 18.3801i −0.0941837 + 0.592291i
\(964\) 0 0
\(965\) −2.89123 5.00776i −0.0930720 0.161205i
\(966\) 0 0
\(967\) −35.8321 9.60118i −1.15228 0.308753i −0.368403 0.929666i \(-0.620095\pi\)
−0.783880 + 0.620913i \(0.786762\pi\)
\(968\) 0 0
\(969\) −29.0977 + 13.8679i −0.934754 + 0.445502i
\(970\) 0 0
\(971\) −9.59093 5.53733i −0.307788 0.177701i 0.338148 0.941093i \(-0.390199\pi\)
−0.645936 + 0.763392i \(0.723533\pi\)
\(972\) 0 0
\(973\) 1.38632i 0.0444435i
\(974\) 0 0
\(975\) −15.1849 5.38253i −0.486307 0.172379i
\(976\) 0 0
\(977\) −4.62017 17.2427i −0.147812 0.551643i −0.999614 0.0277788i \(-0.991157\pi\)
0.851802 0.523864i \(-0.175510\pi\)
\(978\) 0 0
\(979\) 2.47389 + 9.23269i 0.0790659 + 0.295078i
\(980\) 0 0
\(981\) 36.6995 + 16.3667i 1.17172 + 0.522550i
\(982\) 0 0
\(983\) −20.1423 + 34.8875i −0.642439 + 1.11274i 0.342448 + 0.939537i \(0.388744\pi\)
−0.984887 + 0.173200i \(0.944589\pi\)
\(984\) 0 0
\(985\) 12.6596 12.6596i 0.403369 0.403369i
\(986\) 0 0
\(987\) 3.20152 4.65517i 0.101906 0.148176i
\(988\) 0 0
\(989\) 33.3356 1.06001
\(990\) 0 0
\(991\) −2.84174 2.84174i −0.0902709 0.0902709i 0.660529 0.750800i \(-0.270332\pi\)
−0.750800 + 0.660529i \(0.770332\pi\)
\(992\) 0 0
\(993\) 11.5686 + 13.5536i 0.367119 + 0.430109i
\(994\) 0 0
\(995\) −0.875798 + 0.505642i −0.0277647 + 0.0160299i
\(996\) 0 0
\(997\) −11.5050 42.9374i −0.364368 1.35984i −0.868276 0.496082i \(-0.834771\pi\)
0.503908 0.863758i \(-0.331895\pi\)
\(998\) 0 0
\(999\) 29.8190 10.4799i 0.943430 0.331570i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 888.2.br.a.569.6 152
3.2 odd 2 inner 888.2.br.a.569.8 yes 152
37.8 odd 12 inner 888.2.br.a.785.8 yes 152
111.8 even 12 inner 888.2.br.a.785.6 yes 152
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
888.2.br.a.569.6 152 1.1 even 1 trivial
888.2.br.a.569.8 yes 152 3.2 odd 2 inner
888.2.br.a.785.6 yes 152 111.8 even 12 inner
888.2.br.a.785.8 yes 152 37.8 odd 12 inner