Properties

Label 882.2.l.b.509.7
Level $882$
Weight $2$
Character 882.509
Analytic conductor $7.043$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [882,2,Mod(227,882)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("882.227"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(882, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 882.l (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,-16,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.04280545828\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 23 x^{14} - 8 x^{13} - 131 x^{12} + 380 x^{11} - 289 x^{10} - 880 x^{9} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 509.7
Root \(1.27866 + 1.16834i\) of defining polynomial
Character \(\chi\) \(=\) 882.509
Dual form 882.2.l.b.227.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} +(1.08509 + 1.35003i) q^{3} -1.00000 q^{4} +(-1.77612 - 3.07634i) q^{5} +(-1.35003 + 1.08509i) q^{6} -1.00000i q^{8} +(-0.645160 + 2.92981i) q^{9} +(3.07634 - 1.77612i) q^{10} +(2.61745 + 1.51119i) q^{11} +(-1.08509 - 1.35003i) q^{12} +(0.888944 + 0.513232i) q^{13} +(2.22589 - 5.73592i) q^{15} +1.00000 q^{16} +(0.809204 + 1.40158i) q^{17} +(-2.92981 - 0.645160i) q^{18} +(7.12643 + 4.11444i) q^{19} +(1.77612 + 3.07634i) q^{20} +(-1.51119 + 2.61745i) q^{22} +(2.90837 - 1.67915i) q^{23} +(1.35003 - 1.08509i) q^{24} +(-3.80924 + 6.59779i) q^{25} +(-0.513232 + 0.888944i) q^{26} +(-4.65538 + 2.30812i) q^{27} +(-3.70319 + 2.13804i) q^{29} +(5.73592 + 2.22589i) q^{30} +5.98576i q^{31} +1.00000i q^{32} +(0.800023 + 5.17341i) q^{33} +(-1.40158 + 0.809204i) q^{34} +(0.645160 - 2.92981i) q^{36} +(2.92323 - 5.06319i) q^{37} +(-4.11444 + 7.12643i) q^{38} +(0.271706 + 1.75700i) q^{39} +(-3.07634 + 1.77612i) q^{40} +(-0.0472226 + 0.0817920i) q^{41} +(3.05899 + 5.29833i) q^{43} +(-2.61745 - 1.51119i) q^{44} +(10.1590 - 3.21897i) q^{45} +(1.67915 + 2.90837i) q^{46} +5.14045 q^{47} +(1.08509 + 1.35003i) q^{48} +(-6.59779 - 3.80924i) q^{50} +(-1.01412 + 2.61329i) q^{51} +(-0.888944 - 0.513232i) q^{52} +(-2.76235 + 1.59484i) q^{53} +(-2.30812 - 4.65538i) q^{54} -10.7362i q^{55} +(2.17819 + 14.0854i) q^{57} +(-2.13804 - 3.70319i) q^{58} +8.84071 q^{59} +(-2.22589 + 5.73592i) q^{60} +4.69034i q^{61} -5.98576 q^{62} -1.00000 q^{64} -3.64626i q^{65} +(-5.17341 + 0.800023i) q^{66} -0.375675 q^{67} +(-0.809204 - 1.40158i) q^{68} +(5.42275 + 2.10436i) q^{69} -13.9868i q^{71} +(2.92981 + 0.645160i) q^{72} +(-1.13546 + 0.655556i) q^{73} +(5.06319 + 2.92323i) q^{74} +(-13.0406 + 2.01662i) q^{75} +(-7.12643 - 4.11444i) q^{76} +(-1.75700 + 0.271706i) q^{78} +0.924134 q^{79} +(-1.77612 - 3.07634i) q^{80} +(-8.16754 - 3.78039i) q^{81} +(-0.0817920 - 0.0472226i) q^{82} +(-5.43209 - 9.40866i) q^{83} +(2.87450 - 4.97877i) q^{85} +(-5.29833 + 3.05899i) q^{86} +(-6.90471 - 2.67945i) q^{87} +(1.51119 - 2.61745i) q^{88} +(2.35495 - 4.07888i) q^{89} +(3.21897 + 10.1590i) q^{90} +(-2.90837 + 1.67915i) q^{92} +(-8.08095 + 6.49509i) q^{93} +5.14045i q^{94} -29.2311i q^{95} +(-1.35003 + 1.08509i) q^{96} +(-13.3330 + 7.69782i) q^{97} +(-6.11615 + 6.69367i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{4} + 12 q^{11} - 6 q^{13} - 18 q^{15} + 16 q^{16} + 18 q^{17} - 12 q^{18} - 6 q^{23} - 8 q^{25} - 12 q^{26} - 36 q^{27} + 6 q^{29} - 2 q^{37} - 12 q^{39} + 6 q^{41} - 2 q^{43} - 12 q^{44} + 30 q^{45}+ \cdots + 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/882\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(785\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 1.08509 + 1.35003i 0.626477 + 0.779440i
\(4\) −1.00000 −0.500000
\(5\) −1.77612 3.07634i −0.794307 1.37578i −0.923278 0.384132i \(-0.874501\pi\)
0.128971 0.991648i \(-0.458833\pi\)
\(6\) −1.35003 + 1.08509i −0.551147 + 0.442986i
\(7\) 0 0
\(8\) 1.00000i 0.353553i
\(9\) −0.645160 + 2.92981i −0.215053 + 0.976602i
\(10\) 3.07634 1.77612i 0.972824 0.561660i
\(11\) 2.61745 + 1.51119i 0.789191 + 0.455639i 0.839678 0.543085i \(-0.182744\pi\)
−0.0504869 + 0.998725i \(0.516077\pi\)
\(12\) −1.08509 1.35003i −0.313238 0.389720i
\(13\) 0.888944 + 0.513232i 0.246549 + 0.142345i 0.618183 0.786034i \(-0.287869\pi\)
−0.371634 + 0.928379i \(0.621202\pi\)
\(14\) 0 0
\(15\) 2.22589 5.73592i 0.574723 1.48101i
\(16\) 1.00000 0.250000
\(17\) 0.809204 + 1.40158i 0.196261 + 0.339934i 0.947313 0.320309i \(-0.103787\pi\)
−0.751052 + 0.660243i \(0.770453\pi\)
\(18\) −2.92981 0.645160i −0.690562 0.152066i
\(19\) 7.12643 + 4.11444i 1.63491 + 0.943918i 0.982547 + 0.186016i \(0.0595575\pi\)
0.652368 + 0.757903i \(0.273776\pi\)
\(20\) 1.77612 + 3.07634i 0.397154 + 0.687890i
\(21\) 0 0
\(22\) −1.51119 + 2.61745i −0.322186 + 0.558042i
\(23\) 2.90837 1.67915i 0.606438 0.350127i −0.165132 0.986271i \(-0.552805\pi\)
0.771570 + 0.636144i \(0.219472\pi\)
\(24\) 1.35003 1.08509i 0.275574 0.221493i
\(25\) −3.80924 + 6.59779i −0.761848 + 1.31956i
\(26\) −0.513232 + 0.888944i −0.100653 + 0.174336i
\(27\) −4.65538 + 2.30812i −0.895929 + 0.444198i
\(28\) 0 0
\(29\) −3.70319 + 2.13804i −0.687666 + 0.397024i −0.802737 0.596333i \(-0.796624\pi\)
0.115071 + 0.993357i \(0.463290\pi\)
\(30\) 5.73592 + 2.22589i 1.04723 + 0.406391i
\(31\) 5.98576i 1.07507i 0.843240 + 0.537537i \(0.180645\pi\)
−0.843240 + 0.537537i \(0.819355\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0.800023 + 5.17341i 0.139266 + 0.900574i
\(34\) −1.40158 + 0.809204i −0.240369 + 0.138777i
\(35\) 0 0
\(36\) 0.645160 2.92981i 0.107527 0.488301i
\(37\) 2.92323 5.06319i 0.480577 0.832384i −0.519175 0.854668i \(-0.673761\pi\)
0.999752 + 0.0222846i \(0.00709398\pi\)
\(38\) −4.11444 + 7.12643i −0.667451 + 1.15606i
\(39\) 0.271706 + 1.75700i 0.0435078 + 0.281346i
\(40\) −3.07634 + 1.77612i −0.486412 + 0.280830i
\(41\) −0.0472226 + 0.0817920i −0.00737493 + 0.0127738i −0.869689 0.493600i \(-0.835681\pi\)
0.862314 + 0.506373i \(0.169014\pi\)
\(42\) 0 0
\(43\) 3.05899 + 5.29833i 0.466492 + 0.807988i 0.999267 0.0382684i \(-0.0121842\pi\)
−0.532775 + 0.846257i \(0.678851\pi\)
\(44\) −2.61745 1.51119i −0.394595 0.227820i
\(45\) 10.1590 3.21897i 1.51441 0.479856i
\(46\) 1.67915 + 2.90837i 0.247577 + 0.428816i
\(47\) 5.14045 0.749812 0.374906 0.927063i \(-0.377675\pi\)
0.374906 + 0.927063i \(0.377675\pi\)
\(48\) 1.08509 + 1.35003i 0.156619 + 0.194860i
\(49\) 0 0
\(50\) −6.59779 3.80924i −0.933069 0.538708i
\(51\) −1.01412 + 2.61329i −0.142005 + 0.365934i
\(52\) −0.888944 0.513232i −0.123274 0.0711725i
\(53\) −2.76235 + 1.59484i −0.379438 + 0.219068i −0.677574 0.735455i \(-0.736968\pi\)
0.298136 + 0.954523i \(0.403635\pi\)
\(54\) −2.30812 4.65538i −0.314095 0.633517i
\(55\) 10.7362i 1.44767i
\(56\) 0 0
\(57\) 2.17819 + 14.0854i 0.288509 + 1.86566i
\(58\) −2.13804 3.70319i −0.280738 0.486253i
\(59\) 8.84071 1.15096 0.575481 0.817815i \(-0.304815\pi\)
0.575481 + 0.817815i \(0.304815\pi\)
\(60\) −2.22589 + 5.73592i −0.287361 + 0.740505i
\(61\) 4.69034i 0.600537i 0.953855 + 0.300268i \(0.0970762\pi\)
−0.953855 + 0.300268i \(0.902924\pi\)
\(62\) −5.98576 −0.760192
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 3.64626i 0.452263i
\(66\) −5.17341 + 0.800023i −0.636802 + 0.0984761i
\(67\) −0.375675 −0.0458961 −0.0229480 0.999737i \(-0.507305\pi\)
−0.0229480 + 0.999737i \(0.507305\pi\)
\(68\) −0.809204 1.40158i −0.0981304 0.169967i
\(69\) 5.42275 + 2.10436i 0.652822 + 0.253335i
\(70\) 0 0
\(71\) 13.9868i 1.65993i −0.557815 0.829966i \(-0.688360\pi\)
0.557815 0.829966i \(-0.311640\pi\)
\(72\) 2.92981 + 0.645160i 0.345281 + 0.0760328i
\(73\) −1.13546 + 0.655556i −0.132895 + 0.0767270i −0.564974 0.825109i \(-0.691114\pi\)
0.432079 + 0.901836i \(0.357780\pi\)
\(74\) 5.06319 + 2.92323i 0.588584 + 0.339819i
\(75\) −13.0406 + 2.01662i −1.50580 + 0.232859i
\(76\) −7.12643 4.11444i −0.817457 0.471959i
\(77\) 0 0
\(78\) −1.75700 + 0.271706i −0.198942 + 0.0307646i
\(79\) 0.924134 0.103973 0.0519866 0.998648i \(-0.483445\pi\)
0.0519866 + 0.998648i \(0.483445\pi\)
\(80\) −1.77612 3.07634i −0.198577 0.343945i
\(81\) −8.16754 3.78039i −0.907504 0.420043i
\(82\) −0.0817920 0.0472226i −0.00903241 0.00521487i
\(83\) −5.43209 9.40866i −0.596250 1.03273i −0.993369 0.114968i \(-0.963323\pi\)
0.397119 0.917767i \(-0.370010\pi\)
\(84\) 0 0
\(85\) 2.87450 4.97877i 0.311783 0.540024i
\(86\) −5.29833 + 3.05899i −0.571334 + 0.329860i
\(87\) −6.90471 2.67945i −0.740263 0.287268i
\(88\) 1.51119 2.61745i 0.161093 0.279021i
\(89\) 2.35495 4.07888i 0.249624 0.432361i −0.713798 0.700352i \(-0.753026\pi\)
0.963421 + 0.267991i \(0.0863598\pi\)
\(90\) 3.21897 + 10.1590i 0.339310 + 1.07085i
\(91\) 0 0
\(92\) −2.90837 + 1.67915i −0.303219 + 0.175063i
\(93\) −8.08095 + 6.49509i −0.837956 + 0.673509i
\(94\) 5.14045i 0.530197i
\(95\) 29.2311i 2.99904i
\(96\) −1.35003 + 1.08509i −0.137787 + 0.110747i
\(97\) −13.3330 + 7.69782i −1.35376 + 0.781595i −0.988774 0.149417i \(-0.952260\pi\)
−0.364988 + 0.931012i \(0.618927\pi\)
\(98\) 0 0
\(99\) −6.11615 + 6.69367i −0.614697 + 0.672739i
\(100\) 3.80924 6.59779i 0.380924 0.659779i
\(101\) 6.85234 11.8686i 0.681833 1.18097i −0.292588 0.956239i \(-0.594516\pi\)
0.974421 0.224731i \(-0.0721503\pi\)
\(102\) −2.61329 1.01412i −0.258755 0.100413i
\(103\) −2.64014 + 1.52429i −0.260141 + 0.150192i −0.624399 0.781106i \(-0.714656\pi\)
0.364258 + 0.931298i \(0.381323\pi\)
\(104\) 0.513232 0.888944i 0.0503266 0.0871682i
\(105\) 0 0
\(106\) −1.59484 2.76235i −0.154905 0.268303i
\(107\) −11.3681 6.56336i −1.09899 0.634504i −0.163037 0.986620i \(-0.552129\pi\)
−0.935956 + 0.352116i \(0.885462\pi\)
\(108\) 4.65538 2.30812i 0.447964 0.222099i
\(109\) 5.28574 + 9.15516i 0.506282 + 0.876906i 0.999974 + 0.00726875i \(0.00231373\pi\)
−0.493692 + 0.869637i \(0.664353\pi\)
\(110\) 10.7362 1.02366
\(111\) 10.0074 1.54756i 0.949863 0.146888i
\(112\) 0 0
\(113\) 10.6520 + 6.14993i 1.00205 + 0.578537i 0.908856 0.417111i \(-0.136957\pi\)
0.0931992 + 0.995647i \(0.470291\pi\)
\(114\) −14.0854 + 2.17819i −1.31922 + 0.204006i
\(115\) −10.3313 5.96476i −0.963396 0.556217i
\(116\) 3.70319 2.13804i 0.343833 0.198512i
\(117\) −2.07718 + 2.27332i −0.192036 + 0.210168i
\(118\) 8.84071i 0.813853i
\(119\) 0 0
\(120\) −5.73592 2.22589i −0.523616 0.203195i
\(121\) −0.932639 1.61538i −0.0847854 0.146853i
\(122\) −4.69034 −0.424644
\(123\) −0.161662 + 0.0249997i −0.0145766 + 0.00225415i
\(124\) 5.98576i 0.537537i
\(125\) 9.30148 0.831950
\(126\) 0 0
\(127\) 0.287164 0.0254817 0.0127408 0.999919i \(-0.495944\pi\)
0.0127408 + 0.999919i \(0.495944\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) −3.83362 + 9.87890i −0.337532 + 0.869789i
\(130\) 3.64626 0.319798
\(131\) −0.186474 0.322983i −0.0162923 0.0282192i 0.857764 0.514043i \(-0.171853\pi\)
−0.874057 + 0.485824i \(0.838520\pi\)
\(132\) −0.800023 5.17341i −0.0696331 0.450287i
\(133\) 0 0
\(134\) 0.375675i 0.0324534i
\(135\) 15.3691 + 10.2220i 1.32276 + 0.879772i
\(136\) 1.40158 0.809204i 0.120185 0.0693887i
\(137\) 6.11607 + 3.53111i 0.522531 + 0.301683i 0.737969 0.674834i \(-0.235785\pi\)
−0.215439 + 0.976517i \(0.569118\pi\)
\(138\) −2.10436 + 5.42275i −0.179135 + 0.461615i
\(139\) 12.6320 + 7.29308i 1.07143 + 0.618591i 0.928572 0.371152i \(-0.121037\pi\)
0.142858 + 0.989743i \(0.454371\pi\)
\(140\) 0 0
\(141\) 5.57785 + 6.93976i 0.469740 + 0.584434i
\(142\) 13.9868 1.17375
\(143\) 1.55118 + 2.68672i 0.129716 + 0.224675i
\(144\) −0.645160 + 2.92981i −0.0537633 + 0.244151i
\(145\) 13.1547 + 7.59485i 1.09244 + 0.630718i
\(146\) −0.655556 1.13546i −0.0542542 0.0939710i
\(147\) 0 0
\(148\) −2.92323 + 5.06319i −0.240288 + 0.416192i
\(149\) −9.26832 + 5.35107i −0.759290 + 0.438376i −0.829041 0.559188i \(-0.811113\pi\)
0.0697505 + 0.997564i \(0.477780\pi\)
\(150\) −2.01662 13.0406i −0.164656 1.06476i
\(151\) −8.00065 + 13.8575i −0.651084 + 1.12771i 0.331777 + 0.943358i \(0.392352\pi\)
−0.982860 + 0.184352i \(0.940981\pi\)
\(152\) 4.11444 7.12643i 0.333726 0.578030i
\(153\) −4.62843 + 1.46657i −0.374187 + 0.118565i
\(154\) 0 0
\(155\) 18.4142 10.6315i 1.47907 0.853939i
\(156\) −0.271706 1.75700i −0.0217539 0.140673i
\(157\) 11.5267i 0.919928i −0.887937 0.459964i \(-0.847862\pi\)
0.887937 0.459964i \(-0.152138\pi\)
\(158\) 0.924134i 0.0735202i
\(159\) −5.15048 1.99870i −0.408460 0.158508i
\(160\) 3.07634 1.77612i 0.243206 0.140415i
\(161\) 0 0
\(162\) 3.78039 8.16754i 0.297015 0.641702i
\(163\) 1.37386 2.37960i 0.107609 0.186385i −0.807192 0.590289i \(-0.799014\pi\)
0.914801 + 0.403904i \(0.132347\pi\)
\(164\) 0.0472226 0.0817920i 0.00368747 0.00638688i
\(165\) 14.4942 11.6498i 1.12837 0.906932i
\(166\) 9.40866 5.43209i 0.730254 0.421612i
\(167\) 2.76946 4.79685i 0.214307 0.371191i −0.738751 0.673979i \(-0.764584\pi\)
0.953058 + 0.302788i \(0.0979173\pi\)
\(168\) 0 0
\(169\) −5.97319 10.3459i −0.459476 0.795835i
\(170\) 4.97877 + 2.87450i 0.381854 + 0.220464i
\(171\) −16.6522 + 18.2246i −1.27343 + 1.39367i
\(172\) −3.05899 5.29833i −0.233246 0.403994i
\(173\) −11.2051 −0.851905 −0.425953 0.904745i \(-0.640061\pi\)
−0.425953 + 0.904745i \(0.640061\pi\)
\(174\) 2.67945 6.90471i 0.203129 0.523445i
\(175\) 0 0
\(176\) 2.61745 + 1.51119i 0.197298 + 0.113910i
\(177\) 9.59297 + 11.9352i 0.721052 + 0.897106i
\(178\) 4.07888 + 2.35495i 0.305725 + 0.176511i
\(179\) −2.37445 + 1.37089i −0.177475 + 0.102465i −0.586106 0.810235i \(-0.699340\pi\)
0.408631 + 0.912700i \(0.366006\pi\)
\(180\) −10.1590 + 3.21897i −0.757204 + 0.239928i
\(181\) 22.2899i 1.65679i −0.560142 0.828397i \(-0.689253\pi\)
0.560142 0.828397i \(-0.310747\pi\)
\(182\) 0 0
\(183\) −6.33210 + 5.08944i −0.468082 + 0.376222i
\(184\) −1.67915 2.90837i −0.123789 0.214408i
\(185\) −20.7681 −1.52690
\(186\) −6.49509 8.08095i −0.476243 0.592524i
\(187\) 4.89143i 0.357697i
\(188\) −5.14045 −0.374906
\(189\) 0 0
\(190\) 29.2311 2.12064
\(191\) 5.13264i 0.371385i −0.982608 0.185692i \(-0.940547\pi\)
0.982608 0.185692i \(-0.0594528\pi\)
\(192\) −1.08509 1.35003i −0.0783096 0.0974300i
\(193\) 15.9847 1.15060 0.575302 0.817941i \(-0.304884\pi\)
0.575302 + 0.817941i \(0.304884\pi\)
\(194\) −7.69782 13.3330i −0.552671 0.957254i
\(195\) 4.92256 3.95652i 0.352512 0.283332i
\(196\) 0 0
\(197\) 4.72572i 0.336694i 0.985728 + 0.168347i \(0.0538428\pi\)
−0.985728 + 0.168347i \(0.946157\pi\)
\(198\) −6.69367 6.11615i −0.475698 0.434656i
\(199\) −1.83679 + 1.06047i −0.130207 + 0.0751749i −0.563689 0.825987i \(-0.690618\pi\)
0.433482 + 0.901162i \(0.357285\pi\)
\(200\) 6.59779 + 3.80924i 0.466534 + 0.269354i
\(201\) −0.407642 0.507173i −0.0287528 0.0357732i
\(202\) 11.8686 + 6.85234i 0.835072 + 0.482129i
\(203\) 0 0
\(204\) 1.01412 2.61329i 0.0710025 0.182967i
\(205\) 0.335493 0.0234319
\(206\) −1.52429 2.64014i −0.106202 0.183947i
\(207\) 3.04322 + 9.60429i 0.211518 + 0.667544i
\(208\) 0.888944 + 0.513232i 0.0616372 + 0.0355863i
\(209\) 12.4354 + 21.5387i 0.860173 + 1.48986i
\(210\) 0 0
\(211\) −13.8079 + 23.9160i −0.950578 + 1.64645i −0.206399 + 0.978468i \(0.566174\pi\)
−0.744179 + 0.667981i \(0.767159\pi\)
\(212\) 2.76235 1.59484i 0.189719 0.109534i
\(213\) 18.8826 15.1770i 1.29382 1.03991i
\(214\) 6.56336 11.3681i 0.448662 0.777105i
\(215\) 10.8663 18.8210i 0.741076 1.28358i
\(216\) 2.30812 + 4.65538i 0.157048 + 0.316759i
\(217\) 0 0
\(218\) −9.15516 + 5.28574i −0.620066 + 0.357995i
\(219\) −2.11709 0.821562i −0.143060 0.0555160i
\(220\) 10.7362i 0.723835i
\(221\) 1.66124i 0.111747i
\(222\) 1.54756 + 10.0074i 0.103866 + 0.671655i
\(223\) 17.6209 10.1734i 1.17998 0.681264i 0.223973 0.974595i \(-0.428097\pi\)
0.956011 + 0.293331i \(0.0947638\pi\)
\(224\) 0 0
\(225\) −16.8727 15.4170i −1.12485 1.02780i
\(226\) −6.14993 + 10.6520i −0.409087 + 0.708560i
\(227\) 2.08000 3.60266i 0.138054 0.239117i −0.788706 0.614771i \(-0.789248\pi\)
0.926760 + 0.375654i \(0.122582\pi\)
\(228\) −2.17819 14.0854i −0.144254 0.932830i
\(229\) 5.16986 2.98482i 0.341634 0.197242i −0.319361 0.947633i \(-0.603468\pi\)
0.660994 + 0.750391i \(0.270135\pi\)
\(230\) 5.96476 10.3313i 0.393305 0.681224i
\(231\) 0 0
\(232\) 2.13804 + 3.70319i 0.140369 + 0.243126i
\(233\) −3.88603 2.24360i −0.254582 0.146983i 0.367278 0.930111i \(-0.380290\pi\)
−0.621861 + 0.783128i \(0.713623\pi\)
\(234\) −2.27332 2.07718i −0.148611 0.135790i
\(235\) −9.13009 15.8138i −0.595581 1.03158i
\(236\) −8.84071 −0.575481
\(237\) 1.00277 + 1.24761i 0.0651368 + 0.0810409i
\(238\) 0 0
\(239\) −3.02944 1.74905i −0.195958 0.113136i 0.398811 0.917033i \(-0.369423\pi\)
−0.594769 + 0.803897i \(0.702756\pi\)
\(240\) 2.22589 5.73592i 0.143681 0.370252i
\(241\) −10.0170 5.78332i −0.645252 0.372537i 0.141383 0.989955i \(-0.454845\pi\)
−0.786635 + 0.617419i \(0.788179\pi\)
\(242\) 1.61538 0.932639i 0.103840 0.0599523i
\(243\) −3.75888 15.1285i −0.241132 0.970492i
\(244\) 4.69034i 0.300268i
\(245\) 0 0
\(246\) −0.0249997 0.161662i −0.00159392 0.0103072i
\(247\) 4.22333 + 7.31502i 0.268724 + 0.465444i
\(248\) 5.98576 0.380096
\(249\) 6.80766 17.5427i 0.431418 1.11173i
\(250\) 9.30148i 0.588277i
\(251\) −26.7426 −1.68798 −0.843988 0.536361i \(-0.819798\pi\)
−0.843988 + 0.536361i \(0.819798\pi\)
\(252\) 0 0
\(253\) 10.1500 0.638127
\(254\) 0.287164i 0.0180183i
\(255\) 9.84057 1.52176i 0.616241 0.0952964i
\(256\) 1.00000 0.0625000
\(257\) −2.60614 4.51396i −0.162566 0.281573i 0.773222 0.634135i \(-0.218644\pi\)
−0.935788 + 0.352562i \(0.885310\pi\)
\(258\) −9.87890 3.83362i −0.615034 0.238671i
\(259\) 0 0
\(260\) 3.64626i 0.226131i
\(261\) −3.87489 12.2290i −0.239850 0.756957i
\(262\) 0.322983 0.186474i 0.0199540 0.0115204i
\(263\) −13.0228 7.51869i −0.803018 0.463622i 0.0415076 0.999138i \(-0.486784\pi\)
−0.844525 + 0.535516i \(0.820117\pi\)
\(264\) 5.17341 0.800023i 0.318401 0.0492380i
\(265\) 9.81255 + 5.66528i 0.602780 + 0.348015i
\(266\) 0 0
\(267\) 8.06194 1.24671i 0.493383 0.0762975i
\(268\) 0.375675 0.0229480
\(269\) 11.5657 + 20.0323i 0.705170 + 1.22139i 0.966630 + 0.256177i \(0.0824628\pi\)
−0.261460 + 0.965214i \(0.584204\pi\)
\(270\) −10.2220 + 15.3691i −0.622092 + 0.935333i
\(271\) −8.58661 4.95748i −0.521599 0.301146i 0.215989 0.976396i \(-0.430702\pi\)
−0.737589 + 0.675250i \(0.764036\pi\)
\(272\) 0.809204 + 1.40158i 0.0490652 + 0.0849834i
\(273\) 0 0
\(274\) −3.53111 + 6.11607i −0.213322 + 0.369485i
\(275\) −19.9410 + 11.5129i −1.20249 + 0.694256i
\(276\) −5.42275 2.10436i −0.326411 0.126668i
\(277\) 4.29721 7.44299i 0.258195 0.447206i −0.707564 0.706650i \(-0.750206\pi\)
0.965758 + 0.259443i \(0.0835391\pi\)
\(278\) −7.29308 + 12.6320i −0.437410 + 0.757616i
\(279\) −17.5371 3.86177i −1.04992 0.231198i
\(280\) 0 0
\(281\) −17.9508 + 10.3639i −1.07085 + 0.618258i −0.928415 0.371545i \(-0.878828\pi\)
−0.142440 + 0.989803i \(0.545495\pi\)
\(282\) −6.93976 + 5.57785i −0.413257 + 0.332156i
\(283\) 2.36710i 0.140709i −0.997522 0.0703547i \(-0.977587\pi\)
0.997522 0.0703547i \(-0.0224131\pi\)
\(284\) 13.9868i 0.829966i
\(285\) 39.4628 31.7183i 2.33757 1.87883i
\(286\) −2.68672 + 1.55118i −0.158869 + 0.0917231i
\(287\) 0 0
\(288\) −2.92981 0.645160i −0.172641 0.0380164i
\(289\) 7.19038 12.4541i 0.422963 0.732594i
\(290\) −7.59485 + 13.1547i −0.445985 + 0.772468i
\(291\) −24.8598 9.64714i −1.45731 0.565525i
\(292\) 1.13546 0.655556i 0.0664475 0.0383635i
\(293\) −8.83774 + 15.3074i −0.516306 + 0.894268i 0.483515 + 0.875336i \(0.339360\pi\)
−0.999821 + 0.0189321i \(0.993973\pi\)
\(294\) 0 0
\(295\) −15.7022 27.1970i −0.914218 1.58347i
\(296\) −5.06319 2.92323i −0.294292 0.169910i
\(297\) −15.6732 0.993759i −0.909453 0.0576637i
\(298\) −5.35107 9.26832i −0.309979 0.536899i
\(299\) 3.44718 0.199355
\(300\) 13.0406 2.01662i 0.752898 0.116429i
\(301\) 0 0
\(302\) −13.8575 8.00065i −0.797411 0.460386i
\(303\) 23.4584 3.62764i 1.34765 0.208402i
\(304\) 7.12643 + 4.11444i 0.408729 + 0.235980i
\(305\) 14.4291 8.33063i 0.826206 0.477011i
\(306\) −1.46657 4.62843i −0.0838381 0.264590i
\(307\) 1.28155i 0.0731422i 0.999331 + 0.0365711i \(0.0116435\pi\)
−0.999331 + 0.0365711i \(0.988356\pi\)
\(308\) 0 0
\(309\) −4.92262 1.91028i −0.280038 0.108672i
\(310\) 10.6315 + 18.4142i 0.603826 + 1.04586i
\(311\) −12.5329 −0.710673 −0.355336 0.934738i \(-0.615634\pi\)
−0.355336 + 0.934738i \(0.615634\pi\)
\(312\) 1.75700 0.271706i 0.0994708 0.0153823i
\(313\) 8.75385i 0.494797i −0.968914 0.247398i \(-0.920424\pi\)
0.968914 0.247398i \(-0.0795756\pi\)
\(314\) 11.5267 0.650488
\(315\) 0 0
\(316\) −0.924134 −0.0519866
\(317\) 13.6784i 0.768256i −0.923280 0.384128i \(-0.874502\pi\)
0.923280 0.384128i \(-0.125498\pi\)
\(318\) 1.99870 5.15048i 0.112082 0.288825i
\(319\) −12.9239 −0.723599
\(320\) 1.77612 + 3.07634i 0.0992884 + 0.171973i
\(321\) −3.47465 22.4691i −0.193936 1.25410i
\(322\) 0 0
\(323\) 13.3177i 0.741017i
\(324\) 8.16754 + 3.78039i 0.453752 + 0.210021i
\(325\) −6.77240 + 3.91005i −0.375665 + 0.216890i
\(326\) 2.37960 + 1.37386i 0.131794 + 0.0760912i
\(327\) −6.62424 + 17.0701i −0.366321 + 0.943977i
\(328\) 0.0817920 + 0.0472226i 0.00451621 + 0.00260743i
\(329\) 0 0
\(330\) 11.6498 + 14.4942i 0.641298 + 0.797880i
\(331\) −10.8972 −0.598962 −0.299481 0.954102i \(-0.596813\pi\)
−0.299481 + 0.954102i \(0.596813\pi\)
\(332\) 5.43209 + 9.40866i 0.298125 + 0.516367i
\(333\) 12.9482 + 11.8311i 0.709558 + 0.648339i
\(334\) 4.79685 + 2.76946i 0.262472 + 0.151538i
\(335\) 0.667247 + 1.15570i 0.0364556 + 0.0631429i
\(336\) 0 0
\(337\) 12.8090 22.1858i 0.697749 1.20854i −0.271496 0.962440i \(-0.587518\pi\)
0.969245 0.246098i \(-0.0791484\pi\)
\(338\) 10.3459 5.97319i 0.562741 0.324898i
\(339\) 3.25578 + 21.0537i 0.176830 + 1.14348i
\(340\) −2.87450 + 4.97877i −0.155891 + 0.270012i
\(341\) −9.04559 + 15.6674i −0.489846 + 0.848438i
\(342\) −18.2246 16.6522i −0.985473 0.900448i
\(343\) 0 0
\(344\) 5.29833 3.05899i 0.285667 0.164930i
\(345\) −3.15775 20.4198i −0.170008 1.09937i
\(346\) 11.2051i 0.602388i
\(347\) 16.7623i 0.899848i 0.893067 + 0.449924i \(0.148549\pi\)
−0.893067 + 0.449924i \(0.851451\pi\)
\(348\) 6.90471 + 2.67945i 0.370131 + 0.143634i
\(349\) −14.4455 + 8.34010i −0.773249 + 0.446435i −0.834032 0.551716i \(-0.813973\pi\)
0.0607835 + 0.998151i \(0.480640\pi\)
\(350\) 0 0
\(351\) −5.32298 0.337503i −0.284119 0.0180146i
\(352\) −1.51119 + 2.61745i −0.0805464 + 0.139511i
\(353\) 17.9568 31.1021i 0.955746 1.65540i 0.223093 0.974797i \(-0.428385\pi\)
0.732653 0.680603i \(-0.238282\pi\)
\(354\) −11.9352 + 9.59297i −0.634350 + 0.509860i
\(355\) −43.0282 + 24.8424i −2.28370 + 1.31850i
\(356\) −2.35495 + 4.07888i −0.124812 + 0.216180i
\(357\) 0 0
\(358\) −1.37089 2.37445i −0.0724538 0.125494i
\(359\) 24.7248 + 14.2749i 1.30493 + 0.753399i 0.981245 0.192767i \(-0.0617461\pi\)
0.323681 + 0.946166i \(0.395079\pi\)
\(360\) −3.21897 10.1590i −0.169655 0.535424i
\(361\) 24.3573 + 42.1881i 1.28196 + 2.22043i
\(362\) 22.2899 1.17153
\(363\) 1.16881 3.01192i 0.0613467 0.158085i
\(364\) 0 0
\(365\) 4.03342 + 2.32870i 0.211119 + 0.121890i
\(366\) −5.08944 6.33210i −0.266029 0.330984i
\(367\) −0.310665 0.179362i −0.0162166 0.00936264i 0.491870 0.870669i \(-0.336314\pi\)
−0.508086 + 0.861306i \(0.669647\pi\)
\(368\) 2.90837 1.67915i 0.151609 0.0875317i
\(369\) −0.209169 0.191122i −0.0108889 0.00994942i
\(370\) 20.7681i 1.07968i
\(371\) 0 0
\(372\) 8.08095 6.49509i 0.418978 0.336755i
\(373\) −12.6854 21.9718i −0.656826 1.13766i −0.981433 0.191807i \(-0.938565\pi\)
0.324606 0.945849i \(-0.394768\pi\)
\(374\) −4.89143 −0.252930
\(375\) 10.0929 + 12.5573i 0.521197 + 0.648455i
\(376\) 5.14045i 0.265099i
\(377\) −4.38924 −0.226057
\(378\) 0 0
\(379\) 26.9063 1.38209 0.691043 0.722814i \(-0.257152\pi\)
0.691043 + 0.722814i \(0.257152\pi\)
\(380\) 29.2311i 1.49952i
\(381\) 0.311599 + 0.387680i 0.0159637 + 0.0198614i
\(382\) 5.13264 0.262609
\(383\) 6.28586 + 10.8874i 0.321192 + 0.556322i 0.980734 0.195346i \(-0.0625830\pi\)
−0.659542 + 0.751668i \(0.729250\pi\)
\(384\) 1.35003 1.08509i 0.0688934 0.0553733i
\(385\) 0 0
\(386\) 15.9847i 0.813600i
\(387\) −17.4966 + 5.54399i −0.889404 + 0.281817i
\(388\) 13.3330 7.69782i 0.676881 0.390798i
\(389\) −14.0805 8.12937i −0.713909 0.412175i 0.0985980 0.995127i \(-0.468564\pi\)
−0.812507 + 0.582952i \(0.801898\pi\)
\(390\) 3.95652 + 4.92256i 0.200346 + 0.249263i
\(391\) 4.70694 + 2.71755i 0.238040 + 0.137432i
\(392\) 0 0
\(393\) 0.233695 0.602212i 0.0117884 0.0303776i
\(394\) −4.72572 −0.238078
\(395\) −1.64138 2.84295i −0.0825866 0.143044i
\(396\) 6.11615 6.69367i 0.307348 0.336369i
\(397\) 12.7252 + 7.34692i 0.638662 + 0.368732i 0.784099 0.620636i \(-0.213125\pi\)
−0.145437 + 0.989368i \(0.546459\pi\)
\(398\) −1.06047 1.83679i −0.0531567 0.0920701i
\(399\) 0 0
\(400\) −3.80924 + 6.59779i −0.190462 + 0.329890i
\(401\) 14.4162 8.32318i 0.719909 0.415640i −0.0948099 0.995495i \(-0.530224\pi\)
0.814719 + 0.579855i \(0.196891\pi\)
\(402\) 0.507173 0.407642i 0.0252955 0.0203313i
\(403\) −3.07208 + 5.32101i −0.153031 + 0.265058i
\(404\) −6.85234 + 11.8686i −0.340917 + 0.590485i
\(405\) 2.87682 + 31.8405i 0.142950 + 1.58217i
\(406\) 0 0
\(407\) 15.3028 8.83510i 0.758534 0.437940i
\(408\) 2.61329 + 1.01412i 0.129377 + 0.0502064i
\(409\) 2.80886i 0.138889i −0.997586 0.0694446i \(-0.977877\pi\)
0.997586 0.0694446i \(-0.0221227\pi\)
\(410\) 0.335493i 0.0165688i
\(411\) 1.86938 + 12.0884i 0.0922095 + 0.596279i
\(412\) 2.64014 1.52429i 0.130070 0.0750962i
\(413\) 0 0
\(414\) −9.60429 + 3.04322i −0.472025 + 0.149566i
\(415\) −19.2962 + 33.4219i −0.947211 + 1.64062i
\(416\) −0.513232 + 0.888944i −0.0251633 + 0.0435841i
\(417\) 3.86096 + 24.9672i 0.189072 + 1.22265i
\(418\) −21.5387 + 12.4354i −1.05349 + 0.608234i
\(419\) −7.47362 + 12.9447i −0.365110 + 0.632390i −0.988794 0.149287i \(-0.952302\pi\)
0.623684 + 0.781677i \(0.285635\pi\)
\(420\) 0 0
\(421\) −7.80336 13.5158i −0.380312 0.658720i 0.610794 0.791789i \(-0.290850\pi\)
−0.991107 + 0.133069i \(0.957517\pi\)
\(422\) −23.9160 13.8079i −1.16421 0.672160i
\(423\) −3.31641 + 15.0605i −0.161250 + 0.732268i
\(424\) 1.59484 + 2.76235i 0.0774524 + 0.134151i
\(425\) −12.3298 −0.598083
\(426\) 15.1770 + 18.8826i 0.735326 + 0.914867i
\(427\) 0 0
\(428\) 11.3681 + 6.56336i 0.549496 + 0.317252i
\(429\) −1.94398 + 5.00947i −0.0938563 + 0.241859i
\(430\) 18.8210 + 10.8663i 0.907629 + 0.524020i
\(431\) −14.0087 + 8.08792i −0.674775 + 0.389581i −0.797883 0.602812i \(-0.794047\pi\)
0.123109 + 0.992393i \(0.460714\pi\)
\(432\) −4.65538 + 2.30812i −0.223982 + 0.111049i
\(433\) 27.2499i 1.30955i 0.755824 + 0.654774i \(0.227236\pi\)
−0.755824 + 0.654774i \(0.772764\pi\)
\(434\) 0 0
\(435\) 4.02072 + 26.0003i 0.192779 + 1.24662i
\(436\) −5.28574 9.15516i −0.253141 0.438453i
\(437\) 27.6351 1.32197
\(438\) 0.821562 2.11709i 0.0392557 0.101159i
\(439\) 33.1347i 1.58143i −0.612182 0.790717i \(-0.709708\pi\)
0.612182 0.790717i \(-0.290292\pi\)
\(440\) −10.7362 −0.511829
\(441\) 0 0
\(442\) −1.66124 −0.0790171
\(443\) 22.2636i 1.05777i −0.848692 0.528887i \(-0.822609\pi\)
0.848692 0.528887i \(-0.177391\pi\)
\(444\) −10.0074 + 1.54756i −0.474932 + 0.0734442i
\(445\) −16.7307 −0.793111
\(446\) 10.1734 + 17.6209i 0.481727 + 0.834375i
\(447\) −17.2811 6.70612i −0.817366 0.317188i
\(448\) 0 0
\(449\) 6.80819i 0.321298i −0.987012 0.160649i \(-0.948641\pi\)
0.987012 0.160649i \(-0.0513588\pi\)
\(450\) 15.4170 16.8727i 0.726763 0.795386i
\(451\) −0.247206 + 0.142724i −0.0116405 + 0.00672062i
\(452\) −10.6520 6.14993i −0.501027 0.289268i
\(453\) −27.3895 + 4.23555i −1.28687 + 0.199004i
\(454\) 3.60266 + 2.08000i 0.169081 + 0.0976192i
\(455\) 0 0
\(456\) 14.0854 2.17819i 0.659611 0.102003i
\(457\) 15.2260 0.712240 0.356120 0.934440i \(-0.384099\pi\)
0.356120 + 0.934440i \(0.384099\pi\)
\(458\) 2.98482 + 5.16986i 0.139471 + 0.241572i
\(459\) −7.00218 4.65716i −0.326834 0.217378i
\(460\) 10.3313 + 5.96476i 0.481698 + 0.278108i
\(461\) −0.103381 0.179060i −0.00481492 0.00833968i 0.863608 0.504164i \(-0.168199\pi\)
−0.868423 + 0.495824i \(0.834866\pi\)
\(462\) 0 0
\(463\) −7.60217 + 13.1673i −0.353303 + 0.611938i −0.986826 0.161785i \(-0.948275\pi\)
0.633523 + 0.773724i \(0.281608\pi\)
\(464\) −3.70319 + 2.13804i −0.171916 + 0.0992560i
\(465\) 34.3339 + 13.3237i 1.59219 + 0.617870i
\(466\) 2.24360 3.88603i 0.103933 0.180017i
\(467\) −1.15424 + 1.99921i −0.0534120 + 0.0925123i −0.891495 0.453030i \(-0.850343\pi\)
0.838083 + 0.545542i \(0.183676\pi\)
\(468\) 2.07718 2.27332i 0.0960178 0.105084i
\(469\) 0 0
\(470\) 15.8138 9.13009i 0.729435 0.421139i
\(471\) 15.5613 12.5075i 0.717029 0.576314i
\(472\) 8.84071i 0.406927i
\(473\) 18.4908i 0.850209i
\(474\) −1.24761 + 1.00277i −0.0573045 + 0.0460587i
\(475\) −54.2925 + 31.3458i −2.49111 + 1.43824i
\(476\) 0 0
\(477\) −2.89042 9.12207i −0.132343 0.417671i
\(478\) 1.74905 3.02944i 0.0799996 0.138563i
\(479\) −6.21659 + 10.7674i −0.284043 + 0.491977i −0.972377 0.233417i \(-0.925009\pi\)
0.688334 + 0.725394i \(0.258343\pi\)
\(480\) 5.73592 + 2.22589i 0.261808 + 0.101598i
\(481\) 5.19719 3.00060i 0.236971 0.136815i
\(482\) 5.78332 10.0170i 0.263423 0.456262i
\(483\) 0 0
\(484\) 0.932639 + 1.61538i 0.0423927 + 0.0734263i
\(485\) 47.3622 + 27.3446i 2.15061 + 1.24165i
\(486\) 15.1285 3.75888i 0.686242 0.170506i
\(487\) −18.6503 32.3033i −0.845128 1.46380i −0.885510 0.464620i \(-0.846191\pi\)
0.0403829 0.999184i \(-0.487142\pi\)
\(488\) 4.69034 0.212322
\(489\) 4.70330 0.727325i 0.212690 0.0328908i
\(490\) 0 0
\(491\) −11.8191 6.82377i −0.533389 0.307952i 0.209006 0.977914i \(-0.432977\pi\)
−0.742396 + 0.669962i \(0.766310\pi\)
\(492\) 0.161662 0.0249997i 0.00728830 0.00112707i
\(493\) −5.99328 3.46022i −0.269924 0.155840i
\(494\) −7.31502 + 4.22333i −0.329118 + 0.190017i
\(495\) 31.4550 + 6.92657i 1.41380 + 0.311326i
\(496\) 5.98576i 0.268768i
\(497\) 0 0
\(498\) 17.5427 + 6.80766i 0.786109 + 0.305059i
\(499\) 10.5010 + 18.1882i 0.470088 + 0.814216i 0.999415 0.0342021i \(-0.0108890\pi\)
−0.529327 + 0.848418i \(0.677556\pi\)
\(500\) −9.30148 −0.415975
\(501\) 9.48100 1.46616i 0.423580 0.0655030i
\(502\) 26.7426i 1.19358i
\(503\) 22.3018 0.994388 0.497194 0.867639i \(-0.334364\pi\)
0.497194 + 0.867639i \(0.334364\pi\)
\(504\) 0 0
\(505\) −48.6824 −2.16634
\(506\) 10.1500i 0.451224i
\(507\) 7.48577 19.2902i 0.332455 0.856706i
\(508\) −0.287164 −0.0127408
\(509\) 10.9589 + 18.9814i 0.485746 + 0.841337i 0.999866 0.0163813i \(-0.00521458\pi\)
−0.514120 + 0.857719i \(0.671881\pi\)
\(510\) 1.52176 + 9.84057i 0.0673847 + 0.435748i
\(511\) 0 0
\(512\) 1.00000i 0.0441942i
\(513\) −42.6729 2.70567i −1.88405 0.119458i
\(514\) 4.51396 2.60614i 0.199102 0.114952i
\(515\) 9.37844 + 5.41465i 0.413264 + 0.238598i
\(516\) 3.83362 9.87890i 0.168766 0.434894i
\(517\) 13.4549 + 7.76818i 0.591745 + 0.341644i
\(518\) 0 0
\(519\) −12.1585 15.1272i −0.533699 0.664009i
\(520\) −3.64626 −0.159899
\(521\) −13.3839 23.1816i −0.586358 1.01560i −0.994705 0.102775i \(-0.967228\pi\)
0.408346 0.912827i \(-0.366106\pi\)
\(522\) 12.2290 3.87489i 0.535249 0.169599i
\(523\) −14.8576 8.57805i −0.649678 0.375092i 0.138655 0.990341i \(-0.455722\pi\)
−0.788333 + 0.615249i \(0.789055\pi\)
\(524\) 0.186474 + 0.322983i 0.00814617 + 0.0141096i
\(525\) 0 0
\(526\) 7.51869 13.0228i 0.327831 0.567819i
\(527\) −8.38954 + 4.84370i −0.365454 + 0.210995i
\(528\) 0.800023 + 5.17341i 0.0348165 + 0.225144i
\(529\) −5.86091 + 10.1514i −0.254822 + 0.441365i
\(530\) −5.66528 + 9.81255i −0.246084 + 0.426230i
\(531\) −5.70367 + 25.9016i −0.247518 + 1.12403i
\(532\) 0 0
\(533\) −0.0839566 + 0.0484723i −0.00363656 + 0.00209957i
\(534\) 1.24671 + 8.06194i 0.0539505 + 0.348874i
\(535\) 46.6294i 2.01596i
\(536\) 0.375675i 0.0162267i
\(537\) −4.42724 1.71804i −0.191049 0.0741390i
\(538\) −20.0323 + 11.5657i −0.863654 + 0.498631i
\(539\) 0 0
\(540\) −15.3691 10.2220i −0.661381 0.439886i
\(541\) −14.4091 + 24.9573i −0.619496 + 1.07300i 0.370081 + 0.928999i \(0.379330\pi\)
−0.989578 + 0.144000i \(0.954004\pi\)
\(542\) 4.95748 8.58661i 0.212942 0.368827i
\(543\) 30.0920 24.1865i 1.29137 1.03794i
\(544\) −1.40158 + 0.809204i −0.0600924 + 0.0346943i
\(545\) 18.7763 32.5214i 0.804286 1.39306i
\(546\) 0 0
\(547\) −16.4045 28.4135i −0.701407 1.21487i −0.967972 0.251056i \(-0.919222\pi\)
0.266565 0.963817i \(-0.414111\pi\)
\(548\) −6.11607 3.53111i −0.261265 0.150842i
\(549\) −13.7418 3.02602i −0.586485 0.129147i
\(550\) −11.5129 19.9410i −0.490913 0.850286i
\(551\) −35.1874 −1.49903
\(552\) 2.10436 5.42275i 0.0895676 0.230808i
\(553\) 0 0
\(554\) 7.44299 + 4.29721i 0.316223 + 0.182571i
\(555\) −22.5353 28.0376i −0.956569 1.19013i
\(556\) −12.6320 7.29308i −0.535715 0.309295i
\(557\) −40.0544 + 23.1254i −1.69716 + 0.979855i −0.748725 + 0.662880i \(0.769334\pi\)
−0.948434 + 0.316975i \(0.897333\pi\)
\(558\) 3.86177 17.5371i 0.163482 0.742405i
\(559\) 6.27990i 0.265611i
\(560\) 0 0
\(561\) −6.60357 + 5.30764i −0.278803 + 0.224089i
\(562\) −10.3639 17.9508i −0.437174 0.757208i
\(563\) −1.97727 −0.0833322 −0.0416661 0.999132i \(-0.513267\pi\)
−0.0416661 + 0.999132i \(0.513267\pi\)
\(564\) −5.57785 6.93976i −0.234870 0.292217i
\(565\) 43.6922i 1.83814i
\(566\) 2.36710 0.0994966
\(567\) 0 0
\(568\) −13.9868 −0.586874
\(569\) 32.9901i 1.38302i 0.722369 + 0.691508i \(0.243053\pi\)
−0.722369 + 0.691508i \(0.756947\pi\)
\(570\) 31.7183 + 39.4628i 1.32853 + 1.65291i
\(571\) 14.8065 0.619634 0.309817 0.950796i \(-0.399732\pi\)
0.309817 + 0.950796i \(0.399732\pi\)
\(572\) −1.55118 2.68672i −0.0648580 0.112337i
\(573\) 6.92921 5.56937i 0.289472 0.232664i
\(574\) 0 0
\(575\) 25.5851i 1.06697i
\(576\) 0.645160 2.92981i 0.0268817 0.122075i
\(577\) 15.9505 9.20901i 0.664027 0.383376i −0.129783 0.991542i \(-0.541428\pi\)
0.793810 + 0.608166i \(0.208095\pi\)
\(578\) 12.4541 + 7.19038i 0.518022 + 0.299080i
\(579\) 17.3448 + 21.5798i 0.720827 + 0.896827i
\(580\) −13.1547 7.59485i −0.546218 0.315359i
\(581\) 0 0
\(582\) 9.64714 24.8598i 0.399887 1.03047i
\(583\) −9.64041 −0.399265
\(584\) 0.655556 + 1.13546i 0.0271271 + 0.0469855i
\(585\) 10.6828 + 2.35242i 0.441681 + 0.0972605i
\(586\) −15.3074 8.83774i −0.632343 0.365084i
\(587\) −23.1065 40.0216i −0.953707 1.65187i −0.737301 0.675565i \(-0.763900\pi\)
−0.216406 0.976304i \(-0.569433\pi\)
\(588\) 0 0
\(589\) −24.6281 + 42.6571i −1.01478 + 1.75765i
\(590\) 27.1970 15.7022i 1.11968 0.646450i
\(591\) −6.37986 + 5.12783i −0.262432 + 0.210931i
\(592\) 2.92323 5.06319i 0.120144 0.208096i
\(593\) −6.80465 + 11.7860i −0.279434 + 0.483993i −0.971244 0.238086i \(-0.923480\pi\)
0.691810 + 0.722079i \(0.256813\pi\)
\(594\) 0.993759 15.6732i 0.0407744 0.643080i
\(595\) 0 0
\(596\) 9.26832 5.35107i 0.379645 0.219188i
\(597\) −3.42476 1.32902i −0.140166 0.0543930i
\(598\) 3.44718i 0.140965i
\(599\) 23.5806i 0.963477i 0.876315 + 0.481739i \(0.159995\pi\)
−0.876315 + 0.481739i \(0.840005\pi\)
\(600\) 2.01662 + 13.0406i 0.0823280 + 0.532380i
\(601\) 31.0765 17.9420i 1.26764 0.731871i 0.293097 0.956083i \(-0.405314\pi\)
0.974540 + 0.224212i \(0.0719808\pi\)
\(602\) 0 0
\(603\) 0.242371 1.10066i 0.00987010 0.0448222i
\(604\) 8.00065 13.8575i 0.325542 0.563855i
\(605\) −3.31297 + 5.73823i −0.134691 + 0.233292i
\(606\) 3.62764 + 23.4584i 0.147363 + 0.952931i
\(607\) 16.8502 9.72845i 0.683928 0.394866i −0.117406 0.993084i \(-0.537458\pi\)
0.801333 + 0.598218i \(0.204124\pi\)
\(608\) −4.11444 + 7.12643i −0.166863 + 0.289015i
\(609\) 0 0
\(610\) 8.33063 + 14.4291i 0.337297 + 0.584216i
\(611\) 4.56958 + 2.63825i 0.184865 + 0.106732i
\(612\) 4.62843 1.46657i 0.187093 0.0592825i
\(613\) −21.1210 36.5827i −0.853071 1.47756i −0.878423 0.477883i \(-0.841404\pi\)
0.0253526 0.999679i \(-0.491929\pi\)
\(614\) −1.28155 −0.0517193
\(615\) 0.364040 + 0.452926i 0.0146795 + 0.0182637i
\(616\) 0 0
\(617\) 9.63660 + 5.56369i 0.387955 + 0.223986i 0.681274 0.732029i \(-0.261426\pi\)
−0.293319 + 0.956015i \(0.594760\pi\)
\(618\) 1.91028 4.92262i 0.0768428 0.198017i
\(619\) −8.71387 5.03096i −0.350240 0.202211i 0.314551 0.949241i \(-0.398146\pi\)
−0.664791 + 0.747029i \(0.731479\pi\)
\(620\) −18.4142 + 10.6315i −0.739533 + 0.426969i
\(621\) −9.66391 + 14.5300i −0.387799 + 0.583067i
\(622\) 12.5329i 0.502522i
\(623\) 0 0
\(624\) 0.271706 + 1.75700i 0.0108769 + 0.0703365i
\(625\) 2.52560 + 4.37447i 0.101024 + 0.174979i
\(626\) 8.75385 0.349874
\(627\) −15.5844 + 40.1595i −0.622380 + 1.60382i
\(628\) 11.5267i 0.459964i
\(629\) 9.46198 0.377274
\(630\) 0 0
\(631\) 10.3528 0.412139 0.206070 0.978537i \(-0.433933\pi\)
0.206070 + 0.978537i \(0.433933\pi\)
\(632\) 0.924134i 0.0367601i
\(633\) −47.2702 + 7.30994i −1.87882 + 0.290544i
\(634\) 13.6784 0.543239
\(635\) −0.510039 0.883413i −0.0202403 0.0350572i
\(636\) 5.15048 + 1.99870i 0.204230 + 0.0792538i
\(637\) 0 0
\(638\) 12.9239i 0.511662i
\(639\) 40.9787 + 9.02374i 1.62109 + 0.356974i
\(640\) −3.07634 + 1.77612i −0.121603 + 0.0702075i
\(641\) −23.0678 13.3182i −0.911123 0.526037i −0.0303310 0.999540i \(-0.509656\pi\)
−0.880792 + 0.473503i \(0.842989\pi\)
\(642\) 22.4691 3.47465i 0.886783 0.137134i
\(643\) −40.0493 23.1225i −1.57939 0.911861i −0.994944 0.100429i \(-0.967979\pi\)
−0.584446 0.811433i \(-0.698688\pi\)
\(644\) 0 0
\(645\) 37.1998 5.75264i 1.46474 0.226510i
\(646\) −13.3177 −0.523978
\(647\) 15.7032 + 27.1987i 0.617355 + 1.06929i 0.989966 + 0.141303i \(0.0451293\pi\)
−0.372611 + 0.927988i \(0.621537\pi\)
\(648\) −3.78039 + 8.16754i −0.148508 + 0.320851i
\(649\) 23.1401 + 13.3600i 0.908329 + 0.524424i
\(650\) −3.91005 6.77240i −0.153365 0.265635i
\(651\) 0 0
\(652\) −1.37386 + 2.37960i −0.0538046 + 0.0931923i
\(653\) 39.9639 23.0732i 1.56391 0.902924i 0.567054 0.823681i \(-0.308083\pi\)
0.996855 0.0792429i \(-0.0252503\pi\)
\(654\) −17.0701 6.62424i −0.667493 0.259028i
\(655\) −0.662404 + 1.14732i −0.0258823 + 0.0448294i
\(656\) −0.0472226 + 0.0817920i −0.00184373 + 0.00319344i
\(657\) −1.18810 3.74960i −0.0463522 0.146286i
\(658\) 0 0
\(659\) 1.18052 0.681575i 0.0459867 0.0265504i −0.476830 0.878995i \(-0.658214\pi\)
0.522817 + 0.852445i \(0.324881\pi\)
\(660\) −14.4942 + 11.6498i −0.564186 + 0.453466i
\(661\) 7.20404i 0.280205i 0.990137 + 0.140102i \(0.0447431\pi\)
−0.990137 + 0.140102i \(0.955257\pi\)
\(662\) 10.8972i 0.423530i
\(663\) −2.24272 + 1.80259i −0.0871001 + 0.0700069i
\(664\) −9.40866 + 5.43209i −0.365127 + 0.210806i
\(665\) 0 0
\(666\) −11.8311 + 12.9482i −0.458445 + 0.501733i
\(667\) −7.18018 + 12.4364i −0.278018 + 0.481541i
\(668\) −2.76946 + 4.79685i −0.107154 + 0.185596i
\(669\) 32.8547 + 12.7497i 1.27024 + 0.492931i
\(670\) −1.15570 + 0.667247i −0.0446488 + 0.0257780i
\(671\) −7.08797 + 12.2767i −0.273628 + 0.473938i
\(672\) 0 0
\(673\) 19.4709 + 33.7246i 0.750548 + 1.29999i 0.947558 + 0.319585i \(0.103544\pi\)
−0.197010 + 0.980402i \(0.563123\pi\)
\(674\) 22.1858 + 12.8090i 0.854565 + 0.493383i
\(675\) 2.50496 39.5074i 0.0964161 1.52064i
\(676\) 5.97319 + 10.3459i 0.229738 + 0.397918i
\(677\) −2.41011 −0.0926280 −0.0463140 0.998927i \(-0.514747\pi\)
−0.0463140 + 0.998927i \(0.514747\pi\)
\(678\) −21.0537 + 3.25578i −0.808563 + 0.125037i
\(679\) 0 0
\(680\) −4.97877 2.87450i −0.190927 0.110232i
\(681\) 7.12069 1.10115i 0.272865 0.0421963i
\(682\) −15.6674 9.04559i −0.599937 0.346374i
\(683\) 24.5302 14.1625i 0.938624 0.541915i 0.0490952 0.998794i \(-0.484366\pi\)
0.889529 + 0.456879i \(0.151033\pi\)
\(684\) 16.6522 18.2246i 0.636713 0.696834i
\(685\) 25.0868i 0.958517i
\(686\) 0 0
\(687\) 9.63935 + 3.74066i 0.367764 + 0.142715i
\(688\) 3.05899 + 5.29833i 0.116623 + 0.201997i
\(689\) −3.27410 −0.124733
\(690\) 20.4198 3.15775i 0.777369 0.120214i
\(691\) 3.41022i 0.129731i 0.997894 + 0.0648655i \(0.0206618\pi\)
−0.997894 + 0.0648655i \(0.979338\pi\)
\(692\) 11.2051 0.425953
\(693\) 0 0
\(694\) −16.7623 −0.636289
\(695\) 51.8136i 1.96540i
\(696\) −2.67945 + 6.90471i −0.101564 + 0.261722i
\(697\) −0.152851 −0.00578964
\(698\) −8.34010 14.4455i −0.315678 0.546769i
\(699\) −1.18776 7.68076i −0.0449254 0.290513i
\(700\) 0 0
\(701\) 51.4943i 1.94491i −0.233087 0.972456i \(-0.574883\pi\)
0.233087 0.972456i \(-0.425117\pi\)
\(702\) 0.337503 5.32298i 0.0127382 0.200903i
\(703\) 41.6644 24.0550i 1.57140 0.907251i
\(704\) −2.61745 1.51119i −0.0986488 0.0569549i
\(705\) 11.4421 29.4853i 0.430934 1.11048i
\(706\) 31.1021 + 17.9568i 1.17054 + 0.675814i
\(707\) 0 0
\(708\) −9.59297 11.9352i −0.360526 0.448553i
\(709\) 10.0844 0.378726 0.189363 0.981907i \(-0.439358\pi\)
0.189363 + 0.981907i \(0.439358\pi\)
\(710\) −24.8424 43.0282i −0.932317 1.61482i
\(711\) −0.596214 + 2.70753i −0.0223598 + 0.101540i
\(712\) −4.07888 2.35495i −0.152863 0.0882553i
\(713\) 10.0510 + 17.4088i 0.376412 + 0.651965i
\(714\) 0 0
\(715\) 5.51017 9.54389i 0.206069 0.356921i
\(716\) 2.37445 1.37089i 0.0887375 0.0512326i
\(717\) −0.925948 5.98770i −0.0345802 0.223615i
\(718\) −14.2749 + 24.7248i −0.532734 + 0.922722i
\(719\) 15.9584 27.6408i 0.595148 1.03083i −0.398378 0.917221i \(-0.630427\pi\)
0.993526 0.113605i \(-0.0362399\pi\)
\(720\) 10.1590 3.21897i 0.378602 0.119964i
\(721\) 0 0
\(722\) −42.1881 + 24.3573i −1.57008 + 0.906485i
\(723\) −3.06170 19.7987i −0.113866 0.736321i
\(724\) 22.2899i 0.828397i
\(725\) 32.5772i 1.20989i
\(726\) 3.01192 + 1.16881i 0.111783 + 0.0433787i
\(727\) 17.9336 10.3540i 0.665120 0.384007i −0.129105 0.991631i \(-0.541210\pi\)
0.794225 + 0.607624i \(0.207877\pi\)
\(728\) 0 0
\(729\) 16.3452 21.4904i 0.605377 0.795939i
\(730\) −2.32870 + 4.03342i −0.0861889 + 0.149284i
\(731\) −4.95070 + 8.57487i −0.183108 + 0.317153i
\(732\) 6.33210 5.08944i 0.234041 0.188111i
\(733\) −7.69996 + 4.44558i −0.284405 + 0.164201i −0.635416 0.772170i \(-0.719171\pi\)
0.351011 + 0.936371i \(0.385838\pi\)
\(734\) 0.179362 0.310665i 0.00662038 0.0114668i
\(735\) 0 0
\(736\) 1.67915 + 2.90837i 0.0618943 + 0.107204i
\(737\) −0.983312 0.567715i −0.0362207 0.0209121i
\(738\) 0.191122 0.209169i 0.00703530 0.00769960i
\(739\) −16.3882 28.3851i −0.602848 1.04416i −0.992388 0.123154i \(-0.960699\pi\)
0.389539 0.921010i \(-0.372634\pi\)
\(740\) 20.7681 0.763451
\(741\) −5.29280 + 13.6391i −0.194436 + 0.501044i
\(742\) 0 0
\(743\) −6.68055 3.85702i −0.245086 0.141500i 0.372426 0.928062i \(-0.378526\pi\)
−0.617512 + 0.786562i \(0.711859\pi\)
\(744\) 6.49509 + 8.08095i 0.238121 + 0.296262i
\(745\) 32.9234 + 19.0083i 1.20622 + 0.696411i
\(746\) 21.9718 12.6854i 0.804445 0.464446i
\(747\) 31.0701 9.84490i 1.13680 0.360206i
\(748\) 4.89143i 0.178848i
\(749\) 0 0
\(750\) −12.5573 + 10.0929i −0.458527 + 0.368542i
\(751\) −15.3804 26.6397i −0.561239 0.972095i −0.997389 0.0722207i \(-0.976991\pi\)
0.436149 0.899874i \(-0.356342\pi\)
\(752\) 5.14045 0.187453
\(753\) −29.0181 36.1033i −1.05748 1.31568i
\(754\) 4.38924i 0.159847i
\(755\) 56.8406 2.06864
\(756\) 0 0
\(757\) 46.4611 1.68866 0.844328 0.535827i \(-0.180000\pi\)
0.844328 + 0.535827i \(0.180000\pi\)
\(758\) 26.9063i 0.977282i
\(759\) 11.0137 + 13.7028i 0.399772 + 0.497381i
\(760\) −29.2311 −1.06032
\(761\) 18.5959 + 32.2090i 0.674099 + 1.16757i 0.976731 + 0.214467i \(0.0688013\pi\)
−0.302632 + 0.953107i \(0.597865\pi\)
\(762\) −0.387680 + 0.311599i −0.0140442 + 0.0112880i
\(763\) 0 0
\(764\) 5.13264i 0.185692i
\(765\) 12.7323 + 11.6338i 0.460338 + 0.420622i
\(766\) −10.8874 + 6.28586i −0.393379 + 0.227117i
\(767\) 7.85890 + 4.53734i 0.283768 + 0.163834i
\(768\) 1.08509 + 1.35003i 0.0391548 + 0.0487150i
\(769\) 12.2312 + 7.06166i 0.441067 + 0.254650i 0.704050 0.710150i \(-0.251373\pi\)
−0.262983 + 0.964800i \(0.584706\pi\)
\(770\) 0 0
\(771\) 3.26609 8.41642i 0.117625 0.303110i
\(772\) −15.9847 −0.575302
\(773\) −15.4728 26.7996i −0.556517 0.963915i −0.997784 0.0665393i \(-0.978804\pi\)
0.441267 0.897376i \(-0.354529\pi\)
\(774\) −5.54399 17.4966i −0.199275 0.628904i
\(775\) −39.4928 22.8012i −1.41862 0.819043i
\(776\) 7.69782 + 13.3330i 0.276336 + 0.478627i
\(777\) 0 0
\(778\) 8.12937 14.0805i 0.291452 0.504810i
\(779\) −0.673057 + 0.388590i −0.0241148 + 0.0139227i
\(780\) −4.92256 + 3.95652i −0.176256 + 0.141666i
\(781\) 21.1367 36.6098i 0.756330 1.31000i
\(782\) −2.71755 + 4.70694i −0.0971794 + 0.168320i
\(783\) 12.3049 18.5008i 0.439742 0.661165i
\(784\) 0 0
\(785\) −35.4599 + 20.4728i −1.26562 + 0.730706i
\(786\) 0.602212 + 0.233695i 0.0214802 + 0.00833564i
\(787\) 18.3256i 0.653237i −0.945156 0.326619i \(-0.894091\pi\)
0.945156 0.326619i \(-0.105909\pi\)
\(788\) 4.72572i 0.168347i
\(789\) −3.98041 25.7396i −0.141706 0.916353i
\(790\) 2.84295 1.64138i 0.101148 0.0583976i
\(791\) 0 0
\(792\) 6.69367 + 6.11615i 0.237849 + 0.217328i
\(793\) −2.40723 + 4.16945i −0.0854834 + 0.148062i
\(794\) −7.34692 + 12.7252i −0.260733 + 0.451602i
\(795\) 2.99921 + 19.3946i 0.106371 + 0.687854i
\(796\) 1.83679 1.06047i 0.0651034 0.0375875i
\(797\) 1.07681 1.86508i 0.0381424 0.0660646i −0.846324 0.532668i \(-0.821189\pi\)
0.884466 + 0.466604i \(0.154523\pi\)
\(798\) 0 0
\(799\) 4.15968 + 7.20477i 0.147159 + 0.254886i
\(800\) −6.59779 3.80924i −0.233267 0.134677i
\(801\) 10.4310 + 9.53107i 0.368562 + 0.336764i
\(802\) 8.32318 + 14.4162i 0.293902 + 0.509053i
\(803\) −3.96266 −0.139839
\(804\) 0.407642 + 0.507173i 0.0143764 + 0.0178866i
\(805\) 0 0
\(806\) −5.32101 3.07208i −0.187424 0.108210i
\(807\) −14.4944 + 37.3508i −0.510228 + 1.31481i
\(808\) −11.8686 6.85234i −0.417536 0.241064i
\(809\) 17.0147 9.82342i 0.598204 0.345373i −0.170131 0.985421i \(-0.554419\pi\)
0.768335 + 0.640048i \(0.221086\pi\)
\(810\) −31.8405 + 2.87682i −1.11876 + 0.101081i
\(811\) 12.3340i 0.433105i −0.976271 0.216552i \(-0.930519\pi\)
0.976271 0.216552i \(-0.0694812\pi\)
\(812\) 0 0
\(813\) −2.62450 16.9715i −0.0920452 0.595216i
\(814\) 8.83510 + 15.3028i 0.309670 + 0.536364i
\(815\) −9.76061 −0.341899
\(816\) −1.01412 + 2.61329i −0.0355013 + 0.0914836i
\(817\) 50.3443i 1.76132i
\(818\) 2.80886 0.0982095
\(819\) 0 0
\(820\) −0.335493 −0.0117159
\(821\) 22.3738i 0.780853i 0.920634 + 0.390426i \(0.127672\pi\)
−0.920634 + 0.390426i \(0.872328\pi\)
\(822\) −12.0884 + 1.86938i −0.421633 + 0.0652020i
\(823\) 27.0065 0.941388 0.470694 0.882297i \(-0.344004\pi\)
0.470694 + 0.882297i \(0.344004\pi\)
\(824\) 1.52429 + 2.64014i 0.0531010 + 0.0919737i
\(825\) −37.1805 14.4283i −1.29446 0.502330i
\(826\) 0 0
\(827\) 26.3189i 0.915196i 0.889159 + 0.457598i \(0.151290\pi\)
−0.889159 + 0.457598i \(0.848710\pi\)
\(828\) −3.04322 9.60429i −0.105759 0.333772i
\(829\) −28.8691 + 16.6676i −1.00266 + 0.578888i −0.909035 0.416719i \(-0.863180\pi\)
−0.0936287 + 0.995607i \(0.529847\pi\)
\(830\) −33.4219 19.2962i −1.16009 0.669779i
\(831\) 14.7111 2.27495i 0.510323 0.0789172i
\(832\) −0.888944 0.513232i −0.0308186 0.0177931i
\(833\) 0 0
\(834\) −24.9672 + 3.86096i −0.864543 + 0.133694i
\(835\) −19.6756 −0.680903
\(836\) −12.4354 21.5387i −0.430086 0.744932i
\(837\) −13.8158 27.8660i −0.477545 0.963190i
\(838\) −12.9447 7.47362i −0.447167 0.258172i
\(839\) 18.6896 + 32.3713i 0.645236 + 1.11758i 0.984247 + 0.176799i \(0.0565743\pi\)
−0.339011 + 0.940782i \(0.610092\pi\)
\(840\) 0 0
\(841\) −5.35758 + 9.27960i −0.184744 + 0.319986i
\(842\) 13.5158 7.80336i 0.465786 0.268922i
\(843\) −33.4698 12.9883i −1.15276 0.447342i
\(844\) 13.8079 23.9160i 0.475289 0.823224i
\(845\) −21.2182 + 36.7511i −0.729930 + 1.26428i
\(846\) −15.0605 3.31641i −0.517792 0.114021i
\(847\) 0 0
\(848\) −2.76235 + 1.59484i −0.0948594 + 0.0547671i
\(849\) 3.19565 2.56852i 0.109675 0.0881512i
\(850\) 12.3298i 0.422909i
\(851\) 19.6342i 0.673052i
\(852\) −18.8826 + 15.1770i −0.646908 + 0.519954i
\(853\) 4.65798 2.68929i 0.159486 0.0920795i −0.418133 0.908386i \(-0.637315\pi\)
0.577619 + 0.816306i \(0.303982\pi\)
\(854\) 0 0
\(855\) 85.6414 + 18.8587i 2.92887 + 0.644954i
\(856\) −6.56336 + 11.3681i −0.224331 + 0.388553i
\(857\) −22.7000 + 39.3176i −0.775418 + 1.34306i 0.159142 + 0.987256i \(0.449127\pi\)
−0.934559 + 0.355807i \(0.884206\pi\)
\(858\) −5.00947 1.94398i −0.171020 0.0663665i
\(859\) −3.36261 + 1.94141i −0.114731 + 0.0662399i −0.556267 0.831003i \(-0.687767\pi\)
0.441536 + 0.897243i \(0.354434\pi\)
\(860\) −10.8663 + 18.8210i −0.370538 + 0.641791i
\(861\) 0 0
\(862\) −8.08792 14.0087i −0.275476 0.477138i
\(863\) −20.3332 11.7394i −0.692152 0.399614i 0.112266 0.993678i \(-0.464189\pi\)
−0.804418 + 0.594064i \(0.797522\pi\)
\(864\) −2.30812 4.65538i −0.0785238 0.158379i
\(865\) 19.9016 + 34.4706i 0.676674 + 1.17203i
\(866\) −27.2499 −0.925991
\(867\) 24.6156 3.80660i 0.835990 0.129279i
\(868\) 0 0
\(869\) 2.41887 + 1.39654i 0.0820547 + 0.0473743i
\(870\) −26.0003 + 4.02072i −0.881492 + 0.136315i
\(871\) −0.333955 0.192809i −0.0113156 0.00653308i
\(872\) 9.15516 5.28574i 0.310033 0.178998i
\(873\) −13.9512 44.0295i −0.472177 1.49017i
\(874\) 27.6351i 0.934770i
\(875\) 0 0
\(876\) 2.11709 + 0.821562i 0.0715299 + 0.0277580i
\(877\) −16.4796 28.5434i −0.556475 0.963843i −0.997787 0.0664896i \(-0.978820\pi\)
0.441312 0.897354i \(-0.354513\pi\)
\(878\) 33.1347 1.11824
\(879\) −30.2552 + 4.67871i −1.02048 + 0.157809i
\(880\) 10.7362i 0.361918i
\(881\) −7.44403 −0.250796 −0.125398 0.992107i \(-0.540021\pi\)
−0.125398 + 0.992107i \(0.540021\pi\)
\(882\) 0 0
\(883\) −28.2839 −0.951828 −0.475914 0.879492i \(-0.657883\pi\)
−0.475914 + 0.879492i \(0.657883\pi\)
\(884\) 1.66124i 0.0558735i
\(885\) 19.6785 50.7097i 0.661485 1.70459i
\(886\) 22.2636 0.747960
\(887\) −6.06377 10.5028i −0.203602 0.352648i 0.746085 0.665851i \(-0.231931\pi\)
−0.949686 + 0.313203i \(0.898598\pi\)
\(888\) −1.54756 10.0074i −0.0519329 0.335827i
\(889\) 0 0
\(890\) 16.7307i 0.560814i
\(891\) −15.6653 22.2376i −0.524806 0.744989i
\(892\) −17.6209 + 10.1734i −0.589992 + 0.340632i
\(893\) 36.6331 + 21.1501i 1.22588 + 0.707761i
\(894\) 6.70612 17.2811i 0.224286 0.577965i
\(895\) 8.43465 + 4.86975i 0.281939 + 0.162778i
\(896\) 0 0
\(897\) 3.74050 + 4.65379i 0.124892 + 0.155385i
\(898\) 6.80819 0.227192
\(899\) −12.7978 22.1664i −0.426830 0.739291i
\(900\) 16.8727 + 15.4170i 0.562423 + 0.513899i
\(901\) −4.47061 2.58111i −0.148938 0.0859891i
\(902\) −0.142724 0.247206i −0.00475220 0.00823105i
\(903\) 0 0
\(904\) 6.14993 10.6520i 0.204544 0.354280i
\(905\) −68.5712 + 39.5896i −2.27938 + 1.31600i
\(906\) −4.23555 27.3895i −0.140717 0.909955i
\(907\) 23.0890 39.9913i 0.766657 1.32789i −0.172709 0.984973i \(-0.555252\pi\)
0.939366 0.342916i \(-0.111415\pi\)
\(908\) −2.08000 + 3.60266i −0.0690272 + 0.119559i
\(909\) 30.3518 + 27.7332i 1.00671 + 0.919851i
\(910\) 0 0
\(911\) −12.7284 + 7.34874i −0.421710 + 0.243475i −0.695809 0.718227i \(-0.744954\pi\)
0.274098 + 0.961702i \(0.411621\pi\)
\(912\) 2.17819 + 14.0854i 0.0721272 + 0.466415i
\(913\) 32.8356i 1.08670i
\(914\) 15.2260i 0.503630i
\(915\) 26.9034 + 10.4402i 0.889400 + 0.345142i
\(916\) −5.16986 + 2.98482i −0.170817 + 0.0986212i
\(917\) 0 0
\(918\) 4.65716 7.00218i 0.153709 0.231106i
\(919\) −12.9345 + 22.4033i −0.426671 + 0.739015i −0.996575 0.0826958i \(-0.973647\pi\)
0.569904 + 0.821711i \(0.306980\pi\)
\(920\) −5.96476 + 10.3313i −0.196652 + 0.340612i
\(921\) −1.73014 + 1.39060i −0.0570099 + 0.0458219i
\(922\) 0.179060 0.103381i 0.00589704 0.00340466i
\(923\) 7.17849 12.4335i 0.236283 0.409254i
\(924\) 0 0
\(925\) 22.2706 + 38.5738i 0.732253 + 1.26830i
\(926\) −13.1673 7.60217i −0.432706 0.249823i
\(927\) −2.76255 8.71852i −0.0907341 0.286354i
\(928\) −2.13804 3.70319i −0.0701846 0.121563i
\(929\) −13.1935 −0.432863 −0.216432 0.976298i \(-0.569442\pi\)
−0.216432 + 0.976298i \(0.569442\pi\)
\(930\) −13.3237 + 34.3339i −0.436900 + 1.12585i
\(931\) 0 0
\(932\) 3.88603 + 2.24360i 0.127291 + 0.0734915i
\(933\) −13.5993 16.9197i −0.445220 0.553927i
\(934\) −1.99921 1.15424i −0.0654161 0.0377680i
\(935\) 15.0477 8.68779i 0.492112 0.284121i
\(936\) 2.27332 + 2.07718i 0.0743057 + 0.0678948i
\(937\) 8.86021i 0.289451i −0.989472 0.144725i \(-0.953770\pi\)
0.989472 0.144725i \(-0.0462298\pi\)
\(938\) 0 0
\(939\) 11.8180 9.49871i 0.385664 0.309979i
\(940\) 9.13009 + 15.8138i 0.297791 + 0.515788i
\(941\) 4.11839 0.134256 0.0671278 0.997744i \(-0.478616\pi\)
0.0671278 + 0.997744i \(0.478616\pi\)
\(942\) 12.5075 + 15.5613i 0.407516 + 0.507016i
\(943\) 0.317175i 0.0103287i
\(944\) 8.84071 0.287741
\(945\) 0 0
\(946\) −18.4908 −0.601189
\(947\) 24.7681i 0.804854i 0.915452 + 0.402427i \(0.131833\pi\)
−0.915452 + 0.402427i \(0.868167\pi\)
\(948\) −1.00277 1.24761i −0.0325684 0.0405204i
\(949\) −1.34581 −0.0436868
\(950\) −31.3458 54.2925i −1.01699 1.76148i
\(951\) 18.4662 14.8423i 0.598809 0.481294i
\(952\) 0 0
\(953\) 9.62625i 0.311825i −0.987771 0.155912i \(-0.950168\pi\)
0.987771 0.155912i \(-0.0498317\pi\)
\(954\) 9.12207 2.89042i 0.295338 0.0935810i
\(955\) −15.7897 + 9.11620i −0.510944 + 0.294993i
\(956\) 3.02944 + 1.74905i 0.0979790 + 0.0565682i
\(957\) −14.0236 17.4476i −0.453318 0.564002i
\(958\) −10.7674 6.21659i −0.347880 0.200849i
\(959\) 0 0
\(960\) −2.22589 + 5.73592i −0.0718404 + 0.185126i
\(961\) −4.82931 −0.155784
\(962\) 3.00060 + 5.19719i 0.0967431 + 0.167564i
\(963\) 26.5636 29.0718i 0.856000 0.936827i
\(964\) 10.0170 + 5.78332i 0.322626 + 0.186268i
\(965\) −28.3908 49.1744i −0.913933 1.58298i
\(966\) 0 0
\(967\) 5.05558 8.75652i 0.162576 0.281591i −0.773216 0.634143i \(-0.781353\pi\)
0.935792 + 0.352553i \(0.114686\pi\)
\(968\) −1.61538 + 0.932639i −0.0519202 + 0.0299762i
\(969\) −17.9793 + 14.4509i −0.577578 + 0.464230i
\(970\) −27.3446 + 47.3622i −0.877981 + 1.52071i
\(971\) 12.6574 21.9233i 0.406196 0.703552i −0.588264 0.808669i \(-0.700188\pi\)
0.994460 + 0.105117i \(0.0335216\pi\)
\(972\) 3.75888 + 15.1285i 0.120566 + 0.485246i
\(973\) 0 0
\(974\) 32.3033 18.6503i 1.03507 0.597595i
\(975\) −12.6273 4.90019i −0.404399 0.156932i
\(976\) 4.69034i 0.150134i
\(977\) 9.05294i 0.289629i 0.989459 + 0.144815i \(0.0462586\pi\)
−0.989459 + 0.144815i \(0.953741\pi\)
\(978\) 0.727325 + 4.70330i 0.0232573 + 0.150395i
\(979\) 12.3279 7.11752i 0.394001 0.227477i
\(980\) 0 0
\(981\) −30.2330 + 9.57964i −0.965266 + 0.305855i
\(982\) 6.82377 11.8191i 0.217755 0.377163i
\(983\) 3.19651 5.53653i 0.101953 0.176588i −0.810536 0.585688i \(-0.800824\pi\)
0.912489 + 0.409101i \(0.134158\pi\)
\(984\) 0.0249997 + 0.161662i 0.000796962 + 0.00515361i
\(985\) 14.5379 8.39347i 0.463216 0.267438i
\(986\) 3.46022 5.99328i 0.110196 0.190865i
\(987\) 0 0
\(988\) −4.22333 7.31502i −0.134362 0.232722i
\(989\) 17.7934 + 10.2730i 0.565797 + 0.326663i
\(990\) −6.92657 + 31.4550i −0.220141 + 0.999706i
\(991\) 6.92230 + 11.9898i 0.219894 + 0.380868i 0.954775 0.297328i \(-0.0960954\pi\)
−0.734881 + 0.678196i \(0.762762\pi\)
\(992\) −5.98576 −0.190048
\(993\) −11.8244 14.7115i −0.375236 0.466855i
\(994\) 0 0
\(995\) 6.52475 + 3.76706i 0.206848 + 0.119424i
\(996\) −6.80766 + 17.5427i −0.215709 + 0.555863i
\(997\) 5.99391 + 3.46059i 0.189829 + 0.109598i 0.591903 0.806010i \(-0.298377\pi\)
−0.402073 + 0.915607i \(0.631710\pi\)
\(998\) −18.1882 + 10.5010i −0.575737 + 0.332402i
\(999\) −1.92233 + 30.3183i −0.0608197 + 0.959227i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.2.l.b.509.7 16
3.2 odd 2 2646.2.l.a.1097.4 16
7.2 even 3 882.2.m.a.293.5 16
7.3 odd 6 882.2.t.a.815.1 16
7.4 even 3 126.2.t.a.59.4 yes 16
7.5 odd 6 882.2.m.b.293.8 16
7.6 odd 2 126.2.l.a.5.6 16
9.2 odd 6 882.2.t.a.803.1 16
9.7 even 3 2646.2.t.b.1979.8 16
21.2 odd 6 2646.2.m.a.881.4 16
21.5 even 6 2646.2.m.b.881.1 16
21.11 odd 6 378.2.t.a.17.5 16
21.17 even 6 2646.2.t.b.2285.8 16
21.20 even 2 378.2.l.a.341.1 16
28.11 odd 6 1008.2.df.c.689.3 16
28.27 even 2 1008.2.ca.c.257.7 16
63.2 odd 6 882.2.m.b.587.8 16
63.4 even 3 1134.2.k.b.647.5 16
63.11 odd 6 126.2.l.a.101.2 yes 16
63.13 odd 6 1134.2.k.a.971.4 16
63.16 even 3 2646.2.m.b.1763.1 16
63.20 even 6 126.2.t.a.47.4 yes 16
63.25 even 3 378.2.l.a.143.5 16
63.32 odd 6 1134.2.k.a.647.4 16
63.34 odd 6 378.2.t.a.89.5 16
63.38 even 6 inner 882.2.l.b.227.3 16
63.41 even 6 1134.2.k.b.971.5 16
63.47 even 6 882.2.m.a.587.5 16
63.52 odd 6 2646.2.l.a.521.8 16
63.61 odd 6 2646.2.m.a.1763.4 16
84.11 even 6 3024.2.df.c.17.1 16
84.83 odd 2 3024.2.ca.c.2609.1 16
252.11 even 6 1008.2.ca.c.353.7 16
252.83 odd 6 1008.2.df.c.929.3 16
252.151 odd 6 3024.2.ca.c.2033.1 16
252.223 even 6 3024.2.df.c.1601.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.l.a.5.6 16 7.6 odd 2
126.2.l.a.101.2 yes 16 63.11 odd 6
126.2.t.a.47.4 yes 16 63.20 even 6
126.2.t.a.59.4 yes 16 7.4 even 3
378.2.l.a.143.5 16 63.25 even 3
378.2.l.a.341.1 16 21.20 even 2
378.2.t.a.17.5 16 21.11 odd 6
378.2.t.a.89.5 16 63.34 odd 6
882.2.l.b.227.3 16 63.38 even 6 inner
882.2.l.b.509.7 16 1.1 even 1 trivial
882.2.m.a.293.5 16 7.2 even 3
882.2.m.a.587.5 16 63.47 even 6
882.2.m.b.293.8 16 7.5 odd 6
882.2.m.b.587.8 16 63.2 odd 6
882.2.t.a.803.1 16 9.2 odd 6
882.2.t.a.815.1 16 7.3 odd 6
1008.2.ca.c.257.7 16 28.27 even 2
1008.2.ca.c.353.7 16 252.11 even 6
1008.2.df.c.689.3 16 28.11 odd 6
1008.2.df.c.929.3 16 252.83 odd 6
1134.2.k.a.647.4 16 63.32 odd 6
1134.2.k.a.971.4 16 63.13 odd 6
1134.2.k.b.647.5 16 63.4 even 3
1134.2.k.b.971.5 16 63.41 even 6
2646.2.l.a.521.8 16 63.52 odd 6
2646.2.l.a.1097.4 16 3.2 odd 2
2646.2.m.a.881.4 16 21.2 odd 6
2646.2.m.a.1763.4 16 63.61 odd 6
2646.2.m.b.881.1 16 21.5 even 6
2646.2.m.b.1763.1 16 63.16 even 3
2646.2.t.b.1979.8 16 9.7 even 3
2646.2.t.b.2285.8 16 21.17 even 6
3024.2.ca.c.2033.1 16 252.151 odd 6
3024.2.ca.c.2609.1 16 84.83 odd 2
3024.2.df.c.17.1 16 84.11 even 6
3024.2.df.c.1601.1 16 252.223 even 6