L(s) = 1 | + i·2-s + (1.08 + 1.35i)3-s − 4-s + (−1.77 − 3.07i)5-s + (−1.35 + 1.08i)6-s − i·8-s + (−0.645 + 2.92i)9-s + (3.07 − 1.77i)10-s + (2.61 + 1.51i)11-s + (−1.08 − 1.35i)12-s + (0.888 + 0.513i)13-s + (2.22 − 5.73i)15-s + 16-s + (0.809 + 1.40i)17-s + (−2.92 − 0.645i)18-s + (7.12 + 4.11i)19-s + ⋯ |
L(s) = 1 | + 0.707i·2-s + (0.626 + 0.779i)3-s − 0.5·4-s + (−0.794 − 1.37i)5-s + (−0.551 + 0.442i)6-s − 0.353i·8-s + (−0.215 + 0.976i)9-s + (0.972 − 0.561i)10-s + (0.789 + 0.455i)11-s + (−0.313 − 0.389i)12-s + (0.246 + 0.142i)13-s + (0.574 − 1.48i)15-s + 0.250·16-s + (0.196 + 0.339i)17-s + (−0.690 − 0.152i)18-s + (1.63 + 0.943i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0211 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0211 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.15985 + 1.18466i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.15985 + 1.18466i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - iT \) |
| 3 | \( 1 + (-1.08 - 1.35i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (1.77 + 3.07i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-2.61 - 1.51i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-0.888 - 0.513i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-0.809 - 1.40i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-7.12 - 4.11i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.90 + 1.67i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (3.70 - 2.13i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 5.98iT - 31T^{2} \) |
| 37 | \( 1 + (-2.92 + 5.06i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (0.0472 - 0.0817i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-3.05 - 5.29i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 5.14T + 47T^{2} \) |
| 53 | \( 1 + (2.76 - 1.59i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 - 8.84T + 59T^{2} \) |
| 61 | \( 1 - 4.69iT - 61T^{2} \) |
| 67 | \( 1 + 0.375T + 67T^{2} \) |
| 71 | \( 1 + 13.9iT - 71T^{2} \) |
| 73 | \( 1 + (1.13 - 0.655i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 - 0.924T + 79T^{2} \) |
| 83 | \( 1 + (5.43 + 9.40i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-2.35 + 4.07i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (13.3 - 7.69i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.979960396506398422101797063462, −9.187526385244773452206821663432, −8.776279629889052965576107999988, −7.895160717948116889371874274291, −7.27270081736117660237873895558, −5.75781319604125841449044317485, −4.94306403675003730814460708725, −4.17462201146594693220407278278, −3.42010502203921448678743187170, −1.32040541936296976377180879051,
0.902533774475721682473288548670, 2.53655264314444122223974117333, 3.26096285656908081611703928950, 3.96560741154988387323104474297, 5.64635272565374313212905569248, 6.80249043236445284616050687554, 7.36269307141032623387783769101, 8.163223937377535639123805008843, 9.200662757126274042726823789387, 9.839623538750473417824755433867