Properties

Label 2646.2.l.a.521.8
Level $2646$
Weight $2$
Character 2646.521
Analytic conductor $21.128$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2646,2,Mod(521,2646)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2646.521"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2646, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2646 = 2 \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2646.l (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,-16,0,0,0,0,0,0,-12,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.1284163748\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 23 x^{14} - 8 x^{13} - 131 x^{12} + 380 x^{11} - 289 x^{10} - 880 x^{9} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 521.8
Root \(1.27866 - 1.16834i\) of defining polynomial
Character \(\chi\) \(=\) 2646.521
Dual form 2646.2.l.a.1097.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -1.00000 q^{4} +(1.77612 - 3.07634i) q^{5} -1.00000i q^{8} +(3.07634 + 1.77612i) q^{10} +(-2.61745 + 1.51119i) q^{11} +(0.888944 - 0.513232i) q^{13} +1.00000 q^{16} +(-0.809204 + 1.40158i) q^{17} +(7.12643 - 4.11444i) q^{19} +(-1.77612 + 3.07634i) q^{20} +(-1.51119 - 2.61745i) q^{22} +(-2.90837 - 1.67915i) q^{23} +(-3.80924 - 6.59779i) q^{25} +(0.513232 + 0.888944i) q^{26} +(3.70319 + 2.13804i) q^{29} -5.98576i q^{31} +1.00000i q^{32} +(-1.40158 - 0.809204i) q^{34} +(2.92323 + 5.06319i) q^{37} +(4.11444 + 7.12643i) q^{38} +(-3.07634 - 1.77612i) q^{40} +(0.0472226 + 0.0817920i) q^{41} +(3.05899 - 5.29833i) q^{43} +(2.61745 - 1.51119i) q^{44} +(1.67915 - 2.90837i) q^{46} -5.14045 q^{47} +(6.59779 - 3.80924i) q^{50} +(-0.888944 + 0.513232i) q^{52} +(2.76235 + 1.59484i) q^{53} +10.7362i q^{55} +(-2.13804 + 3.70319i) q^{58} -8.84071 q^{59} -4.69034i q^{61} +5.98576 q^{62} -1.00000 q^{64} -3.64626i q^{65} -0.375675 q^{67} +(0.809204 - 1.40158i) q^{68} -13.9868i q^{71} +(-1.13546 - 0.655556i) q^{73} +(-5.06319 + 2.92323i) q^{74} +(-7.12643 + 4.11444i) q^{76} +0.924134 q^{79} +(1.77612 - 3.07634i) q^{80} +(-0.0817920 + 0.0472226i) q^{82} +(5.43209 - 9.40866i) q^{83} +(2.87450 + 4.97877i) q^{85} +(5.29833 + 3.05899i) q^{86} +(1.51119 + 2.61745i) q^{88} +(-2.35495 - 4.07888i) q^{89} +(2.90837 + 1.67915i) q^{92} -5.14045i q^{94} -29.2311i q^{95} +(-13.3330 - 7.69782i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{4} - 12 q^{11} - 6 q^{13} + 16 q^{16} - 18 q^{17} + 6 q^{23} - 8 q^{25} + 12 q^{26} - 6 q^{29} - 2 q^{37} - 6 q^{41} - 2 q^{43} + 12 q^{44} + 6 q^{46} - 36 q^{47} + 12 q^{50} + 6 q^{52} + 36 q^{53}+ \cdots - 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2646\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 1.77612 3.07634i 0.794307 1.37578i −0.128971 0.991648i \(-0.541167\pi\)
0.923278 0.384132i \(-0.125499\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 3.07634 + 1.77612i 0.972824 + 0.561660i
\(11\) −2.61745 + 1.51119i −0.789191 + 0.455639i −0.839678 0.543085i \(-0.817256\pi\)
0.0504869 + 0.998725i \(0.483923\pi\)
\(12\) 0 0
\(13\) 0.888944 0.513232i 0.246549 0.142345i −0.371634 0.928379i \(-0.621202\pi\)
0.618183 + 0.786034i \(0.287869\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −0.809204 + 1.40158i −0.196261 + 0.339934i −0.947313 0.320309i \(-0.896213\pi\)
0.751052 + 0.660243i \(0.229547\pi\)
\(18\) 0 0
\(19\) 7.12643 4.11444i 1.63491 0.943918i 0.652368 0.757903i \(-0.273776\pi\)
0.982547 0.186016i \(-0.0595575\pi\)
\(20\) −1.77612 + 3.07634i −0.397154 + 0.687890i
\(21\) 0 0
\(22\) −1.51119 2.61745i −0.322186 0.558042i
\(23\) −2.90837 1.67915i −0.606438 0.350127i 0.165132 0.986271i \(-0.447195\pi\)
−0.771570 + 0.636144i \(0.780528\pi\)
\(24\) 0 0
\(25\) −3.80924 6.59779i −0.761848 1.31956i
\(26\) 0.513232 + 0.888944i 0.100653 + 0.174336i
\(27\) 0 0
\(28\) 0 0
\(29\) 3.70319 + 2.13804i 0.687666 + 0.397024i 0.802737 0.596333i \(-0.203376\pi\)
−0.115071 + 0.993357i \(0.536710\pi\)
\(30\) 0 0
\(31\) 5.98576i 1.07507i −0.843240 0.537537i \(-0.819355\pi\)
0.843240 0.537537i \(-0.180645\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) −1.40158 0.809204i −0.240369 0.138777i
\(35\) 0 0
\(36\) 0 0
\(37\) 2.92323 + 5.06319i 0.480577 + 0.832384i 0.999752 0.0222846i \(-0.00709398\pi\)
−0.519175 + 0.854668i \(0.673761\pi\)
\(38\) 4.11444 + 7.12643i 0.667451 + 1.15606i
\(39\) 0 0
\(40\) −3.07634 1.77612i −0.486412 0.280830i
\(41\) 0.0472226 + 0.0817920i 0.00737493 + 0.0127738i 0.869689 0.493600i \(-0.164319\pi\)
−0.862314 + 0.506373i \(0.830986\pi\)
\(42\) 0 0
\(43\) 3.05899 5.29833i 0.466492 0.807988i −0.532775 0.846257i \(-0.678851\pi\)
0.999267 + 0.0382684i \(0.0121842\pi\)
\(44\) 2.61745 1.51119i 0.394595 0.227820i
\(45\) 0 0
\(46\) 1.67915 2.90837i 0.247577 0.428816i
\(47\) −5.14045 −0.749812 −0.374906 0.927063i \(-0.622325\pi\)
−0.374906 + 0.927063i \(0.622325\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 6.59779 3.80924i 0.933069 0.538708i
\(51\) 0 0
\(52\) −0.888944 + 0.513232i −0.123274 + 0.0711725i
\(53\) 2.76235 + 1.59484i 0.379438 + 0.219068i 0.677574 0.735455i \(-0.263032\pi\)
−0.298136 + 0.954523i \(0.596365\pi\)
\(54\) 0 0
\(55\) 10.7362i 1.44767i
\(56\) 0 0
\(57\) 0 0
\(58\) −2.13804 + 3.70319i −0.280738 + 0.486253i
\(59\) −8.84071 −1.15096 −0.575481 0.817815i \(-0.695185\pi\)
−0.575481 + 0.817815i \(0.695185\pi\)
\(60\) 0 0
\(61\) 4.69034i 0.600537i −0.953855 0.300268i \(-0.902924\pi\)
0.953855 0.300268i \(-0.0970762\pi\)
\(62\) 5.98576 0.760192
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 3.64626i 0.452263i
\(66\) 0 0
\(67\) −0.375675 −0.0458961 −0.0229480 0.999737i \(-0.507305\pi\)
−0.0229480 + 0.999737i \(0.507305\pi\)
\(68\) 0.809204 1.40158i 0.0981304 0.169967i
\(69\) 0 0
\(70\) 0 0
\(71\) 13.9868i 1.65993i −0.557815 0.829966i \(-0.688360\pi\)
0.557815 0.829966i \(-0.311640\pi\)
\(72\) 0 0
\(73\) −1.13546 0.655556i −0.132895 0.0767270i 0.432079 0.901836i \(-0.357780\pi\)
−0.564974 + 0.825109i \(0.691114\pi\)
\(74\) −5.06319 + 2.92323i −0.588584 + 0.339819i
\(75\) 0 0
\(76\) −7.12643 + 4.11444i −0.817457 + 0.471959i
\(77\) 0 0
\(78\) 0 0
\(79\) 0.924134 0.103973 0.0519866 0.998648i \(-0.483445\pi\)
0.0519866 + 0.998648i \(0.483445\pi\)
\(80\) 1.77612 3.07634i 0.198577 0.343945i
\(81\) 0 0
\(82\) −0.0817920 + 0.0472226i −0.00903241 + 0.00521487i
\(83\) 5.43209 9.40866i 0.596250 1.03273i −0.397119 0.917767i \(-0.629990\pi\)
0.993369 0.114968i \(-0.0366765\pi\)
\(84\) 0 0
\(85\) 2.87450 + 4.97877i 0.311783 + 0.540024i
\(86\) 5.29833 + 3.05899i 0.571334 + 0.329860i
\(87\) 0 0
\(88\) 1.51119 + 2.61745i 0.161093 + 0.279021i
\(89\) −2.35495 4.07888i −0.249624 0.432361i 0.713798 0.700352i \(-0.246974\pi\)
−0.963421 + 0.267991i \(0.913640\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 2.90837 + 1.67915i 0.303219 + 0.175063i
\(93\) 0 0
\(94\) 5.14045i 0.530197i
\(95\) 29.2311i 2.99904i
\(96\) 0 0
\(97\) −13.3330 7.69782i −1.35376 0.781595i −0.364988 0.931012i \(-0.618927\pi\)
−0.988774 + 0.149417i \(0.952260\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 3.80924 + 6.59779i 0.380924 + 0.659779i
\(101\) −6.85234 11.8686i −0.681833 1.18097i −0.974421 0.224731i \(-0.927850\pi\)
0.292588 0.956239i \(-0.405484\pi\)
\(102\) 0 0
\(103\) −2.64014 1.52429i −0.260141 0.150192i 0.364258 0.931298i \(-0.381323\pi\)
−0.624399 + 0.781106i \(0.714656\pi\)
\(104\) −0.513232 0.888944i −0.0503266 0.0871682i
\(105\) 0 0
\(106\) −1.59484 + 2.76235i −0.154905 + 0.268303i
\(107\) 11.3681 6.56336i 1.09899 0.634504i 0.163037 0.986620i \(-0.447871\pi\)
0.935956 + 0.352116i \(0.114538\pi\)
\(108\) 0 0
\(109\) 5.28574 9.15516i 0.506282 0.876906i −0.493692 0.869637i \(-0.664353\pi\)
0.999974 0.00726875i \(-0.00231373\pi\)
\(110\) −10.7362 −1.02366
\(111\) 0 0
\(112\) 0 0
\(113\) −10.6520 + 6.14993i −1.00205 + 0.578537i −0.908856 0.417111i \(-0.863043\pi\)
−0.0931992 + 0.995647i \(0.529709\pi\)
\(114\) 0 0
\(115\) −10.3313 + 5.96476i −0.963396 + 0.556217i
\(116\) −3.70319 2.13804i −0.343833 0.198512i
\(117\) 0 0
\(118\) 8.84071i 0.813853i
\(119\) 0 0
\(120\) 0 0
\(121\) −0.932639 + 1.61538i −0.0847854 + 0.146853i
\(122\) 4.69034 0.424644
\(123\) 0 0
\(124\) 5.98576i 0.537537i
\(125\) −9.30148 −0.831950
\(126\) 0 0
\(127\) 0.287164 0.0254817 0.0127408 0.999919i \(-0.495944\pi\)
0.0127408 + 0.999919i \(0.495944\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) 3.64626 0.319798
\(131\) 0.186474 0.322983i 0.0162923 0.0282192i −0.857764 0.514043i \(-0.828147\pi\)
0.874057 + 0.485824i \(0.161480\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0.375675i 0.0324534i
\(135\) 0 0
\(136\) 1.40158 + 0.809204i 0.120185 + 0.0693887i
\(137\) −6.11607 + 3.53111i −0.522531 + 0.301683i −0.737969 0.674834i \(-0.764215\pi\)
0.215439 + 0.976517i \(0.430882\pi\)
\(138\) 0 0
\(139\) 12.6320 7.29308i 1.07143 0.618591i 0.142858 0.989743i \(-0.454371\pi\)
0.928572 + 0.371152i \(0.121037\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 13.9868 1.17375
\(143\) −1.55118 + 2.68672i −0.129716 + 0.224675i
\(144\) 0 0
\(145\) 13.1547 7.59485i 1.09244 0.630718i
\(146\) 0.655556 1.13546i 0.0542542 0.0939710i
\(147\) 0 0
\(148\) −2.92323 5.06319i −0.240288 0.416192i
\(149\) 9.26832 + 5.35107i 0.759290 + 0.438376i 0.829041 0.559188i \(-0.188887\pi\)
−0.0697505 + 0.997564i \(0.522220\pi\)
\(150\) 0 0
\(151\) −8.00065 13.8575i −0.651084 1.12771i −0.982860 0.184352i \(-0.940981\pi\)
0.331777 0.943358i \(-0.392352\pi\)
\(152\) −4.11444 7.12643i −0.333726 0.578030i
\(153\) 0 0
\(154\) 0 0
\(155\) −18.4142 10.6315i −1.47907 0.853939i
\(156\) 0 0
\(157\) 11.5267i 0.919928i 0.887937 + 0.459964i \(0.152138\pi\)
−0.887937 + 0.459964i \(0.847862\pi\)
\(158\) 0.924134i 0.0735202i
\(159\) 0 0
\(160\) 3.07634 + 1.77612i 0.243206 + 0.140415i
\(161\) 0 0
\(162\) 0 0
\(163\) 1.37386 + 2.37960i 0.107609 + 0.186385i 0.914801 0.403904i \(-0.132347\pi\)
−0.807192 + 0.590289i \(0.799014\pi\)
\(164\) −0.0472226 0.0817920i −0.00368747 0.00638688i
\(165\) 0 0
\(166\) 9.40866 + 5.43209i 0.730254 + 0.421612i
\(167\) −2.76946 4.79685i −0.214307 0.371191i 0.738751 0.673979i \(-0.235416\pi\)
−0.953058 + 0.302788i \(0.902083\pi\)
\(168\) 0 0
\(169\) −5.97319 + 10.3459i −0.459476 + 0.795835i
\(170\) −4.97877 + 2.87450i −0.381854 + 0.220464i
\(171\) 0 0
\(172\) −3.05899 + 5.29833i −0.233246 + 0.403994i
\(173\) 11.2051 0.851905 0.425953 0.904745i \(-0.359939\pi\)
0.425953 + 0.904745i \(0.359939\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −2.61745 + 1.51119i −0.197298 + 0.113910i
\(177\) 0 0
\(178\) 4.07888 2.35495i 0.305725 0.176511i
\(179\) 2.37445 + 1.37089i 0.177475 + 0.102465i 0.586106 0.810235i \(-0.300660\pi\)
−0.408631 + 0.912700i \(0.633994\pi\)
\(180\) 0 0
\(181\) 22.2899i 1.65679i 0.560142 + 0.828397i \(0.310747\pi\)
−0.560142 + 0.828397i \(0.689253\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −1.67915 + 2.90837i −0.123789 + 0.214408i
\(185\) 20.7681 1.52690
\(186\) 0 0
\(187\) 4.89143i 0.357697i
\(188\) 5.14045 0.374906
\(189\) 0 0
\(190\) 29.2311 2.12064
\(191\) 5.13264i 0.371385i −0.982608 0.185692i \(-0.940547\pi\)
0.982608 0.185692i \(-0.0594528\pi\)
\(192\) 0 0
\(193\) 15.9847 1.15060 0.575302 0.817941i \(-0.304884\pi\)
0.575302 + 0.817941i \(0.304884\pi\)
\(194\) 7.69782 13.3330i 0.552671 0.957254i
\(195\) 0 0
\(196\) 0 0
\(197\) 4.72572i 0.336694i 0.985728 + 0.168347i \(0.0538428\pi\)
−0.985728 + 0.168347i \(0.946157\pi\)
\(198\) 0 0
\(199\) −1.83679 1.06047i −0.130207 0.0751749i 0.433482 0.901162i \(-0.357285\pi\)
−0.563689 + 0.825987i \(0.690618\pi\)
\(200\) −6.59779 + 3.80924i −0.466534 + 0.269354i
\(201\) 0 0
\(202\) 11.8686 6.85234i 0.835072 0.482129i
\(203\) 0 0
\(204\) 0 0
\(205\) 0.335493 0.0234319
\(206\) 1.52429 2.64014i 0.106202 0.183947i
\(207\) 0 0
\(208\) 0.888944 0.513232i 0.0616372 0.0355863i
\(209\) −12.4354 + 21.5387i −0.860173 + 1.48986i
\(210\) 0 0
\(211\) −13.8079 23.9160i −0.950578 1.64645i −0.744179 0.667981i \(-0.767159\pi\)
−0.206399 0.978468i \(-0.566174\pi\)
\(212\) −2.76235 1.59484i −0.189719 0.109534i
\(213\) 0 0
\(214\) 6.56336 + 11.3681i 0.448662 + 0.777105i
\(215\) −10.8663 18.8210i −0.741076 1.28358i
\(216\) 0 0
\(217\) 0 0
\(218\) 9.15516 + 5.28574i 0.620066 + 0.357995i
\(219\) 0 0
\(220\) 10.7362i 0.723835i
\(221\) 1.66124i 0.111747i
\(222\) 0 0
\(223\) 17.6209 + 10.1734i 1.17998 + 0.681264i 0.956011 0.293331i \(-0.0947638\pi\)
0.223973 + 0.974595i \(0.428097\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −6.14993 10.6520i −0.409087 0.708560i
\(227\) −2.08000 3.60266i −0.138054 0.239117i 0.788706 0.614771i \(-0.210752\pi\)
−0.926760 + 0.375654i \(0.877418\pi\)
\(228\) 0 0
\(229\) 5.16986 + 2.98482i 0.341634 + 0.197242i 0.660994 0.750391i \(-0.270135\pi\)
−0.319361 + 0.947633i \(0.603468\pi\)
\(230\) −5.96476 10.3313i −0.393305 0.681224i
\(231\) 0 0
\(232\) 2.13804 3.70319i 0.140369 0.243126i
\(233\) 3.88603 2.24360i 0.254582 0.146983i −0.367278 0.930111i \(-0.619710\pi\)
0.621861 + 0.783128i \(0.286377\pi\)
\(234\) 0 0
\(235\) −9.13009 + 15.8138i −0.595581 + 1.03158i
\(236\) 8.84071 0.575481
\(237\) 0 0
\(238\) 0 0
\(239\) 3.02944 1.74905i 0.195958 0.113136i −0.398811 0.917033i \(-0.630577\pi\)
0.594769 + 0.803897i \(0.297244\pi\)
\(240\) 0 0
\(241\) −10.0170 + 5.78332i −0.645252 + 0.372537i −0.786635 0.617419i \(-0.788179\pi\)
0.141383 + 0.989955i \(0.454845\pi\)
\(242\) −1.61538 0.932639i −0.103840 0.0599523i
\(243\) 0 0
\(244\) 4.69034i 0.300268i
\(245\) 0 0
\(246\) 0 0
\(247\) 4.22333 7.31502i 0.268724 0.465444i
\(248\) −5.98576 −0.380096
\(249\) 0 0
\(250\) 9.30148i 0.588277i
\(251\) 26.7426 1.68798 0.843988 0.536361i \(-0.180202\pi\)
0.843988 + 0.536361i \(0.180202\pi\)
\(252\) 0 0
\(253\) 10.1500 0.638127
\(254\) 0.287164i 0.0180183i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 2.60614 4.51396i 0.162566 0.281573i −0.773222 0.634135i \(-0.781356\pi\)
0.935788 + 0.352562i \(0.114690\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 3.64626i 0.226131i
\(261\) 0 0
\(262\) 0.322983 + 0.186474i 0.0199540 + 0.0115204i
\(263\) 13.0228 7.51869i 0.803018 0.463622i −0.0415076 0.999138i \(-0.513216\pi\)
0.844525 + 0.535516i \(0.179883\pi\)
\(264\) 0 0
\(265\) 9.81255 5.66528i 0.602780 0.348015i
\(266\) 0 0
\(267\) 0 0
\(268\) 0.375675 0.0229480
\(269\) −11.5657 + 20.0323i −0.705170 + 1.22139i 0.261460 + 0.965214i \(0.415796\pi\)
−0.966630 + 0.256177i \(0.917537\pi\)
\(270\) 0 0
\(271\) −8.58661 + 4.95748i −0.521599 + 0.301146i −0.737589 0.675250i \(-0.764036\pi\)
0.215989 + 0.976396i \(0.430702\pi\)
\(272\) −0.809204 + 1.40158i −0.0490652 + 0.0849834i
\(273\) 0 0
\(274\) −3.53111 6.11607i −0.213322 0.369485i
\(275\) 19.9410 + 11.5129i 1.20249 + 0.694256i
\(276\) 0 0
\(277\) 4.29721 + 7.44299i 0.258195 + 0.447206i 0.965758 0.259443i \(-0.0835391\pi\)
−0.707564 + 0.706650i \(0.750206\pi\)
\(278\) 7.29308 + 12.6320i 0.437410 + 0.757616i
\(279\) 0 0
\(280\) 0 0
\(281\) 17.9508 + 10.3639i 1.07085 + 0.618258i 0.928415 0.371545i \(-0.121172\pi\)
0.142440 + 0.989803i \(0.454505\pi\)
\(282\) 0 0
\(283\) 2.36710i 0.140709i 0.997522 + 0.0703547i \(0.0224131\pi\)
−0.997522 + 0.0703547i \(0.977587\pi\)
\(284\) 13.9868i 0.829966i
\(285\) 0 0
\(286\) −2.68672 1.55118i −0.158869 0.0917231i
\(287\) 0 0
\(288\) 0 0
\(289\) 7.19038 + 12.4541i 0.422963 + 0.732594i
\(290\) 7.59485 + 13.1547i 0.445985 + 0.772468i
\(291\) 0 0
\(292\) 1.13546 + 0.655556i 0.0664475 + 0.0383635i
\(293\) 8.83774 + 15.3074i 0.516306 + 0.894268i 0.999821 + 0.0189321i \(0.00602664\pi\)
−0.483515 + 0.875336i \(0.660640\pi\)
\(294\) 0 0
\(295\) −15.7022 + 27.1970i −0.914218 + 1.58347i
\(296\) 5.06319 2.92323i 0.294292 0.169910i
\(297\) 0 0
\(298\) −5.35107 + 9.26832i −0.309979 + 0.536899i
\(299\) −3.44718 −0.199355
\(300\) 0 0
\(301\) 0 0
\(302\) 13.8575 8.00065i 0.797411 0.460386i
\(303\) 0 0
\(304\) 7.12643 4.11444i 0.408729 0.235980i
\(305\) −14.4291 8.33063i −0.826206 0.477011i
\(306\) 0 0
\(307\) 1.28155i 0.0731422i −0.999331 0.0365711i \(-0.988356\pi\)
0.999331 0.0365711i \(-0.0116435\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 10.6315 18.4142i 0.603826 1.04586i
\(311\) 12.5329 0.710673 0.355336 0.934738i \(-0.384366\pi\)
0.355336 + 0.934738i \(0.384366\pi\)
\(312\) 0 0
\(313\) 8.75385i 0.494797i 0.968914 + 0.247398i \(0.0795756\pi\)
−0.968914 + 0.247398i \(0.920424\pi\)
\(314\) −11.5267 −0.650488
\(315\) 0 0
\(316\) −0.924134 −0.0519866
\(317\) 13.6784i 0.768256i −0.923280 0.384128i \(-0.874502\pi\)
0.923280 0.384128i \(-0.125498\pi\)
\(318\) 0 0
\(319\) −12.9239 −0.723599
\(320\) −1.77612 + 3.07634i −0.0992884 + 0.171973i
\(321\) 0 0
\(322\) 0 0
\(323\) 13.3177i 0.741017i
\(324\) 0 0
\(325\) −6.77240 3.91005i −0.375665 0.216890i
\(326\) −2.37960 + 1.37386i −0.131794 + 0.0760912i
\(327\) 0 0
\(328\) 0.0817920 0.0472226i 0.00451621 0.00260743i
\(329\) 0 0
\(330\) 0 0
\(331\) −10.8972 −0.598962 −0.299481 0.954102i \(-0.596813\pi\)
−0.299481 + 0.954102i \(0.596813\pi\)
\(332\) −5.43209 + 9.40866i −0.298125 + 0.516367i
\(333\) 0 0
\(334\) 4.79685 2.76946i 0.262472 0.151538i
\(335\) −0.667247 + 1.15570i −0.0364556 + 0.0631429i
\(336\) 0 0
\(337\) 12.8090 + 22.1858i 0.697749 + 1.20854i 0.969245 + 0.246098i \(0.0791484\pi\)
−0.271496 + 0.962440i \(0.587518\pi\)
\(338\) −10.3459 5.97319i −0.562741 0.324898i
\(339\) 0 0
\(340\) −2.87450 4.97877i −0.155891 0.270012i
\(341\) 9.04559 + 15.6674i 0.489846 + 0.848438i
\(342\) 0 0
\(343\) 0 0
\(344\) −5.29833 3.05899i −0.285667 0.164930i
\(345\) 0 0
\(346\) 11.2051i 0.602388i
\(347\) 16.7623i 0.899848i 0.893067 + 0.449924i \(0.148549\pi\)
−0.893067 + 0.449924i \(0.851451\pi\)
\(348\) 0 0
\(349\) −14.4455 8.34010i −0.773249 0.446435i 0.0607835 0.998151i \(-0.480640\pi\)
−0.834032 + 0.551716i \(0.813973\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −1.51119 2.61745i −0.0805464 0.139511i
\(353\) −17.9568 31.1021i −0.955746 1.65540i −0.732653 0.680603i \(-0.761718\pi\)
−0.223093 0.974797i \(-0.571615\pi\)
\(354\) 0 0
\(355\) −43.0282 24.8424i −2.28370 1.31850i
\(356\) 2.35495 + 4.07888i 0.124812 + 0.216180i
\(357\) 0 0
\(358\) −1.37089 + 2.37445i −0.0724538 + 0.125494i
\(359\) −24.7248 + 14.2749i −1.30493 + 0.753399i −0.981245 0.192767i \(-0.938254\pi\)
−0.323681 + 0.946166i \(0.604921\pi\)
\(360\) 0 0
\(361\) 24.3573 42.1881i 1.28196 2.22043i
\(362\) −22.2899 −1.17153
\(363\) 0 0
\(364\) 0 0
\(365\) −4.03342 + 2.32870i −0.211119 + 0.121890i
\(366\) 0 0
\(367\) −0.310665 + 0.179362i −0.0162166 + 0.00936264i −0.508086 0.861306i \(-0.669647\pi\)
0.491870 + 0.870669i \(0.336314\pi\)
\(368\) −2.90837 1.67915i −0.151609 0.0875317i
\(369\) 0 0
\(370\) 20.7681i 1.07968i
\(371\) 0 0
\(372\) 0 0
\(373\) −12.6854 + 21.9718i −0.656826 + 1.13766i 0.324606 + 0.945849i \(0.394768\pi\)
−0.981433 + 0.191807i \(0.938565\pi\)
\(374\) 4.89143 0.252930
\(375\) 0 0
\(376\) 5.14045i 0.265099i
\(377\) 4.38924 0.226057
\(378\) 0 0
\(379\) 26.9063 1.38209 0.691043 0.722814i \(-0.257152\pi\)
0.691043 + 0.722814i \(0.257152\pi\)
\(380\) 29.2311i 1.49952i
\(381\) 0 0
\(382\) 5.13264 0.262609
\(383\) −6.28586 + 10.8874i −0.321192 + 0.556322i −0.980734 0.195346i \(-0.937417\pi\)
0.659542 + 0.751668i \(0.270750\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 15.9847i 0.813600i
\(387\) 0 0
\(388\) 13.3330 + 7.69782i 0.676881 + 0.390798i
\(389\) 14.0805 8.12937i 0.713909 0.412175i −0.0985980 0.995127i \(-0.531436\pi\)
0.812507 + 0.582952i \(0.198102\pi\)
\(390\) 0 0
\(391\) 4.70694 2.71755i 0.238040 0.137432i
\(392\) 0 0
\(393\) 0 0
\(394\) −4.72572 −0.238078
\(395\) 1.64138 2.84295i 0.0825866 0.143044i
\(396\) 0 0
\(397\) 12.7252 7.34692i 0.638662 0.368732i −0.145437 0.989368i \(-0.546459\pi\)
0.784099 + 0.620636i \(0.213125\pi\)
\(398\) 1.06047 1.83679i 0.0531567 0.0920701i
\(399\) 0 0
\(400\) −3.80924 6.59779i −0.190462 0.329890i
\(401\) −14.4162 8.32318i −0.719909 0.415640i 0.0948099 0.995495i \(-0.469776\pi\)
−0.814719 + 0.579855i \(0.803109\pi\)
\(402\) 0 0
\(403\) −3.07208 5.32101i −0.153031 0.265058i
\(404\) 6.85234 + 11.8686i 0.340917 + 0.590485i
\(405\) 0 0
\(406\) 0 0
\(407\) −15.3028 8.83510i −0.758534 0.437940i
\(408\) 0 0
\(409\) 2.80886i 0.138889i 0.997586 + 0.0694446i \(0.0221227\pi\)
−0.997586 + 0.0694446i \(0.977877\pi\)
\(410\) 0.335493i 0.0165688i
\(411\) 0 0
\(412\) 2.64014 + 1.52429i 0.130070 + 0.0750962i
\(413\) 0 0
\(414\) 0 0
\(415\) −19.2962 33.4219i −0.947211 1.64062i
\(416\) 0.513232 + 0.888944i 0.0251633 + 0.0435841i
\(417\) 0 0
\(418\) −21.5387 12.4354i −1.05349 0.608234i
\(419\) 7.47362 + 12.9447i 0.365110 + 0.632390i 0.988794 0.149287i \(-0.0476980\pi\)
−0.623684 + 0.781677i \(0.714365\pi\)
\(420\) 0 0
\(421\) −7.80336 + 13.5158i −0.380312 + 0.658720i −0.991107 0.133069i \(-0.957517\pi\)
0.610794 + 0.791789i \(0.290850\pi\)
\(422\) 23.9160 13.8079i 1.16421 0.672160i
\(423\) 0 0
\(424\) 1.59484 2.76235i 0.0774524 0.134151i
\(425\) 12.3298 0.598083
\(426\) 0 0
\(427\) 0 0
\(428\) −11.3681 + 6.56336i −0.549496 + 0.317252i
\(429\) 0 0
\(430\) 18.8210 10.8663i 0.907629 0.524020i
\(431\) 14.0087 + 8.08792i 0.674775 + 0.389581i 0.797883 0.602812i \(-0.205953\pi\)
−0.123109 + 0.992393i \(0.539286\pi\)
\(432\) 0 0
\(433\) 27.2499i 1.30955i −0.755824 0.654774i \(-0.772764\pi\)
0.755824 0.654774i \(-0.227236\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −5.28574 + 9.15516i −0.253141 + 0.438453i
\(437\) −27.6351 −1.32197
\(438\) 0 0
\(439\) 33.1347i 1.58143i 0.612182 + 0.790717i \(0.290292\pi\)
−0.612182 + 0.790717i \(0.709708\pi\)
\(440\) 10.7362 0.511829
\(441\) 0 0
\(442\) −1.66124 −0.0790171
\(443\) 22.2636i 1.05777i −0.848692 0.528887i \(-0.822609\pi\)
0.848692 0.528887i \(-0.177391\pi\)
\(444\) 0 0
\(445\) −16.7307 −0.793111
\(446\) −10.1734 + 17.6209i −0.481727 + 0.834375i
\(447\) 0 0
\(448\) 0 0
\(449\) 6.80819i 0.321298i −0.987012 0.160649i \(-0.948641\pi\)
0.987012 0.160649i \(-0.0513588\pi\)
\(450\) 0 0
\(451\) −0.247206 0.142724i −0.0116405 0.00672062i
\(452\) 10.6520 6.14993i 0.501027 0.289268i
\(453\) 0 0
\(454\) 3.60266 2.08000i 0.169081 0.0976192i
\(455\) 0 0
\(456\) 0 0
\(457\) 15.2260 0.712240 0.356120 0.934440i \(-0.384099\pi\)
0.356120 + 0.934440i \(0.384099\pi\)
\(458\) −2.98482 + 5.16986i −0.139471 + 0.241572i
\(459\) 0 0
\(460\) 10.3313 5.96476i 0.481698 0.278108i
\(461\) 0.103381 0.179060i 0.00481492 0.00833968i −0.863608 0.504164i \(-0.831801\pi\)
0.868423 + 0.495824i \(0.165134\pi\)
\(462\) 0 0
\(463\) −7.60217 13.1673i −0.353303 0.611938i 0.633523 0.773724i \(-0.281608\pi\)
−0.986826 + 0.161785i \(0.948275\pi\)
\(464\) 3.70319 + 2.13804i 0.171916 + 0.0992560i
\(465\) 0 0
\(466\) 2.24360 + 3.88603i 0.103933 + 0.180017i
\(467\) 1.15424 + 1.99921i 0.0534120 + 0.0925123i 0.891495 0.453030i \(-0.149657\pi\)
−0.838083 + 0.545542i \(0.816324\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −15.8138 9.13009i −0.729435 0.421139i
\(471\) 0 0
\(472\) 8.84071i 0.406927i
\(473\) 18.4908i 0.850209i
\(474\) 0 0
\(475\) −54.2925 31.3458i −2.49111 1.43824i
\(476\) 0 0
\(477\) 0 0
\(478\) 1.74905 + 3.02944i 0.0799996 + 0.138563i
\(479\) 6.21659 + 10.7674i 0.284043 + 0.491977i 0.972377 0.233417i \(-0.0749908\pi\)
−0.688334 + 0.725394i \(0.741657\pi\)
\(480\) 0 0
\(481\) 5.19719 + 3.00060i 0.236971 + 0.136815i
\(482\) −5.78332 10.0170i −0.263423 0.456262i
\(483\) 0 0
\(484\) 0.932639 1.61538i 0.0423927 0.0734263i
\(485\) −47.3622 + 27.3446i −2.15061 + 1.24165i
\(486\) 0 0
\(487\) −18.6503 + 32.3033i −0.845128 + 1.46380i 0.0403829 + 0.999184i \(0.487142\pi\)
−0.885510 + 0.464620i \(0.846191\pi\)
\(488\) −4.69034 −0.212322
\(489\) 0 0
\(490\) 0 0
\(491\) 11.8191 6.82377i 0.533389 0.307952i −0.209006 0.977914i \(-0.567023\pi\)
0.742396 + 0.669962i \(0.233690\pi\)
\(492\) 0 0
\(493\) −5.99328 + 3.46022i −0.269924 + 0.155840i
\(494\) 7.31502 + 4.22333i 0.329118 + 0.190017i
\(495\) 0 0
\(496\) 5.98576i 0.268768i
\(497\) 0 0
\(498\) 0 0
\(499\) 10.5010 18.1882i 0.470088 0.814216i −0.529327 0.848418i \(-0.677556\pi\)
0.999415 + 0.0342021i \(0.0108890\pi\)
\(500\) 9.30148 0.415975
\(501\) 0 0
\(502\) 26.7426i 1.19358i
\(503\) −22.3018 −0.994388 −0.497194 0.867639i \(-0.665636\pi\)
−0.497194 + 0.867639i \(0.665636\pi\)
\(504\) 0 0
\(505\) −48.6824 −2.16634
\(506\) 10.1500i 0.451224i
\(507\) 0 0
\(508\) −0.287164 −0.0127408
\(509\) −10.9589 + 18.9814i −0.485746 + 0.841337i −0.999866 0.0163813i \(-0.994785\pi\)
0.514120 + 0.857719i \(0.328119\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 4.51396 + 2.60614i 0.199102 + 0.114952i
\(515\) −9.37844 + 5.41465i −0.413264 + 0.238598i
\(516\) 0 0
\(517\) 13.4549 7.76818i 0.591745 0.341644i
\(518\) 0 0
\(519\) 0 0
\(520\) −3.64626 −0.159899
\(521\) 13.3839 23.1816i 0.586358 1.01560i −0.408346 0.912827i \(-0.633894\pi\)
0.994705 0.102775i \(-0.0327723\pi\)
\(522\) 0 0
\(523\) −14.8576 + 8.57805i −0.649678 + 0.375092i −0.788333 0.615249i \(-0.789055\pi\)
0.138655 + 0.990341i \(0.455722\pi\)
\(524\) −0.186474 + 0.322983i −0.00814617 + 0.0141096i
\(525\) 0 0
\(526\) 7.51869 + 13.0228i 0.327831 + 0.567819i
\(527\) 8.38954 + 4.84370i 0.365454 + 0.210995i
\(528\) 0 0
\(529\) −5.86091 10.1514i −0.254822 0.441365i
\(530\) 5.66528 + 9.81255i 0.246084 + 0.426230i
\(531\) 0 0
\(532\) 0 0
\(533\) 0.0839566 + 0.0484723i 0.00363656 + 0.00209957i
\(534\) 0 0
\(535\) 46.6294i 2.01596i
\(536\) 0.375675i 0.0162267i
\(537\) 0 0
\(538\) −20.0323 11.5657i −0.863654 0.498631i
\(539\) 0 0
\(540\) 0 0
\(541\) −14.4091 24.9573i −0.619496 1.07300i −0.989578 0.144000i \(-0.954004\pi\)
0.370081 0.928999i \(-0.379330\pi\)
\(542\) −4.95748 8.58661i −0.212942 0.368827i
\(543\) 0 0
\(544\) −1.40158 0.809204i −0.0600924 0.0346943i
\(545\) −18.7763 32.5214i −0.804286 1.39306i
\(546\) 0 0
\(547\) −16.4045 + 28.4135i −0.701407 + 1.21487i 0.266565 + 0.963817i \(0.414111\pi\)
−0.967972 + 0.251056i \(0.919222\pi\)
\(548\) 6.11607 3.53111i 0.261265 0.150842i
\(549\) 0 0
\(550\) −11.5129 + 19.9410i −0.490913 + 0.850286i
\(551\) 35.1874 1.49903
\(552\) 0 0
\(553\) 0 0
\(554\) −7.44299 + 4.29721i −0.316223 + 0.182571i
\(555\) 0 0
\(556\) −12.6320 + 7.29308i −0.535715 + 0.309295i
\(557\) 40.0544 + 23.1254i 1.69716 + 0.979855i 0.948434 + 0.316975i \(0.102667\pi\)
0.748725 + 0.662880i \(0.230666\pi\)
\(558\) 0 0
\(559\) 6.27990i 0.265611i
\(560\) 0 0
\(561\) 0 0
\(562\) −10.3639 + 17.9508i −0.437174 + 0.757208i
\(563\) 1.97727 0.0833322 0.0416661 0.999132i \(-0.486733\pi\)
0.0416661 + 0.999132i \(0.486733\pi\)
\(564\) 0 0
\(565\) 43.6922i 1.83814i
\(566\) −2.36710 −0.0994966
\(567\) 0 0
\(568\) −13.9868 −0.586874
\(569\) 32.9901i 1.38302i 0.722369 + 0.691508i \(0.243053\pi\)
−0.722369 + 0.691508i \(0.756947\pi\)
\(570\) 0 0
\(571\) 14.8065 0.619634 0.309817 0.950796i \(-0.399732\pi\)
0.309817 + 0.950796i \(0.399732\pi\)
\(572\) 1.55118 2.68672i 0.0648580 0.112337i
\(573\) 0 0
\(574\) 0 0
\(575\) 25.5851i 1.06697i
\(576\) 0 0
\(577\) 15.9505 + 9.20901i 0.664027 + 0.383376i 0.793810 0.608166i \(-0.208095\pi\)
−0.129783 + 0.991542i \(0.541428\pi\)
\(578\) −12.4541 + 7.19038i −0.518022 + 0.299080i
\(579\) 0 0
\(580\) −13.1547 + 7.59485i −0.546218 + 0.315359i
\(581\) 0 0
\(582\) 0 0
\(583\) −9.64041 −0.399265
\(584\) −0.655556 + 1.13546i −0.0271271 + 0.0469855i
\(585\) 0 0
\(586\) −15.3074 + 8.83774i −0.632343 + 0.365084i
\(587\) 23.1065 40.0216i 0.953707 1.65187i 0.216406 0.976304i \(-0.430567\pi\)
0.737301 0.675565i \(-0.236100\pi\)
\(588\) 0 0
\(589\) −24.6281 42.6571i −1.01478 1.75765i
\(590\) −27.1970 15.7022i −1.11968 0.646450i
\(591\) 0 0
\(592\) 2.92323 + 5.06319i 0.120144 + 0.208096i
\(593\) 6.80465 + 11.7860i 0.279434 + 0.483993i 0.971244 0.238086i \(-0.0765200\pi\)
−0.691810 + 0.722079i \(0.743187\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −9.26832 5.35107i −0.379645 0.219188i
\(597\) 0 0
\(598\) 3.44718i 0.140965i
\(599\) 23.5806i 0.963477i 0.876315 + 0.481739i \(0.159995\pi\)
−0.876315 + 0.481739i \(0.840005\pi\)
\(600\) 0 0
\(601\) 31.0765 + 17.9420i 1.26764 + 0.731871i 0.974540 0.224212i \(-0.0719808\pi\)
0.293097 + 0.956083i \(0.405314\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 8.00065 + 13.8575i 0.325542 + 0.563855i
\(605\) 3.31297 + 5.73823i 0.134691 + 0.233292i
\(606\) 0 0
\(607\) 16.8502 + 9.72845i 0.683928 + 0.394866i 0.801333 0.598218i \(-0.204124\pi\)
−0.117406 + 0.993084i \(0.537458\pi\)
\(608\) 4.11444 + 7.12643i 0.166863 + 0.289015i
\(609\) 0 0
\(610\) 8.33063 14.4291i 0.337297 0.584216i
\(611\) −4.56958 + 2.63825i −0.184865 + 0.106732i
\(612\) 0 0
\(613\) −21.1210 + 36.5827i −0.853071 + 1.47756i 0.0253526 + 0.999679i \(0.491929\pi\)
−0.878423 + 0.477883i \(0.841404\pi\)
\(614\) 1.28155 0.0517193
\(615\) 0 0
\(616\) 0 0
\(617\) −9.63660 + 5.56369i −0.387955 + 0.223986i −0.681274 0.732029i \(-0.738574\pi\)
0.293319 + 0.956015i \(0.405240\pi\)
\(618\) 0 0
\(619\) −8.71387 + 5.03096i −0.350240 + 0.202211i −0.664791 0.747029i \(-0.731479\pi\)
0.314551 + 0.949241i \(0.398146\pi\)
\(620\) 18.4142 + 10.6315i 0.739533 + 0.426969i
\(621\) 0 0
\(622\) 12.5329i 0.502522i
\(623\) 0 0
\(624\) 0 0
\(625\) 2.52560 4.37447i 0.101024 0.174979i
\(626\) −8.75385 −0.349874
\(627\) 0 0
\(628\) 11.5267i 0.459964i
\(629\) −9.46198 −0.377274
\(630\) 0 0
\(631\) 10.3528 0.412139 0.206070 0.978537i \(-0.433933\pi\)
0.206070 + 0.978537i \(0.433933\pi\)
\(632\) 0.924134i 0.0367601i
\(633\) 0 0
\(634\) 13.6784 0.543239
\(635\) 0.510039 0.883413i 0.0202403 0.0350572i
\(636\) 0 0
\(637\) 0 0
\(638\) 12.9239i 0.511662i
\(639\) 0 0
\(640\) −3.07634 1.77612i −0.121603 0.0702075i
\(641\) 23.0678 13.3182i 0.911123 0.526037i 0.0303310 0.999540i \(-0.490344\pi\)
0.880792 + 0.473503i \(0.157011\pi\)
\(642\) 0 0
\(643\) −40.0493 + 23.1225i −1.57939 + 0.911861i −0.584446 + 0.811433i \(0.698688\pi\)
−0.994944 + 0.100429i \(0.967979\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −13.3177 −0.523978
\(647\) −15.7032 + 27.1987i −0.617355 + 1.06929i 0.372611 + 0.927988i \(0.378463\pi\)
−0.989966 + 0.141303i \(0.954871\pi\)
\(648\) 0 0
\(649\) 23.1401 13.3600i 0.908329 0.524424i
\(650\) 3.91005 6.77240i 0.153365 0.265635i
\(651\) 0 0
\(652\) −1.37386 2.37960i −0.0538046 0.0931923i
\(653\) −39.9639 23.0732i −1.56391 0.902924i −0.996855 0.0792429i \(-0.974750\pi\)
−0.567054 0.823681i \(-0.691917\pi\)
\(654\) 0 0
\(655\) −0.662404 1.14732i −0.0258823 0.0448294i
\(656\) 0.0472226 + 0.0817920i 0.00184373 + 0.00319344i
\(657\) 0 0
\(658\) 0 0
\(659\) −1.18052 0.681575i −0.0459867 0.0265504i 0.476830 0.878995i \(-0.341786\pi\)
−0.522817 + 0.852445i \(0.675119\pi\)
\(660\) 0 0
\(661\) 7.20404i 0.280205i −0.990137 0.140102i \(-0.955257\pi\)
0.990137 0.140102i \(-0.0447431\pi\)
\(662\) 10.8972i 0.423530i
\(663\) 0 0
\(664\) −9.40866 5.43209i −0.365127 0.210806i
\(665\) 0 0
\(666\) 0 0
\(667\) −7.18018 12.4364i −0.278018 0.481541i
\(668\) 2.76946 + 4.79685i 0.107154 + 0.185596i
\(669\) 0 0
\(670\) −1.15570 0.667247i −0.0446488 0.0257780i
\(671\) 7.08797 + 12.2767i 0.273628 + 0.473938i
\(672\) 0 0
\(673\) 19.4709 33.7246i 0.750548 1.29999i −0.197010 0.980402i \(-0.563123\pi\)
0.947558 0.319585i \(-0.103544\pi\)
\(674\) −22.1858 + 12.8090i −0.854565 + 0.493383i
\(675\) 0 0
\(676\) 5.97319 10.3459i 0.229738 0.397918i
\(677\) 2.41011 0.0926280 0.0463140 0.998927i \(-0.485253\pi\)
0.0463140 + 0.998927i \(0.485253\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 4.97877 2.87450i 0.190927 0.110232i
\(681\) 0 0
\(682\) −15.6674 + 9.04559i −0.599937 + 0.346374i
\(683\) −24.5302 14.1625i −0.938624 0.541915i −0.0490952 0.998794i \(-0.515634\pi\)
−0.889529 + 0.456879i \(0.848967\pi\)
\(684\) 0 0
\(685\) 25.0868i 0.958517i
\(686\) 0 0
\(687\) 0 0
\(688\) 3.05899 5.29833i 0.116623 0.201997i
\(689\) 3.27410 0.124733
\(690\) 0 0
\(691\) 3.41022i 0.129731i −0.997894 0.0648655i \(-0.979338\pi\)
0.997894 0.0648655i \(-0.0206618\pi\)
\(692\) −11.2051 −0.425953
\(693\) 0 0
\(694\) −16.7623 −0.636289
\(695\) 51.8136i 1.96540i
\(696\) 0 0
\(697\) −0.152851 −0.00578964
\(698\) 8.34010 14.4455i 0.315678 0.546769i
\(699\) 0 0
\(700\) 0 0
\(701\) 51.4943i 1.94491i −0.233087 0.972456i \(-0.574883\pi\)
0.233087 0.972456i \(-0.425117\pi\)
\(702\) 0 0
\(703\) 41.6644 + 24.0550i 1.57140 + 0.907251i
\(704\) 2.61745 1.51119i 0.0986488 0.0569549i
\(705\) 0 0
\(706\) 31.1021 17.9568i 1.17054 0.675814i
\(707\) 0 0
\(708\) 0 0
\(709\) 10.0844 0.378726 0.189363 0.981907i \(-0.439358\pi\)
0.189363 + 0.981907i \(0.439358\pi\)
\(710\) 24.8424 43.0282i 0.932317 1.61482i
\(711\) 0 0
\(712\) −4.07888 + 2.35495i −0.152863 + 0.0882553i
\(713\) −10.0510 + 17.4088i −0.376412 + 0.651965i
\(714\) 0 0
\(715\) 5.51017 + 9.54389i 0.206069 + 0.356921i
\(716\) −2.37445 1.37089i −0.0887375 0.0512326i
\(717\) 0 0
\(718\) −14.2749 24.7248i −0.532734 0.922722i
\(719\) −15.9584 27.6408i −0.595148 1.03083i −0.993526 0.113605i \(-0.963760\pi\)
0.398378 0.917221i \(-0.369573\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 42.1881 + 24.3573i 1.57008 + 0.906485i
\(723\) 0 0
\(724\) 22.2899i 0.828397i
\(725\) 32.5772i 1.20989i
\(726\) 0 0
\(727\) 17.9336 + 10.3540i 0.665120 + 0.384007i 0.794225 0.607624i \(-0.207877\pi\)
−0.129105 + 0.991631i \(0.541210\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −2.32870 4.03342i −0.0861889 0.149284i
\(731\) 4.95070 + 8.57487i 0.183108 + 0.317153i
\(732\) 0 0
\(733\) −7.69996 4.44558i −0.284405 0.164201i 0.351011 0.936371i \(-0.385838\pi\)
−0.635416 + 0.772170i \(0.719171\pi\)
\(734\) −0.179362 0.310665i −0.00662038 0.0114668i
\(735\) 0 0
\(736\) 1.67915 2.90837i 0.0618943 0.107204i
\(737\) 0.983312 0.567715i 0.0362207 0.0209121i
\(738\) 0 0
\(739\) −16.3882 + 28.3851i −0.602848 + 1.04416i 0.389539 + 0.921010i \(0.372634\pi\)
−0.992388 + 0.123154i \(0.960699\pi\)
\(740\) −20.7681 −0.763451
\(741\) 0 0
\(742\) 0 0
\(743\) 6.68055 3.85702i 0.245086 0.141500i −0.372426 0.928062i \(-0.621474\pi\)
0.617512 + 0.786562i \(0.288141\pi\)
\(744\) 0 0
\(745\) 32.9234 19.0083i 1.20622 0.696411i
\(746\) −21.9718 12.6854i −0.804445 0.464446i
\(747\) 0 0
\(748\) 4.89143i 0.178848i
\(749\) 0 0
\(750\) 0 0
\(751\) −15.3804 + 26.6397i −0.561239 + 0.972095i 0.436149 + 0.899874i \(0.356342\pi\)
−0.997389 + 0.0722207i \(0.976991\pi\)
\(752\) −5.14045 −0.187453
\(753\) 0 0
\(754\) 4.38924i 0.159847i
\(755\) −56.8406 −2.06864
\(756\) 0 0
\(757\) 46.4611 1.68866 0.844328 0.535827i \(-0.180000\pi\)
0.844328 + 0.535827i \(0.180000\pi\)
\(758\) 26.9063i 0.977282i
\(759\) 0 0
\(760\) −29.2311 −1.06032
\(761\) −18.5959 + 32.2090i −0.674099 + 1.16757i 0.302632 + 0.953107i \(0.402135\pi\)
−0.976731 + 0.214467i \(0.931199\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 5.13264i 0.185692i
\(765\) 0 0
\(766\) −10.8874 6.28586i −0.393379 0.227117i
\(767\) −7.85890 + 4.53734i −0.283768 + 0.163834i
\(768\) 0 0
\(769\) 12.2312 7.06166i 0.441067 0.254650i −0.262983 0.964800i \(-0.584706\pi\)
0.704050 + 0.710150i \(0.251373\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −15.9847 −0.575302
\(773\) 15.4728 26.7996i 0.556517 0.963915i −0.441267 0.897376i \(-0.645471\pi\)
0.997784 0.0665393i \(-0.0211958\pi\)
\(774\) 0 0
\(775\) −39.4928 + 22.8012i −1.41862 + 0.819043i
\(776\) −7.69782 + 13.3330i −0.276336 + 0.478627i
\(777\) 0 0
\(778\) 8.12937 + 14.0805i 0.291452 + 0.504810i
\(779\) 0.673057 + 0.388590i 0.0241148 + 0.0139227i
\(780\) 0 0
\(781\) 21.1367 + 36.6098i 0.756330 + 1.31000i
\(782\) 2.71755 + 4.70694i 0.0971794 + 0.168320i
\(783\) 0 0
\(784\) 0 0
\(785\) 35.4599 + 20.4728i 1.26562 + 0.730706i
\(786\) 0 0
\(787\) 18.3256i 0.653237i 0.945156 + 0.326619i \(0.105909\pi\)
−0.945156 + 0.326619i \(0.894091\pi\)
\(788\) 4.72572i 0.168347i
\(789\) 0 0
\(790\) 2.84295 + 1.64138i 0.101148 + 0.0583976i
\(791\) 0 0
\(792\) 0 0
\(793\) −2.40723 4.16945i −0.0854834 0.148062i
\(794\) 7.34692 + 12.7252i 0.260733 + 0.451602i
\(795\) 0 0
\(796\) 1.83679 + 1.06047i 0.0651034 + 0.0375875i
\(797\) −1.07681 1.86508i −0.0381424 0.0660646i 0.846324 0.532668i \(-0.178811\pi\)
−0.884466 + 0.466604i \(0.845477\pi\)
\(798\) 0 0
\(799\) 4.15968 7.20477i 0.147159 0.254886i
\(800\) 6.59779 3.80924i 0.233267 0.134677i
\(801\) 0 0
\(802\) 8.32318 14.4162i 0.293902 0.509053i
\(803\) 3.96266 0.139839
\(804\) 0 0
\(805\) 0 0
\(806\) 5.32101 3.07208i 0.187424 0.108210i
\(807\) 0 0
\(808\) −11.8686 + 6.85234i −0.417536 + 0.241064i
\(809\) −17.0147 9.82342i −0.598204 0.345373i 0.170131 0.985421i \(-0.445581\pi\)
−0.768335 + 0.640048i \(0.778914\pi\)
\(810\) 0 0
\(811\) 12.3340i 0.433105i 0.976271 + 0.216552i \(0.0694812\pi\)
−0.976271 + 0.216552i \(0.930519\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 8.83510 15.3028i 0.309670 0.536364i
\(815\) 9.76061 0.341899
\(816\) 0 0
\(817\) 50.3443i 1.76132i
\(818\) −2.80886 −0.0982095
\(819\) 0 0
\(820\) −0.335493 −0.0117159
\(821\) 22.3738i 0.780853i 0.920634 + 0.390426i \(0.127672\pi\)
−0.920634 + 0.390426i \(0.872328\pi\)
\(822\) 0 0
\(823\) 27.0065 0.941388 0.470694 0.882297i \(-0.344004\pi\)
0.470694 + 0.882297i \(0.344004\pi\)
\(824\) −1.52429 + 2.64014i −0.0531010 + 0.0919737i
\(825\) 0 0
\(826\) 0 0
\(827\) 26.3189i 0.915196i 0.889159 + 0.457598i \(0.151290\pi\)
−0.889159 + 0.457598i \(0.848710\pi\)
\(828\) 0 0
\(829\) −28.8691 16.6676i −1.00266 0.578888i −0.0936287 0.995607i \(-0.529847\pi\)
−0.909035 + 0.416719i \(0.863180\pi\)
\(830\) 33.4219 19.2962i 1.16009 0.669779i
\(831\) 0 0
\(832\) −0.888944 + 0.513232i −0.0308186 + 0.0177931i
\(833\) 0 0
\(834\) 0 0
\(835\) −19.6756 −0.680903
\(836\) 12.4354 21.5387i 0.430086 0.744932i
\(837\) 0 0
\(838\) −12.9447 + 7.47362i −0.447167 + 0.258172i
\(839\) −18.6896 + 32.3713i −0.645236 + 1.11758i 0.339011 + 0.940782i \(0.389908\pi\)
−0.984247 + 0.176799i \(0.943426\pi\)
\(840\) 0 0
\(841\) −5.35758 9.27960i −0.184744 0.319986i
\(842\) −13.5158 7.80336i −0.465786 0.268922i
\(843\) 0 0
\(844\) 13.8079 + 23.9160i 0.475289 + 0.823224i
\(845\) 21.2182 + 36.7511i 0.729930 + 1.26428i
\(846\) 0 0
\(847\) 0 0
\(848\) 2.76235 + 1.59484i 0.0948594 + 0.0547671i
\(849\) 0 0
\(850\) 12.3298i 0.422909i
\(851\) 19.6342i 0.673052i
\(852\) 0 0
\(853\) 4.65798 + 2.68929i 0.159486 + 0.0920795i 0.577619 0.816306i \(-0.303982\pi\)
−0.418133 + 0.908386i \(0.637315\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −6.56336 11.3681i −0.224331 0.388553i
\(857\) 22.7000 + 39.3176i 0.775418 + 1.34306i 0.934559 + 0.355807i \(0.115794\pi\)
−0.159142 + 0.987256i \(0.550873\pi\)
\(858\) 0 0
\(859\) −3.36261 1.94141i −0.114731 0.0662399i 0.441536 0.897243i \(-0.354434\pi\)
−0.556267 + 0.831003i \(0.687767\pi\)
\(860\) 10.8663 + 18.8210i 0.370538 + 0.641791i
\(861\) 0 0
\(862\) −8.08792 + 14.0087i −0.275476 + 0.477138i
\(863\) 20.3332 11.7394i 0.692152 0.399614i −0.112266 0.993678i \(-0.535811\pi\)
0.804418 + 0.594064i \(0.202478\pi\)
\(864\) 0 0
\(865\) 19.9016 34.4706i 0.676674 1.17203i
\(866\) 27.2499 0.925991
\(867\) 0 0
\(868\) 0 0
\(869\) −2.41887 + 1.39654i −0.0820547 + 0.0473743i
\(870\) 0 0
\(871\) −0.333955 + 0.192809i −0.0113156 + 0.00653308i
\(872\) −9.15516 5.28574i −0.310033 0.178998i
\(873\) 0 0
\(874\) 27.6351i 0.934770i
\(875\) 0 0
\(876\) 0 0
\(877\) −16.4796 + 28.5434i −0.556475 + 0.963843i 0.441312 + 0.897354i \(0.354513\pi\)
−0.997787 + 0.0664896i \(0.978820\pi\)
\(878\) −33.1347 −1.11824
\(879\) 0 0
\(880\) 10.7362i 0.361918i
\(881\) 7.44403 0.250796 0.125398 0.992107i \(-0.459979\pi\)
0.125398 + 0.992107i \(0.459979\pi\)
\(882\) 0 0
\(883\) −28.2839 −0.951828 −0.475914 0.879492i \(-0.657883\pi\)
−0.475914 + 0.879492i \(0.657883\pi\)
\(884\) 1.66124i 0.0558735i
\(885\) 0 0
\(886\) 22.2636 0.747960
\(887\) 6.06377 10.5028i 0.203602 0.352648i −0.746085 0.665851i \(-0.768069\pi\)
0.949686 + 0.313203i \(0.101402\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 16.7307i 0.560814i
\(891\) 0 0
\(892\) −17.6209 10.1734i −0.589992 0.340632i
\(893\) −36.6331 + 21.1501i −1.22588 + 0.707761i
\(894\) 0 0
\(895\) 8.43465 4.86975i 0.281939 0.162778i
\(896\) 0 0
\(897\) 0 0
\(898\) 6.80819 0.227192
\(899\) 12.7978 22.1664i 0.426830 0.739291i
\(900\) 0 0
\(901\) −4.47061 + 2.58111i −0.148938 + 0.0859891i
\(902\) 0.142724 0.247206i 0.00475220 0.00823105i
\(903\) 0 0
\(904\) 6.14993 + 10.6520i 0.204544 + 0.354280i
\(905\) 68.5712 + 39.5896i 2.27938 + 1.31600i
\(906\) 0 0
\(907\) 23.0890 + 39.9913i 0.766657 + 1.32789i 0.939366 + 0.342916i \(0.111415\pi\)
−0.172709 + 0.984973i \(0.555252\pi\)
\(908\) 2.08000 + 3.60266i 0.0690272 + 0.119559i
\(909\) 0 0
\(910\) 0 0
\(911\) 12.7284 + 7.34874i 0.421710 + 0.243475i 0.695809 0.718227i \(-0.255046\pi\)
−0.274098 + 0.961702i \(0.588379\pi\)
\(912\) 0 0
\(913\) 32.8356i 1.08670i
\(914\) 15.2260i 0.503630i
\(915\) 0 0
\(916\) −5.16986 2.98482i −0.170817 0.0986212i
\(917\) 0 0
\(918\) 0 0
\(919\) −12.9345 22.4033i −0.426671 0.739015i 0.569904 0.821711i \(-0.306980\pi\)
−0.996575 + 0.0826958i \(0.973647\pi\)
\(920\) 5.96476 + 10.3313i 0.196652 + 0.340612i
\(921\) 0 0
\(922\) 0.179060 + 0.103381i 0.00589704 + 0.00340466i
\(923\) −7.17849 12.4335i −0.236283 0.409254i
\(924\) 0 0
\(925\) 22.2706 38.5738i 0.732253 1.26830i
\(926\) 13.1673 7.60217i 0.432706 0.249823i
\(927\) 0 0
\(928\) −2.13804 + 3.70319i −0.0701846 + 0.121563i
\(929\) 13.1935 0.432863 0.216432 0.976298i \(-0.430558\pi\)
0.216432 + 0.976298i \(0.430558\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −3.88603 + 2.24360i −0.127291 + 0.0734915i
\(933\) 0 0
\(934\) −1.99921 + 1.15424i −0.0654161 + 0.0377680i
\(935\) −15.0477 8.68779i −0.492112 0.284121i
\(936\) 0 0
\(937\) 8.86021i 0.289451i 0.989472 + 0.144725i \(0.0462298\pi\)
−0.989472 + 0.144725i \(0.953770\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 9.13009 15.8138i 0.297791 0.515788i
\(941\) −4.11839 −0.134256 −0.0671278 0.997744i \(-0.521384\pi\)
−0.0671278 + 0.997744i \(0.521384\pi\)
\(942\) 0 0
\(943\) 0.317175i 0.0103287i
\(944\) −8.84071 −0.287741
\(945\) 0 0
\(946\) −18.4908 −0.601189
\(947\) 24.7681i 0.804854i 0.915452 + 0.402427i \(0.131833\pi\)
−0.915452 + 0.402427i \(0.868167\pi\)
\(948\) 0 0
\(949\) −1.34581 −0.0436868
\(950\) 31.3458 54.2925i 1.01699 1.76148i
\(951\) 0 0
\(952\) 0 0
\(953\) 9.62625i 0.311825i −0.987771 0.155912i \(-0.950168\pi\)
0.987771 0.155912i \(-0.0498317\pi\)
\(954\) 0 0
\(955\) −15.7897 9.11620i −0.510944 0.294993i
\(956\) −3.02944 + 1.74905i −0.0979790 + 0.0565682i
\(957\) 0 0
\(958\) −10.7674 + 6.21659i −0.347880 + 0.200849i
\(959\) 0 0
\(960\) 0 0
\(961\) −4.82931 −0.155784
\(962\) −3.00060 + 5.19719i −0.0967431 + 0.167564i
\(963\) 0 0
\(964\) 10.0170 5.78332i 0.322626 0.186268i
\(965\) 28.3908 49.1744i 0.913933 1.58298i
\(966\) 0 0
\(967\) 5.05558 + 8.75652i 0.162576 + 0.281591i 0.935792 0.352553i \(-0.114686\pi\)
−0.773216 + 0.634143i \(0.781353\pi\)
\(968\) 1.61538 + 0.932639i 0.0519202 + 0.0299762i
\(969\) 0 0
\(970\) −27.3446 47.3622i −0.877981 1.52071i
\(971\) −12.6574 21.9233i −0.406196 0.703552i 0.588264 0.808669i \(-0.299812\pi\)
−0.994460 + 0.105117i \(0.966478\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −32.3033 18.6503i −1.03507 0.597595i
\(975\) 0 0
\(976\) 4.69034i 0.150134i
\(977\) 9.05294i 0.289629i 0.989459 + 0.144815i \(0.0462586\pi\)
−0.989459 + 0.144815i \(0.953741\pi\)
\(978\) 0 0
\(979\) 12.3279 + 7.11752i 0.394001 + 0.227477i
\(980\) 0 0
\(981\) 0 0
\(982\) 6.82377 + 11.8191i 0.217755 + 0.377163i
\(983\) −3.19651 5.53653i −0.101953 0.176588i 0.810536 0.585688i \(-0.199176\pi\)
−0.912489 + 0.409101i \(0.865842\pi\)
\(984\) 0 0
\(985\) 14.5379 + 8.39347i 0.463216 + 0.267438i
\(986\) −3.46022 5.99328i −0.110196 0.190865i
\(987\) 0 0
\(988\) −4.22333 + 7.31502i −0.134362 + 0.232722i
\(989\) −17.7934 + 10.2730i −0.565797 + 0.326663i
\(990\) 0 0
\(991\) 6.92230 11.9898i 0.219894 0.380868i −0.734881 0.678196i \(-0.762762\pi\)
0.954775 + 0.297328i \(0.0960954\pi\)
\(992\) 5.98576 0.190048
\(993\) 0 0
\(994\) 0 0
\(995\) −6.52475 + 3.76706i −0.206848 + 0.119424i
\(996\) 0 0
\(997\) 5.99391 3.46059i 0.189829 0.109598i −0.402073 0.915607i \(-0.631710\pi\)
0.591903 + 0.806010i \(0.298377\pi\)
\(998\) 18.1882 + 10.5010i 0.575737 + 0.332402i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2646.2.l.a.521.8 16
3.2 odd 2 882.2.l.b.227.3 16
7.2 even 3 378.2.t.a.89.5 16
7.3 odd 6 2646.2.m.b.1763.1 16
7.4 even 3 2646.2.m.a.1763.4 16
7.5 odd 6 2646.2.t.b.1979.8 16
7.6 odd 2 378.2.l.a.143.5 16
9.4 even 3 882.2.t.a.815.1 16
9.5 odd 6 2646.2.t.b.2285.8 16
21.2 odd 6 126.2.t.a.47.4 yes 16
21.5 even 6 882.2.t.a.803.1 16
21.11 odd 6 882.2.m.a.587.5 16
21.17 even 6 882.2.m.b.587.8 16
21.20 even 2 126.2.l.a.101.2 yes 16
28.23 odd 6 3024.2.df.c.1601.1 16
28.27 even 2 3024.2.ca.c.2033.1 16
63.2 odd 6 1134.2.k.b.971.5 16
63.4 even 3 882.2.m.b.293.8 16
63.5 even 6 inner 2646.2.l.a.1097.4 16
63.13 odd 6 126.2.t.a.59.4 yes 16
63.16 even 3 1134.2.k.a.971.4 16
63.20 even 6 1134.2.k.a.647.4 16
63.23 odd 6 378.2.l.a.341.1 16
63.31 odd 6 882.2.m.a.293.5 16
63.32 odd 6 2646.2.m.b.881.1 16
63.34 odd 6 1134.2.k.b.647.5 16
63.40 odd 6 882.2.l.b.509.7 16
63.41 even 6 378.2.t.a.17.5 16
63.58 even 3 126.2.l.a.5.6 16
63.59 even 6 2646.2.m.a.881.4 16
84.23 even 6 1008.2.df.c.929.3 16
84.83 odd 2 1008.2.ca.c.353.7 16
252.23 even 6 3024.2.ca.c.2609.1 16
252.139 even 6 1008.2.df.c.689.3 16
252.167 odd 6 3024.2.df.c.17.1 16
252.247 odd 6 1008.2.ca.c.257.7 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.l.a.5.6 16 63.58 even 3
126.2.l.a.101.2 yes 16 21.20 even 2
126.2.t.a.47.4 yes 16 21.2 odd 6
126.2.t.a.59.4 yes 16 63.13 odd 6
378.2.l.a.143.5 16 7.6 odd 2
378.2.l.a.341.1 16 63.23 odd 6
378.2.t.a.17.5 16 63.41 even 6
378.2.t.a.89.5 16 7.2 even 3
882.2.l.b.227.3 16 3.2 odd 2
882.2.l.b.509.7 16 63.40 odd 6
882.2.m.a.293.5 16 63.31 odd 6
882.2.m.a.587.5 16 21.11 odd 6
882.2.m.b.293.8 16 63.4 even 3
882.2.m.b.587.8 16 21.17 even 6
882.2.t.a.803.1 16 21.5 even 6
882.2.t.a.815.1 16 9.4 even 3
1008.2.ca.c.257.7 16 252.247 odd 6
1008.2.ca.c.353.7 16 84.83 odd 2
1008.2.df.c.689.3 16 252.139 even 6
1008.2.df.c.929.3 16 84.23 even 6
1134.2.k.a.647.4 16 63.20 even 6
1134.2.k.a.971.4 16 63.16 even 3
1134.2.k.b.647.5 16 63.34 odd 6
1134.2.k.b.971.5 16 63.2 odd 6
2646.2.l.a.521.8 16 1.1 even 1 trivial
2646.2.l.a.1097.4 16 63.5 even 6 inner
2646.2.m.a.881.4 16 63.59 even 6
2646.2.m.a.1763.4 16 7.4 even 3
2646.2.m.b.881.1 16 63.32 odd 6
2646.2.m.b.1763.1 16 7.3 odd 6
2646.2.t.b.1979.8 16 7.5 odd 6
2646.2.t.b.2285.8 16 9.5 odd 6
3024.2.ca.c.2033.1 16 28.27 even 2
3024.2.ca.c.2609.1 16 252.23 even 6
3024.2.df.c.17.1 16 252.167 odd 6
3024.2.df.c.1601.1 16 28.23 odd 6