Properties

Label 882.2.e.t.655.4
Level $882$
Weight $2$
Character 882.655
Analytic conductor $7.043$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [882,2,Mod(373,882)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(882, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("882.373"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 882.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,8,0,8,0,0,0,8,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.04280545828\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.3317760000.3
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{6} + 7x^{4} - 36x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 655.4
Root \(1.01575 - 1.40294i\) of defining polynomial
Character \(\chi\) \(=\) 882.655
Dual form 882.2.e.t.373.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +(1.72286 + 0.178197i) q^{3} +1.00000 q^{4} +(1.01575 - 1.75934i) q^{5} +(1.72286 + 0.178197i) q^{6} +1.00000 q^{8} +(2.93649 + 0.614017i) q^{9} +(1.01575 - 1.75934i) q^{10} +(-2.00000 - 3.46410i) q^{11} +(1.72286 + 0.178197i) q^{12} +(-2.12132 - 3.67423i) q^{13} +(2.06351 - 2.85008i) q^{15} +1.00000 q^{16} +(0.707107 - 1.22474i) q^{17} +(2.93649 + 0.614017i) q^{18} +(-0.398461 - 0.690154i) q^{19} +(1.01575 - 1.75934i) q^{20} +(-2.00000 - 3.46410i) q^{22} +(-3.37298 + 5.84218i) q^{23} +(1.72286 + 0.178197i) q^{24} +(0.436492 + 0.756026i) q^{25} +(-2.12132 - 3.67423i) q^{26} +(4.94975 + 1.58114i) q^{27} +(-4.43649 + 7.68423i) q^{29} +(2.06351 - 2.85008i) q^{30} +5.47723 q^{31} +1.00000 q^{32} +(-2.82843 - 6.32456i) q^{33} +(0.707107 - 1.22474i) q^{34} +(2.93649 + 0.614017i) q^{36} +(4.87298 + 8.44025i) q^{37} +(-0.398461 - 0.690154i) q^{38} +(-3.00000 - 6.70820i) q^{39} +(1.01575 - 1.75934i) q^{40} +(2.82843 + 4.89898i) q^{41} +(-4.43649 + 7.68423i) q^{43} +(-2.00000 - 3.46410i) q^{44} +(4.06301 - 4.54259i) q^{45} +(-3.37298 + 5.84218i) q^{46} -6.89144 q^{47} +(1.72286 + 0.178197i) q^{48} +(0.436492 + 0.756026i) q^{50} +(1.43649 - 1.98406i) q^{51} +(-2.12132 - 3.67423i) q^{52} +(5.30948 - 9.19628i) q^{53} +(4.94975 + 1.58114i) q^{54} -8.12602 q^{55} +(-0.563508 - 1.26004i) q^{57} +(-4.43649 + 7.68423i) q^{58} -2.64880 q^{59} +(2.06351 - 2.85008i) q^{60} -0.796921 q^{61} +5.47723 q^{62} +1.00000 q^{64} -8.61895 q^{65} +(-2.82843 - 6.32456i) q^{66} +0.872983 q^{67} +(0.707107 - 1.22474i) q^{68} +(-6.85224 + 9.46420i) q^{69} -2.12702 q^{71} +(2.93649 + 0.614017i) q^{72} +(7.68836 - 13.3166i) q^{73} +(4.87298 + 8.44025i) q^{74} +(0.617292 + 1.38031i) q^{75} +(-0.398461 - 0.690154i) q^{76} +(-3.00000 - 6.70820i) q^{78} +5.87298 q^{79} +(1.01575 - 1.75934i) q^{80} +(8.24597 + 3.60611i) q^{81} +(2.82843 + 4.89898i) q^{82} +(4.15283 - 7.19291i) q^{83} +(-1.43649 - 2.48808i) q^{85} +(-4.43649 + 7.68423i) q^{86} +(-9.01276 + 12.4483i) q^{87} +(-2.00000 - 3.46410i) q^{88} +(3.53553 + 6.12372i) q^{89} +(4.06301 - 4.54259i) q^{90} +(-3.37298 + 5.84218i) q^{92} +(9.43649 + 0.976025i) q^{93} -6.89144 q^{94} -1.61895 q^{95} +(1.72286 + 0.178197i) q^{96} +(-8.92295 + 15.4550i) q^{97} +(-3.74597 - 11.4003i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} + 8 q^{4} + 8 q^{8} + 8 q^{9} - 16 q^{11} + 32 q^{15} + 8 q^{16} + 8 q^{18} - 16 q^{22} + 4 q^{23} - 12 q^{25} - 20 q^{29} + 32 q^{30} + 8 q^{32} + 8 q^{36} + 8 q^{37} - 24 q^{39} - 20 q^{43}+ \cdots + 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/882\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(785\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.72286 + 0.178197i 0.994694 + 0.102882i
\(4\) 1.00000 0.500000
\(5\) 1.01575 1.75934i 0.454259 0.786799i −0.544387 0.838834i \(-0.683238\pi\)
0.998645 + 0.0520355i \(0.0165709\pi\)
\(6\) 1.72286 + 0.178197i 0.703355 + 0.0727486i
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) 2.93649 + 0.614017i 0.978831 + 0.204672i
\(10\) 1.01575 1.75934i 0.321209 0.556351i
\(11\) −2.00000 3.46410i −0.603023 1.04447i −0.992361 0.123371i \(-0.960630\pi\)
0.389338 0.921095i \(-0.372704\pi\)
\(12\) 1.72286 + 0.178197i 0.497347 + 0.0514410i
\(13\) −2.12132 3.67423i −0.588348 1.01905i −0.994449 0.105221i \(-0.966445\pi\)
0.406100 0.913828i \(-0.366888\pi\)
\(14\) 0 0
\(15\) 2.06351 2.85008i 0.532796 0.735889i
\(16\) 1.00000 0.250000
\(17\) 0.707107 1.22474i 0.171499 0.297044i −0.767445 0.641114i \(-0.778472\pi\)
0.938944 + 0.344070i \(0.111806\pi\)
\(18\) 2.93649 + 0.614017i 0.692138 + 0.144725i
\(19\) −0.398461 0.690154i −0.0914131 0.158332i 0.816693 0.577073i \(-0.195805\pi\)
−0.908106 + 0.418740i \(0.862472\pi\)
\(20\) 1.01575 1.75934i 0.227129 0.393399i
\(21\) 0 0
\(22\) −2.00000 3.46410i −0.426401 0.738549i
\(23\) −3.37298 + 5.84218i −0.703316 + 1.21818i 0.263980 + 0.964528i \(0.414965\pi\)
−0.967296 + 0.253650i \(0.918369\pi\)
\(24\) 1.72286 + 0.178197i 0.351677 + 0.0363743i
\(25\) 0.436492 + 0.756026i 0.0872983 + 0.151205i
\(26\) −2.12132 3.67423i −0.416025 0.720577i
\(27\) 4.94975 + 1.58114i 0.952579 + 0.304290i
\(28\) 0 0
\(29\) −4.43649 + 7.68423i −0.823836 + 1.42693i 0.0789700 + 0.996877i \(0.474837\pi\)
−0.902806 + 0.430049i \(0.858496\pi\)
\(30\) 2.06351 2.85008i 0.376743 0.520352i
\(31\) 5.47723 0.983739 0.491869 0.870669i \(-0.336314\pi\)
0.491869 + 0.870669i \(0.336314\pi\)
\(32\) 1.00000 0.176777
\(33\) −2.82843 6.32456i −0.492366 1.10096i
\(34\) 0.707107 1.22474i 0.121268 0.210042i
\(35\) 0 0
\(36\) 2.93649 + 0.614017i 0.489415 + 0.102336i
\(37\) 4.87298 + 8.44025i 0.801114 + 1.38757i 0.918884 + 0.394528i \(0.129092\pi\)
−0.117770 + 0.993041i \(0.537575\pi\)
\(38\) −0.398461 0.690154i −0.0646388 0.111958i
\(39\) −3.00000 6.70820i −0.480384 1.07417i
\(40\) 1.01575 1.75934i 0.160605 0.278175i
\(41\) 2.82843 + 4.89898i 0.441726 + 0.765092i 0.997818 0.0660290i \(-0.0210330\pi\)
−0.556092 + 0.831121i \(0.687700\pi\)
\(42\) 0 0
\(43\) −4.43649 + 7.68423i −0.676559 + 1.17183i 0.299452 + 0.954111i \(0.403196\pi\)
−0.976011 + 0.217723i \(0.930137\pi\)
\(44\) −2.00000 3.46410i −0.301511 0.522233i
\(45\) 4.06301 4.54259i 0.605678 0.677169i
\(46\) −3.37298 + 5.84218i −0.497319 + 0.861382i
\(47\) −6.89144 −1.00522 −0.502610 0.864513i \(-0.667627\pi\)
−0.502610 + 0.864513i \(0.667627\pi\)
\(48\) 1.72286 + 0.178197i 0.248673 + 0.0257205i
\(49\) 0 0
\(50\) 0.436492 + 0.756026i 0.0617292 + 0.106918i
\(51\) 1.43649 1.98406i 0.201149 0.277824i
\(52\) −2.12132 3.67423i −0.294174 0.509525i
\(53\) 5.30948 9.19628i 0.729312 1.26321i −0.227862 0.973694i \(-0.573173\pi\)
0.957174 0.289513i \(-0.0934933\pi\)
\(54\) 4.94975 + 1.58114i 0.673575 + 0.215166i
\(55\) −8.12602 −1.09571
\(56\) 0 0
\(57\) −0.563508 1.26004i −0.0746385 0.166897i
\(58\) −4.43649 + 7.68423i −0.582540 + 1.00899i
\(59\) −2.64880 −0.344844 −0.172422 0.985023i \(-0.555159\pi\)
−0.172422 + 0.985023i \(0.555159\pi\)
\(60\) 2.06351 2.85008i 0.266398 0.367944i
\(61\) −0.796921 −0.102035 −0.0510176 0.998698i \(-0.516246\pi\)
−0.0510176 + 0.998698i \(0.516246\pi\)
\(62\) 5.47723 0.695608
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −8.61895 −1.06905
\(66\) −2.82843 6.32456i −0.348155 0.778499i
\(67\) 0.872983 0.106652 0.0533259 0.998577i \(-0.483018\pi\)
0.0533259 + 0.998577i \(0.483018\pi\)
\(68\) 0.707107 1.22474i 0.0857493 0.148522i
\(69\) −6.85224 + 9.46420i −0.824912 + 1.13936i
\(70\) 0 0
\(71\) −2.12702 −0.252430 −0.126215 0.992003i \(-0.540283\pi\)
−0.126215 + 0.992003i \(0.540283\pi\)
\(72\) 2.93649 + 0.614017i 0.346069 + 0.0723626i
\(73\) 7.68836 13.3166i 0.899855 1.55859i 0.0721755 0.997392i \(-0.477006\pi\)
0.827679 0.561202i \(-0.189661\pi\)
\(74\) 4.87298 + 8.44025i 0.566473 + 0.981160i
\(75\) 0.617292 + 1.38031i 0.0712788 + 0.159384i
\(76\) −0.398461 0.690154i −0.0457066 0.0791661i
\(77\) 0 0
\(78\) −3.00000 6.70820i −0.339683 0.759555i
\(79\) 5.87298 0.660762 0.330381 0.943848i \(-0.392823\pi\)
0.330381 + 0.943848i \(0.392823\pi\)
\(80\) 1.01575 1.75934i 0.113565 0.196700i
\(81\) 8.24597 + 3.60611i 0.916219 + 0.400679i
\(82\) 2.82843 + 4.89898i 0.312348 + 0.541002i
\(83\) 4.15283 7.19291i 0.455832 0.789524i −0.542904 0.839795i \(-0.682675\pi\)
0.998736 + 0.0502709i \(0.0160085\pi\)
\(84\) 0 0
\(85\) −1.43649 2.48808i −0.155809 0.269870i
\(86\) −4.43649 + 7.68423i −0.478399 + 0.828612i
\(87\) −9.01276 + 12.4483i −0.966269 + 1.33460i
\(88\) −2.00000 3.46410i −0.213201 0.369274i
\(89\) 3.53553 + 6.12372i 0.374766 + 0.649113i 0.990292 0.139003i \(-0.0443898\pi\)
−0.615526 + 0.788116i \(0.711056\pi\)
\(90\) 4.06301 4.54259i 0.428279 0.478831i
\(91\) 0 0
\(92\) −3.37298 + 5.84218i −0.351658 + 0.609089i
\(93\) 9.43649 + 0.976025i 0.978519 + 0.101209i
\(94\) −6.89144 −0.710798
\(95\) −1.61895 −0.166101
\(96\) 1.72286 + 0.178197i 0.175839 + 0.0181872i
\(97\) −8.92295 + 15.4550i −0.905988 + 1.56922i −0.0864021 + 0.996260i \(0.527537\pi\)
−0.819586 + 0.572957i \(0.805796\pi\)
\(98\) 0 0
\(99\) −3.74597 11.4003i −0.376484 1.14578i
\(100\) 0.436492 + 0.756026i 0.0436492 + 0.0756026i
\(101\) −3.93399 6.81388i −0.391447 0.678006i 0.601194 0.799103i \(-0.294692\pi\)
−0.992641 + 0.121097i \(0.961359\pi\)
\(102\) 1.43649 1.98406i 0.142234 0.196451i
\(103\) −9.01276 + 15.6106i −0.888054 + 1.53815i −0.0458803 + 0.998947i \(0.514609\pi\)
−0.842173 + 0.539207i \(0.818724\pi\)
\(104\) −2.12132 3.67423i −0.208013 0.360288i
\(105\) 0 0
\(106\) 5.30948 9.19628i 0.515702 0.893222i
\(107\) −7.87298 13.6364i −0.761110 1.31828i −0.942279 0.334829i \(-0.891321\pi\)
0.181169 0.983452i \(-0.442012\pi\)
\(108\) 4.94975 + 1.58114i 0.476290 + 0.152145i
\(109\) −4.56351 + 7.90423i −0.437105 + 0.757088i −0.997465 0.0711614i \(-0.977329\pi\)
0.560360 + 0.828249i \(0.310663\pi\)
\(110\) −8.12602 −0.774786
\(111\) 6.89144 + 15.4097i 0.654106 + 1.46263i
\(112\) 0 0
\(113\) 1.93649 + 3.35410i 0.182170 + 0.315527i 0.942619 0.333870i \(-0.108355\pi\)
−0.760449 + 0.649397i \(0.775021\pi\)
\(114\) −0.563508 1.26004i −0.0527774 0.118014i
\(115\) 6.85224 + 11.8684i 0.638974 + 1.10674i
\(116\) −4.43649 + 7.68423i −0.411918 + 0.713463i
\(117\) −3.97320 12.0919i −0.367322 1.11790i
\(118\) −2.64880 −0.243842
\(119\) 0 0
\(120\) 2.06351 2.85008i 0.188372 0.260176i
\(121\) −2.50000 + 4.33013i −0.227273 + 0.393648i
\(122\) −0.796921 −0.0721498
\(123\) 4.00000 + 8.94427i 0.360668 + 0.806478i
\(124\) 5.47723 0.491869
\(125\) 11.9310 1.06714
\(126\) 0 0
\(127\) 14.7460 1.30849 0.654246 0.756281i \(-0.272986\pi\)
0.654246 + 0.756281i \(0.272986\pi\)
\(128\) 1.00000 0.0883883
\(129\) −9.01276 + 12.4483i −0.793529 + 1.09601i
\(130\) −8.61895 −0.755932
\(131\) 3.93399 6.81388i 0.343715 0.595331i −0.641405 0.767203i \(-0.721648\pi\)
0.985119 + 0.171871i \(0.0549814\pi\)
\(132\) −2.82843 6.32456i −0.246183 0.550482i
\(133\) 0 0
\(134\) 0.872983 0.0754143
\(135\) 7.80948 7.10222i 0.672133 0.611262i
\(136\) 0.707107 1.22474i 0.0606339 0.105021i
\(137\) −7.74597 13.4164i −0.661783 1.14624i −0.980147 0.198273i \(-0.936467\pi\)
0.318364 0.947968i \(-0.396866\pi\)
\(138\) −6.85224 + 9.46420i −0.583301 + 0.805646i
\(139\) −9.23159 15.9896i −0.783013 1.35622i −0.930179 0.367107i \(-0.880348\pi\)
0.147165 0.989112i \(-0.452985\pi\)
\(140\) 0 0
\(141\) −11.8730 1.22803i −0.999886 0.103419i
\(142\) −2.12702 −0.178495
\(143\) −8.48528 + 14.6969i −0.709575 + 1.22902i
\(144\) 2.93649 + 0.614017i 0.244708 + 0.0511681i
\(145\) 9.01276 + 15.6106i 0.748469 + 1.29639i
\(146\) 7.68836 13.3166i 0.636293 1.10209i
\(147\) 0 0
\(148\) 4.87298 + 8.44025i 0.400557 + 0.693785i
\(149\) 0.127017 0.219999i 0.0104056 0.0180230i −0.860776 0.508984i \(-0.830021\pi\)
0.871181 + 0.490961i \(0.163354\pi\)
\(150\) 0.617292 + 1.38031i 0.0504017 + 0.112702i
\(151\) −5.50000 9.52628i −0.447584 0.775238i 0.550645 0.834740i \(-0.314382\pi\)
−0.998228 + 0.0595022i \(0.981049\pi\)
\(152\) −0.398461 0.690154i −0.0323194 0.0559789i
\(153\) 2.82843 3.16228i 0.228665 0.255655i
\(154\) 0 0
\(155\) 5.56351 9.63628i 0.446872 0.774005i
\(156\) −3.00000 6.70820i −0.240192 0.537086i
\(157\) −6.45378 −0.515067 −0.257534 0.966269i \(-0.582910\pi\)
−0.257534 + 0.966269i \(0.582910\pi\)
\(158\) 5.87298 0.467229
\(159\) 10.7862 14.8978i 0.855404 1.18147i
\(160\) 1.01575 1.75934i 0.0803023 0.139088i
\(161\) 0 0
\(162\) 8.24597 + 3.60611i 0.647864 + 0.283323i
\(163\) −5.00000 8.66025i −0.391630 0.678323i 0.601035 0.799223i \(-0.294755\pi\)
−0.992665 + 0.120900i \(0.961422\pi\)
\(164\) 2.82843 + 4.89898i 0.220863 + 0.382546i
\(165\) −14.0000 1.44803i −1.08990 0.112729i
\(166\) 4.15283 7.19291i 0.322322 0.558278i
\(167\) −6.18433 10.7116i −0.478558 0.828887i 0.521140 0.853471i \(-0.325507\pi\)
−0.999698 + 0.0245846i \(0.992174\pi\)
\(168\) 0 0
\(169\) −2.50000 + 4.33013i −0.192308 + 0.333087i
\(170\) −1.43649 2.48808i −0.110174 0.190827i
\(171\) −0.746310 2.27129i −0.0570718 0.173690i
\(172\) −4.43649 + 7.68423i −0.338279 + 0.585917i
\(173\) −12.7279 −0.967686 −0.483843 0.875155i \(-0.660759\pi\)
−0.483843 + 0.875155i \(0.660759\pi\)
\(174\) −9.01276 + 12.4483i −0.683256 + 0.943702i
\(175\) 0 0
\(176\) −2.00000 3.46410i −0.150756 0.261116i
\(177\) −4.56351 0.472008i −0.343014 0.0354783i
\(178\) 3.53553 + 6.12372i 0.264999 + 0.458993i
\(179\) −0.436492 + 0.756026i −0.0326249 + 0.0565080i −0.881877 0.471480i \(-0.843720\pi\)
0.849252 + 0.527988i \(0.177053\pi\)
\(180\) 4.06301 4.54259i 0.302839 0.338584i
\(181\) 7.86799 0.584823 0.292412 0.956293i \(-0.405542\pi\)
0.292412 + 0.956293i \(0.405542\pi\)
\(182\) 0 0
\(183\) −1.37298 0.142009i −0.101494 0.0104976i
\(184\) −3.37298 + 5.84218i −0.248660 + 0.430691i
\(185\) 19.7990 1.45565
\(186\) 9.43649 + 0.976025i 0.691917 + 0.0715656i
\(187\) −5.65685 −0.413670
\(188\) −6.89144 −0.502610
\(189\) 0 0
\(190\) −1.61895 −0.117451
\(191\) −13.8730 −1.00381 −0.501907 0.864922i \(-0.667368\pi\)
−0.501907 + 0.864922i \(0.667368\pi\)
\(192\) 1.72286 + 0.178197i 0.124337 + 0.0128603i
\(193\) 16.1270 1.16085 0.580424 0.814314i \(-0.302887\pi\)
0.580424 + 0.814314i \(0.302887\pi\)
\(194\) −8.92295 + 15.4550i −0.640630 + 1.10960i
\(195\) −14.8492 1.53587i −1.06338 0.109986i
\(196\) 0 0
\(197\) −6.61895 −0.471581 −0.235790 0.971804i \(-0.575768\pi\)
−0.235790 + 0.971804i \(0.575768\pi\)
\(198\) −3.74597 11.4003i −0.266214 0.810187i
\(199\) −10.3372 + 17.9045i −0.732782 + 1.26922i 0.222908 + 0.974839i \(0.428445\pi\)
−0.955690 + 0.294376i \(0.904888\pi\)
\(200\) 0.436492 + 0.756026i 0.0308646 + 0.0534591i
\(201\) 1.50403 + 0.155563i 0.106086 + 0.0109726i
\(202\) −3.93399 6.81388i −0.276795 0.479423i
\(203\) 0 0
\(204\) 1.43649 1.98406i 0.100575 0.138912i
\(205\) 11.4919 0.802631
\(206\) −9.01276 + 15.6106i −0.627949 + 1.08764i
\(207\) −13.4919 + 15.0844i −0.937754 + 1.04844i
\(208\) −2.12132 3.67423i −0.147087 0.254762i
\(209\) −1.59384 + 2.76062i −0.110248 + 0.190956i
\(210\) 0 0
\(211\) 1.30948 + 2.26808i 0.0901480 + 0.156141i 0.907573 0.419894i \(-0.137933\pi\)
−0.817425 + 0.576035i \(0.804599\pi\)
\(212\) 5.30948 9.19628i 0.364656 0.631603i
\(213\) −3.66455 0.379028i −0.251091 0.0259706i
\(214\) −7.87298 13.6364i −0.538186 0.932166i
\(215\) 9.01276 + 15.6106i 0.614665 + 1.06463i
\(216\) 4.94975 + 1.58114i 0.336788 + 0.107583i
\(217\) 0 0
\(218\) −4.56351 + 7.90423i −0.309080 + 0.535342i
\(219\) 15.6190 21.5726i 1.05543 1.45774i
\(220\) −8.12602 −0.547856
\(221\) −6.00000 −0.403604
\(222\) 6.89144 + 15.4097i 0.462523 + 1.03423i
\(223\) −5.74667 + 9.95352i −0.384825 + 0.666537i −0.991745 0.128226i \(-0.959072\pi\)
0.606920 + 0.794763i \(0.292405\pi\)
\(224\) 0 0
\(225\) 0.817542 + 2.48808i 0.0545028 + 0.165872i
\(226\) 1.93649 + 3.35410i 0.128814 + 0.223112i
\(227\) −3.04726 5.27801i −0.202254 0.350314i 0.747001 0.664823i \(-0.231493\pi\)
−0.949254 + 0.314510i \(0.898160\pi\)
\(228\) −0.563508 1.26004i −0.0373193 0.0834484i
\(229\) 3.93399 6.81388i 0.259966 0.450274i −0.706267 0.707946i \(-0.749622\pi\)
0.966232 + 0.257672i \(0.0829554\pi\)
\(230\) 6.85224 + 11.8684i 0.451823 + 0.782580i
\(231\) 0 0
\(232\) −4.43649 + 7.68423i −0.291270 + 0.504494i
\(233\) −11.3730 19.6986i −0.745069 1.29050i −0.950163 0.311755i \(-0.899083\pi\)
0.205094 0.978742i \(-0.434250\pi\)
\(234\) −3.97320 12.0919i −0.259736 0.790471i
\(235\) −7.00000 + 12.1244i −0.456630 + 0.790906i
\(236\) −2.64880 −0.172422
\(237\) 10.1183 + 1.04655i 0.657256 + 0.0679806i
\(238\) 0 0
\(239\) 7.50000 + 12.9904i 0.485135 + 0.840278i 0.999854 0.0170808i \(-0.00543724\pi\)
−0.514719 + 0.857359i \(0.672104\pi\)
\(240\) 2.06351 2.85008i 0.133199 0.183972i
\(241\) −0.886735 1.53587i −0.0571197 0.0989341i 0.836052 0.548651i \(-0.184858\pi\)
−0.893171 + 0.449717i \(0.851525\pi\)
\(242\) −2.50000 + 4.33013i −0.160706 + 0.278351i
\(243\) 13.5640 + 7.68223i 0.870134 + 0.492815i
\(244\) −0.796921 −0.0510176
\(245\) 0 0
\(246\) 4.00000 + 8.94427i 0.255031 + 0.570266i
\(247\) −1.69052 + 2.92808i −0.107566 + 0.186309i
\(248\) 5.47723 0.347804
\(249\) 8.43649 11.6523i 0.534641 0.738438i
\(250\) 11.9310 0.754583
\(251\) −25.8935 −1.63438 −0.817192 0.576366i \(-0.804470\pi\)
−0.817192 + 0.576366i \(0.804470\pi\)
\(252\) 0 0
\(253\) 26.9839 1.69646
\(254\) 14.7460 0.925244
\(255\) −2.03151 4.54259i −0.127218 0.284468i
\(256\) 1.00000 0.0625000
\(257\) 6.98125 12.0919i 0.435479 0.754271i −0.561856 0.827235i \(-0.689912\pi\)
0.997335 + 0.0729640i \(0.0232458\pi\)
\(258\) −9.01276 + 12.4483i −0.561110 + 0.774996i
\(259\) 0 0
\(260\) −8.61895 −0.534525
\(261\) −17.7460 + 19.8406i −1.09845 + 1.22810i
\(262\) 3.93399 6.81388i 0.243043 0.420963i
\(263\) −2.80948 4.86615i −0.173240 0.300060i 0.766311 0.642470i \(-0.222090\pi\)
−0.939551 + 0.342410i \(0.888757\pi\)
\(264\) −2.82843 6.32456i −0.174078 0.389249i
\(265\) −10.7862 18.6823i −0.662593 1.14764i
\(266\) 0 0
\(267\) 5.00000 + 11.1803i 0.305995 + 0.684226i
\(268\) 0.872983 0.0533259
\(269\) 1.72286 2.98408i 0.105045 0.181943i −0.808712 0.588205i \(-0.799835\pi\)
0.913756 + 0.406262i \(0.133168\pi\)
\(270\) 7.80948 7.10222i 0.475270 0.432227i
\(271\) 3.53553 + 6.12372i 0.214768 + 0.371990i 0.953201 0.302338i \(-0.0977670\pi\)
−0.738433 + 0.674327i \(0.764434\pi\)
\(272\) 0.707107 1.22474i 0.0428746 0.0742611i
\(273\) 0 0
\(274\) −7.74597 13.4164i −0.467951 0.810515i
\(275\) 1.74597 3.02410i 0.105286 0.182360i
\(276\) −6.85224 + 9.46420i −0.412456 + 0.569678i
\(277\) 12.1825 + 21.1006i 0.731973 + 1.26781i 0.956039 + 0.293240i \(0.0947336\pi\)
−0.224066 + 0.974574i \(0.571933\pi\)
\(278\) −9.23159 15.9896i −0.553674 0.958992i
\(279\) 16.0838 + 3.36311i 0.962914 + 0.201344i
\(280\) 0 0
\(281\) 3.37298 5.84218i 0.201215 0.348515i −0.747705 0.664031i \(-0.768844\pi\)
0.948920 + 0.315516i \(0.102178\pi\)
\(282\) −11.8730 1.22803i −0.707026 0.0731283i
\(283\) −10.5168 −0.625158 −0.312579 0.949892i \(-0.601193\pi\)
−0.312579 + 0.949892i \(0.601193\pi\)
\(284\) −2.12702 −0.126215
\(285\) −2.78922 0.288492i −0.165219 0.0170888i
\(286\) −8.48528 + 14.6969i −0.501745 + 0.869048i
\(287\) 0 0
\(288\) 2.93649 + 0.614017i 0.173034 + 0.0361813i
\(289\) 7.50000 + 12.9904i 0.441176 + 0.764140i
\(290\) 9.01276 + 15.6106i 0.529247 + 0.916683i
\(291\) −18.1270 + 25.0367i −1.06262 + 1.46768i
\(292\) 7.68836 13.3166i 0.449927 0.779297i
\(293\) −3.13707 5.43357i −0.183270 0.317433i 0.759722 0.650248i \(-0.225335\pi\)
−0.942992 + 0.332815i \(0.892002\pi\)
\(294\) 0 0
\(295\) −2.69052 + 4.66013i −0.156648 + 0.271323i
\(296\) 4.87298 + 8.44025i 0.283236 + 0.490580i
\(297\) −4.42227 20.3087i −0.256606 1.17843i
\(298\) 0.127017 0.219999i 0.00735788 0.0127442i
\(299\) 28.6207 1.65518
\(300\) 0.617292 + 1.38031i 0.0356394 + 0.0796921i
\(301\) 0 0
\(302\) −5.50000 9.52628i −0.316489 0.548176i
\(303\) −5.56351 12.4404i −0.319615 0.714681i
\(304\) −0.398461 0.690154i −0.0228533 0.0395830i
\(305\) −0.809475 + 1.40205i −0.0463504 + 0.0802813i
\(306\) 2.82843 3.16228i 0.161690 0.180775i
\(307\) 24.1200 1.37660 0.688302 0.725425i \(-0.258357\pi\)
0.688302 + 0.725425i \(0.258357\pi\)
\(308\) 0 0
\(309\) −18.3095 + 25.2888i −1.04159 + 1.43863i
\(310\) 5.56351 9.63628i 0.315986 0.547304i
\(311\) 1.41421 0.0801927 0.0400963 0.999196i \(-0.487234\pi\)
0.0400963 + 0.999196i \(0.487234\pi\)
\(312\) −3.00000 6.70820i −0.169842 0.379777i
\(313\) −26.6904 −1.50863 −0.754316 0.656511i \(-0.772031\pi\)
−0.754316 + 0.656511i \(0.772031\pi\)
\(314\) −6.45378 −0.364208
\(315\) 0 0
\(316\) 5.87298 0.330381
\(317\) 1.38105 0.0775675 0.0387837 0.999248i \(-0.487652\pi\)
0.0387837 + 0.999248i \(0.487652\pi\)
\(318\) 10.7862 14.8978i 0.604862 0.835425i
\(319\) 35.4919 1.98717
\(320\) 1.01575 1.75934i 0.0567823 0.0983499i
\(321\) −11.1341 24.8966i −0.621444 1.38959i
\(322\) 0 0
\(323\) −1.12702 −0.0627089
\(324\) 8.24597 + 3.60611i 0.458109 + 0.200339i
\(325\) 1.85188 3.20755i 0.102724 0.177923i
\(326\) −5.00000 8.66025i −0.276924 0.479647i
\(327\) −9.27079 + 12.8047i −0.512676 + 0.708100i
\(328\) 2.82843 + 4.89898i 0.156174 + 0.270501i
\(329\) 0 0
\(330\) −14.0000 1.44803i −0.770675 0.0797116i
\(331\) −18.3649 −1.00943 −0.504714 0.863287i \(-0.668402\pi\)
−0.504714 + 0.863287i \(0.668402\pi\)
\(332\) 4.15283 7.19291i 0.227916 0.394762i
\(333\) 9.12702 + 27.7768i 0.500157 + 1.52216i
\(334\) −6.18433 10.7116i −0.338392 0.586111i
\(335\) 0.886735 1.53587i 0.0484475 0.0839136i
\(336\) 0 0
\(337\) −0.127017 0.219999i −0.00691904 0.0119841i 0.862545 0.505980i \(-0.168869\pi\)
−0.869464 + 0.493996i \(0.835536\pi\)
\(338\) −2.50000 + 4.33013i −0.135982 + 0.235528i
\(339\) 2.73861 + 6.12372i 0.148741 + 0.332595i
\(340\) −1.43649 2.48808i −0.0779047 0.134935i
\(341\) −10.9545 18.9737i −0.593217 1.02748i
\(342\) −0.746310 2.27129i −0.0403558 0.122817i
\(343\) 0 0
\(344\) −4.43649 + 7.68423i −0.239200 + 0.414306i
\(345\) 9.69052 + 21.6687i 0.521720 + 1.16660i
\(346\) −12.7279 −0.684257
\(347\) −7.74597 −0.415825 −0.207913 0.978147i \(-0.566667\pi\)
−0.207913 + 0.978147i \(0.566667\pi\)
\(348\) −9.01276 + 12.4483i −0.483135 + 0.667298i
\(349\) 8.21584 14.2302i 0.439784 0.761728i −0.557889 0.829916i \(-0.688388\pi\)
0.997672 + 0.0681880i \(0.0217218\pi\)
\(350\) 0 0
\(351\) −4.69052 21.5406i −0.250362 1.14975i
\(352\) −2.00000 3.46410i −0.106600 0.184637i
\(353\) −9.01276 15.6106i −0.479701 0.830866i 0.520028 0.854149i \(-0.325921\pi\)
−0.999729 + 0.0232830i \(0.992588\pi\)
\(354\) −4.56351 0.472008i −0.242548 0.0250869i
\(355\) −2.16052 + 3.74214i −0.114669 + 0.198612i
\(356\) 3.53553 + 6.12372i 0.187383 + 0.324557i
\(357\) 0 0
\(358\) −0.436492 + 0.756026i −0.0230693 + 0.0399572i
\(359\) 14.1190 + 24.4547i 0.745170 + 1.29067i 0.950115 + 0.311898i \(0.100965\pi\)
−0.204946 + 0.978773i \(0.565702\pi\)
\(360\) 4.06301 4.54259i 0.214140 0.239415i
\(361\) 9.18246 15.9045i 0.483287 0.837078i
\(362\) 7.86799 0.413532
\(363\) −5.07877 + 7.01471i −0.266566 + 0.368177i
\(364\) 0 0
\(365\) −15.6190 27.0528i −0.817533 1.41601i
\(366\) −1.37298 0.142009i −0.0717670 0.00742293i
\(367\) −2.03151 3.51867i −0.106044 0.183673i 0.808120 0.589017i \(-0.200485\pi\)
−0.914164 + 0.405344i \(0.867152\pi\)
\(368\) −3.37298 + 5.84218i −0.175829 + 0.304545i
\(369\) 5.29760 + 16.1225i 0.275782 + 0.839305i
\(370\) 19.7990 1.02930
\(371\) 0 0
\(372\) 9.43649 + 0.976025i 0.489259 + 0.0506045i
\(373\) 4.43649 7.68423i 0.229713 0.397874i −0.728010 0.685566i \(-0.759555\pi\)
0.957723 + 0.287692i \(0.0928880\pi\)
\(374\) −5.65685 −0.292509
\(375\) 20.5554 + 2.12607i 1.06148 + 0.109790i
\(376\) −6.89144 −0.355399
\(377\) 37.6449 1.93881
\(378\) 0 0
\(379\) −12.3649 −0.635143 −0.317572 0.948234i \(-0.602867\pi\)
−0.317572 + 0.948234i \(0.602867\pi\)
\(380\) −1.61895 −0.0830504
\(381\) 25.4052 + 2.62769i 1.30155 + 0.134620i
\(382\) −13.8730 −0.709804
\(383\) −11.9310 + 20.6651i −0.609646 + 1.05594i 0.381653 + 0.924306i \(0.375355\pi\)
−0.991299 + 0.131632i \(0.957978\pi\)
\(384\) 1.72286 + 0.178197i 0.0879193 + 0.00909358i
\(385\) 0 0
\(386\) 16.1270 0.820844
\(387\) −17.7460 + 19.8406i −0.902078 + 1.00855i
\(388\) −8.92295 + 15.4550i −0.452994 + 0.784608i
\(389\) −10.4365 18.0765i −0.529151 0.916517i −0.999422 0.0339945i \(-0.989177\pi\)
0.470271 0.882522i \(-0.344156\pi\)
\(390\) −14.8492 1.53587i −0.751921 0.0777718i
\(391\) 4.77012 + 8.26209i 0.241235 + 0.417832i
\(392\) 0 0
\(393\) 7.99193 11.0383i 0.403140 0.556810i
\(394\) −6.61895 −0.333458
\(395\) 5.96550 10.3325i 0.300157 0.519887i
\(396\) −3.74597 11.4003i −0.188242 0.572889i
\(397\) 3.53553 + 6.12372i 0.177443 + 0.307341i 0.941004 0.338395i \(-0.109884\pi\)
−0.763561 + 0.645736i \(0.776551\pi\)
\(398\) −10.3372 + 17.9045i −0.518155 + 0.897471i
\(399\) 0 0
\(400\) 0.436492 + 0.756026i 0.0218246 + 0.0378013i
\(401\) −1.93649 + 3.35410i −0.0967038 + 0.167496i −0.910318 0.413909i \(-0.864163\pi\)
0.813615 + 0.581405i \(0.197497\pi\)
\(402\) 1.50403 + 0.155563i 0.0750141 + 0.00775878i
\(403\) −11.6190 20.1246i −0.578781 1.00248i
\(404\) −3.93399 6.81388i −0.195724 0.339003i
\(405\) 14.7202 10.8445i 0.731454 0.538868i
\(406\) 0 0
\(407\) 19.4919 33.7610i 0.966179 1.67347i
\(408\) 1.43649 1.98406i 0.0711169 0.0982256i
\(409\) 31.6288 1.56394 0.781971 0.623315i \(-0.214214\pi\)
0.781971 + 0.623315i \(0.214214\pi\)
\(410\) 11.4919 0.567546
\(411\) −10.9545 24.4949i −0.540343 1.20824i
\(412\) −9.01276 + 15.6106i −0.444027 + 0.769077i
\(413\) 0 0
\(414\) −13.4919 + 15.0844i −0.663092 + 0.741360i
\(415\) −8.43649 14.6124i −0.414131 0.717296i
\(416\) −2.12132 3.67423i −0.104006 0.180144i
\(417\) −13.0554 29.1929i −0.639328 1.42958i
\(418\) −1.59384 + 2.76062i −0.0779574 + 0.135026i
\(419\) −1.99230 3.45077i −0.0973304 0.168581i 0.813248 0.581917i \(-0.197697\pi\)
−0.910579 + 0.413335i \(0.864364\pi\)
\(420\) 0 0
\(421\) 2.56351 4.44013i 0.124938 0.216399i −0.796771 0.604282i \(-0.793460\pi\)
0.921709 + 0.387883i \(0.126794\pi\)
\(422\) 1.30948 + 2.26808i 0.0637442 + 0.110408i
\(423\) −20.2367 4.23146i −0.983940 0.205741i
\(424\) 5.30948 9.19628i 0.257851 0.446611i
\(425\) 1.23458 0.0598862
\(426\) −3.66455 0.379028i −0.177548 0.0183640i
\(427\) 0 0
\(428\) −7.87298 13.6364i −0.380555 0.659141i
\(429\) −17.2379 + 23.8087i −0.832254 + 1.14950i
\(430\) 9.01276 + 15.6106i 0.434634 + 0.752808i
\(431\) −4.74597 + 8.22026i −0.228605 + 0.395956i −0.957395 0.288782i \(-0.906750\pi\)
0.728790 + 0.684737i \(0.240083\pi\)
\(432\) 4.94975 + 1.58114i 0.238145 + 0.0760726i
\(433\) 29.6985 1.42722 0.713609 0.700544i \(-0.247059\pi\)
0.713609 + 0.700544i \(0.247059\pi\)
\(434\) 0 0
\(435\) 12.7460 + 28.5008i 0.611122 + 1.36651i
\(436\) −4.56351 + 7.90423i −0.218552 + 0.378544i
\(437\) 5.37600 0.257169
\(438\) 15.6190 21.5726i 0.746302 1.03078i
\(439\) −10.9545 −0.522827 −0.261414 0.965227i \(-0.584189\pi\)
−0.261414 + 0.965227i \(0.584189\pi\)
\(440\) −8.12602 −0.387393
\(441\) 0 0
\(442\) −6.00000 −0.285391
\(443\) 24.3649 1.15761 0.578806 0.815465i \(-0.303519\pi\)
0.578806 + 0.815465i \(0.303519\pi\)
\(444\) 6.89144 + 15.4097i 0.327053 + 0.731313i
\(445\) 14.3649 0.680962
\(446\) −5.74667 + 9.95352i −0.272113 + 0.471313i
\(447\) 0.258035 0.356394i 0.0122046 0.0168569i
\(448\) 0 0
\(449\) 9.00000 0.424736 0.212368 0.977190i \(-0.431882\pi\)
0.212368 + 0.977190i \(0.431882\pi\)
\(450\) 0.817542 + 2.48808i 0.0385393 + 0.117289i
\(451\) 11.3137 19.5959i 0.532742 0.922736i
\(452\) 1.93649 + 3.35410i 0.0910849 + 0.157764i
\(453\) −7.77817 17.3925i −0.365451 0.817172i
\(454\) −3.04726 5.27801i −0.143015 0.247709i
\(455\) 0 0
\(456\) −0.563508 1.26004i −0.0263887 0.0590069i
\(457\) 33.8730 1.58451 0.792256 0.610189i \(-0.208907\pi\)
0.792256 + 0.610189i \(0.208907\pi\)
\(458\) 3.93399 6.81388i 0.183823 0.318392i
\(459\) 5.43649 4.94414i 0.253754 0.230773i
\(460\) 6.85224 + 11.8684i 0.319487 + 0.553368i
\(461\) −4.98895 + 8.64112i −0.232359 + 0.402457i −0.958502 0.285087i \(-0.907978\pi\)
0.726143 + 0.687544i \(0.241311\pi\)
\(462\) 0 0
\(463\) −10.8095 18.7226i −0.502359 0.870111i −0.999996 0.00272598i \(-0.999132\pi\)
0.497637 0.867385i \(-0.334201\pi\)
\(464\) −4.43649 + 7.68423i −0.205959 + 0.356731i
\(465\) 11.3023 15.6106i 0.524132 0.723922i
\(466\) −11.3730 19.6986i −0.526843 0.912519i
\(467\) 19.5295 + 33.8262i 0.903720 + 1.56529i 0.822627 + 0.568582i \(0.192508\pi\)
0.0810929 + 0.996707i \(0.474159\pi\)
\(468\) −3.97320 12.0919i −0.183661 0.558948i
\(469\) 0 0
\(470\) −7.00000 + 12.1244i −0.322886 + 0.559255i
\(471\) −11.1190 1.15004i −0.512334 0.0529912i
\(472\) −2.64880 −0.121921
\(473\) 35.4919 1.63192
\(474\) 10.1183 + 1.04655i 0.464750 + 0.0480695i
\(475\) 0.347849 0.602493i 0.0159604 0.0276443i
\(476\) 0 0
\(477\) 21.2379 23.7447i 0.972417 1.08719i
\(478\) 7.50000 + 12.9904i 0.343042 + 0.594166i
\(479\) −9.01276 15.6106i −0.411803 0.713265i 0.583284 0.812269i \(-0.301768\pi\)
−0.995087 + 0.0990041i \(0.968434\pi\)
\(480\) 2.06351 2.85008i 0.0941858 0.130088i
\(481\) 20.6743 35.8090i 0.942668 1.63275i
\(482\) −0.886735 1.53587i −0.0403897 0.0699570i
\(483\) 0 0
\(484\) −2.50000 + 4.33013i −0.113636 + 0.196824i
\(485\) 18.1270 + 31.3969i 0.823105 + 1.42566i
\(486\) 13.5640 + 7.68223i 0.615278 + 0.348473i
\(487\) −15.2460 + 26.4068i −0.690861 + 1.19661i 0.280696 + 0.959797i \(0.409435\pi\)
−0.971556 + 0.236809i \(0.923898\pi\)
\(488\) −0.796921 −0.0360749
\(489\) −7.07107 15.8114i −0.319765 0.715016i
\(490\) 0 0
\(491\) 6.87298 + 11.9044i 0.310173 + 0.537236i 0.978400 0.206722i \(-0.0662796\pi\)
−0.668226 + 0.743958i \(0.732946\pi\)
\(492\) 4.00000 + 8.94427i 0.180334 + 0.403239i
\(493\) 6.27415 + 10.8671i 0.282573 + 0.489431i
\(494\) −1.69052 + 2.92808i −0.0760603 + 0.131740i
\(495\) −23.8620 4.98952i −1.07252 0.224262i
\(496\) 5.47723 0.245935
\(497\) 0 0
\(498\) 8.43649 11.6523i 0.378048 0.522154i
\(499\) 7.12702 12.3444i 0.319049 0.552609i −0.661241 0.750174i \(-0.729970\pi\)
0.980290 + 0.197564i \(0.0633032\pi\)
\(500\) 11.9310 0.533571
\(501\) −8.74597 19.5566i −0.390741 0.873723i
\(502\) −25.8935 −1.15568
\(503\) −18.0255 −0.803718 −0.401859 0.915702i \(-0.631636\pi\)
−0.401859 + 0.915702i \(0.631636\pi\)
\(504\) 0 0
\(505\) −15.9839 −0.711273
\(506\) 26.9839 1.19958
\(507\) −5.07877 + 7.01471i −0.225556 + 0.311534i
\(508\) 14.7460 0.654246
\(509\) 16.8807 29.2383i 0.748226 1.29597i −0.200446 0.979705i \(-0.564239\pi\)
0.948672 0.316261i \(-0.102427\pi\)
\(510\) −2.03151 4.54259i −0.0899566 0.201149i
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) −0.881050 4.04611i −0.0388993 0.178640i
\(514\) 6.98125 12.0919i 0.307930 0.533350i
\(515\) 18.3095 + 31.7129i 0.806812 + 1.39744i
\(516\) −9.01276 + 12.4483i −0.396765 + 0.548005i
\(517\) 13.7829 + 23.8726i 0.606170 + 1.04992i
\(518\) 0 0
\(519\) −21.9284 2.26808i −0.962551 0.0995575i
\(520\) −8.61895 −0.377966
\(521\) 0.707107 1.22474i 0.0309789 0.0536570i −0.850120 0.526589i \(-0.823471\pi\)
0.881099 + 0.472931i \(0.156804\pi\)
\(522\) −17.7460 + 19.8406i −0.776720 + 0.868399i
\(523\) −15.5057 26.8567i −0.678019 1.17436i −0.975577 0.219659i \(-0.929506\pi\)
0.297558 0.954704i \(-0.403828\pi\)
\(524\) 3.93399 6.81388i 0.171857 0.297666i
\(525\) 0 0
\(526\) −2.80948 4.86615i −0.122499 0.212174i
\(527\) 3.87298 6.70820i 0.168710 0.292214i
\(528\) −2.82843 6.32456i −0.123091 0.275241i
\(529\) −11.2540 19.4926i −0.489306 0.847502i
\(530\) −10.7862 18.6823i −0.468524 0.811507i
\(531\) −7.77817 1.62641i −0.337544 0.0705800i
\(532\) 0 0
\(533\) 12.0000 20.7846i 0.519778 0.900281i
\(534\) 5.00000 + 11.1803i 0.216371 + 0.483821i
\(535\) −31.9880 −1.38296
\(536\) 0.872983 0.0377071
\(537\) −0.886735 + 1.22474i −0.0382655 + 0.0528516i
\(538\) 1.72286 2.98408i 0.0742778 0.128653i
\(539\) 0 0
\(540\) 7.80948 7.10222i 0.336066 0.305631i
\(541\) −8.05544 13.9524i −0.346330 0.599862i 0.639264 0.768987i \(-0.279239\pi\)
−0.985595 + 0.169125i \(0.945906\pi\)
\(542\) 3.53553 + 6.12372i 0.151864 + 0.263036i
\(543\) 13.5554 + 1.40205i 0.581720 + 0.0601678i
\(544\) 0.707107 1.22474i 0.0303170 0.0525105i
\(545\) 9.27079 + 16.0575i 0.397117 + 0.687827i
\(546\) 0 0
\(547\) −14.4919 + 25.1008i −0.619630 + 1.07323i 0.369923 + 0.929062i \(0.379384\pi\)
−0.989553 + 0.144169i \(0.953949\pi\)
\(548\) −7.74597 13.4164i −0.330891 0.573121i
\(549\) −2.34015 0.489323i −0.0998753 0.0208838i
\(550\) 1.74597 3.02410i 0.0744483 0.128948i
\(551\) 7.07107 0.301238
\(552\) −6.85224 + 9.46420i −0.291651 + 0.402823i
\(553\) 0 0
\(554\) 12.1825 + 21.1006i 0.517583 + 0.896480i
\(555\) 34.1109 + 3.52812i 1.44793 + 0.149760i
\(556\) −9.23159 15.9896i −0.391507 0.678109i
\(557\) −1.69052 + 2.92808i −0.0716298 + 0.124067i −0.899616 0.436682i \(-0.856153\pi\)
0.827986 + 0.560749i \(0.189487\pi\)
\(558\) 16.0838 + 3.36311i 0.680883 + 0.142372i
\(559\) 37.6449 1.59221
\(560\) 0 0
\(561\) −9.74597 1.00803i −0.411475 0.0425592i
\(562\) 3.37298 5.84218i 0.142281 0.246437i
\(563\) 5.21919 0.219963 0.109981 0.993934i \(-0.464921\pi\)
0.109981 + 0.993934i \(0.464921\pi\)
\(564\) −11.8730 1.22803i −0.499943 0.0517095i
\(565\) 7.86799 0.331009
\(566\) −10.5168 −0.442054
\(567\) 0 0
\(568\) −2.12702 −0.0892476
\(569\) 7.49193 0.314078 0.157039 0.987592i \(-0.449805\pi\)
0.157039 + 0.987592i \(0.449805\pi\)
\(570\) −2.78922 0.288492i −0.116828 0.0120836i
\(571\) 0.508067 0.0212619 0.0106310 0.999943i \(-0.496616\pi\)
0.0106310 + 0.999943i \(0.496616\pi\)
\(572\) −8.48528 + 14.6969i −0.354787 + 0.614510i
\(573\) −23.9012 2.47212i −0.998487 0.103274i
\(574\) 0 0
\(575\) −5.88912 −0.245593
\(576\) 2.93649 + 0.614017i 0.122354 + 0.0255840i
\(577\) 17.5879 30.4631i 0.732192 1.26819i −0.223752 0.974646i \(-0.571831\pi\)
0.955944 0.293548i \(-0.0948360\pi\)
\(578\) 7.50000 + 12.9904i 0.311959 + 0.540329i
\(579\) 27.7846 + 2.87379i 1.15469 + 0.119430i
\(580\) 9.01276 + 15.6106i 0.374234 + 0.648193i
\(581\) 0 0
\(582\) −18.1270 + 25.0367i −0.751389 + 1.03781i
\(583\) −42.4758 −1.75917
\(584\) 7.68836 13.3166i 0.318147 0.551046i
\(585\) −25.3095 5.29218i −1.04642 0.218805i
\(586\) −3.13707 5.43357i −0.129591 0.224459i
\(587\) −14.8884 + 25.7875i −0.614512 + 1.06437i 0.375958 + 0.926637i \(0.377314\pi\)
−0.990470 + 0.137729i \(0.956020\pi\)
\(588\) 0 0
\(589\) −2.18246 3.78013i −0.0899266 0.155757i
\(590\) −2.69052 + 4.66013i −0.110767 + 0.191854i
\(591\) −11.4035 1.17948i −0.469078 0.0485172i
\(592\) 4.87298 + 8.44025i 0.200278 + 0.346892i
\(593\) 11.4035 + 19.7515i 0.468287 + 0.811096i 0.999343 0.0362403i \(-0.0115382\pi\)
−0.531057 + 0.847336i \(0.678205\pi\)
\(594\) −4.42227 20.3087i −0.181448 0.833276i
\(595\) 0 0
\(596\) 0.127017 0.219999i 0.00520280 0.00901152i
\(597\) −21.0000 + 29.0049i −0.859473 + 1.18709i
\(598\) 28.6207 1.17039
\(599\) 1.23790 0.0505792 0.0252896 0.999680i \(-0.491949\pi\)
0.0252896 + 0.999680i \(0.491949\pi\)
\(600\) 0.617292 + 1.38031i 0.0252009 + 0.0563508i
\(601\) −18.8224 + 32.6014i −0.767783 + 1.32984i 0.170979 + 0.985275i \(0.445307\pi\)
−0.938762 + 0.344565i \(0.888026\pi\)
\(602\) 0 0
\(603\) 2.56351 + 0.536026i 0.104394 + 0.0218287i
\(604\) −5.50000 9.52628i −0.223792 0.387619i
\(605\) 5.07877 + 8.79668i 0.206481 + 0.357636i
\(606\) −5.56351 12.4404i −0.226002 0.505356i
\(607\) 7.86799 13.6278i 0.319352 0.553134i −0.661001 0.750385i \(-0.729868\pi\)
0.980353 + 0.197251i \(0.0632015\pi\)
\(608\) −0.398461 0.690154i −0.0161597 0.0279894i
\(609\) 0 0
\(610\) −0.809475 + 1.40205i −0.0327747 + 0.0567674i
\(611\) 14.6190 + 25.3208i 0.591419 + 1.02437i
\(612\) 2.82843 3.16228i 0.114332 0.127827i
\(613\) −1.69052 + 2.92808i −0.0682797 + 0.118264i −0.898144 0.439701i \(-0.855084\pi\)
0.829864 + 0.557965i \(0.188418\pi\)
\(614\) 24.1200 0.973405
\(615\) 19.7990 + 2.04783i 0.798372 + 0.0825764i
\(616\) 0 0
\(617\) 13.8730 + 24.0287i 0.558505 + 0.967360i 0.997622 + 0.0689293i \(0.0219583\pi\)
−0.439116 + 0.898430i \(0.644708\pi\)
\(618\) −18.3095 + 25.2888i −0.736515 + 1.01726i
\(619\) 11.1733 + 19.3527i 0.449092 + 0.777850i 0.998327 0.0578175i \(-0.0184142\pi\)
−0.549235 + 0.835668i \(0.685081\pi\)
\(620\) 5.56351 9.63628i 0.223436 0.387002i
\(621\) −25.9327 + 23.5842i −1.04064 + 0.946399i
\(622\) 1.41421 0.0567048
\(623\) 0 0
\(624\) −3.00000 6.70820i −0.120096 0.268543i
\(625\) 9.93649 17.2105i 0.397460 0.688420i
\(626\) −26.6904 −1.06676
\(627\) −3.23790 + 4.47214i −0.129309 + 0.178600i
\(628\) −6.45378 −0.257534
\(629\) 13.7829 0.549559
\(630\) 0 0
\(631\) −27.6190 −1.09949 −0.549747 0.835332i \(-0.685276\pi\)
−0.549747 + 0.835332i \(0.685276\pi\)
\(632\) 5.87298 0.233615
\(633\) 1.85188 + 4.14092i 0.0736055 + 0.164587i
\(634\) 1.38105 0.0548485
\(635\) 14.9783 25.9431i 0.594394 1.02952i
\(636\) 10.7862 14.8978i 0.427702 0.590735i
\(637\) 0 0
\(638\) 35.4919 1.40514
\(639\) −6.24597 1.30602i −0.247087 0.0516655i
\(640\) 1.01575 1.75934i 0.0401512 0.0695439i
\(641\) 18.5554 + 32.1390i 0.732896 + 1.26941i 0.955640 + 0.294536i \(0.0951651\pi\)
−0.222744 + 0.974877i \(0.571502\pi\)
\(642\) −11.1341 24.8966i −0.439427 0.982589i
\(643\) −20.1468 34.8953i −0.794514 1.37614i −0.923147 0.384446i \(-0.874392\pi\)
0.128634 0.991692i \(-0.458941\pi\)
\(644\) 0 0
\(645\) 12.7460 + 28.5008i 0.501872 + 1.12222i
\(646\) −1.12702 −0.0443419
\(647\) 2.73861 4.74342i 0.107666 0.186483i −0.807158 0.590335i \(-0.798996\pi\)
0.914824 + 0.403852i \(0.132329\pi\)
\(648\) 8.24597 + 3.60611i 0.323932 + 0.141661i
\(649\) 5.29760 + 9.17571i 0.207949 + 0.360178i
\(650\) 1.85188 3.20755i 0.0726366 0.125810i
\(651\) 0 0
\(652\) −5.00000 8.66025i −0.195815 0.339162i
\(653\) 22.7460 39.3972i 0.890118 1.54173i 0.0503861 0.998730i \(-0.483955\pi\)
0.839732 0.543001i \(-0.182712\pi\)
\(654\) −9.27079 + 12.8047i −0.362517 + 0.500702i
\(655\) −7.99193 13.8424i −0.312271 0.540869i
\(656\) 2.82843 + 4.89898i 0.110432 + 0.191273i
\(657\) 30.7534 34.3834i 1.19981 1.34142i
\(658\) 0 0
\(659\) −18.4365 + 31.9329i −0.718184 + 1.24393i 0.243535 + 0.969892i \(0.421693\pi\)
−0.961719 + 0.274039i \(0.911640\pi\)
\(660\) −14.0000 1.44803i −0.544949 0.0563646i
\(661\) −24.9954 −0.972207 −0.486104 0.873901i \(-0.661582\pi\)
−0.486104 + 0.873901i \(0.661582\pi\)
\(662\) −18.3649 −0.713773
\(663\) −10.3372 1.06918i −0.401462 0.0415236i
\(664\) 4.15283 7.19291i 0.161161 0.279139i
\(665\) 0 0
\(666\) 9.12702 + 27.7768i 0.353665 + 1.07633i
\(667\) −29.9284 51.8376i −1.15883 2.00716i
\(668\) −6.18433 10.7116i −0.239279 0.414443i
\(669\) −11.6744 + 16.1245i −0.451358 + 0.623409i
\(670\) 0.886735 1.53587i 0.0342576 0.0593359i
\(671\) 1.59384 + 2.76062i 0.0615296 + 0.106572i
\(672\) 0 0
\(673\) 16.1190 27.9188i 0.621340 1.07619i −0.367897 0.929867i \(-0.619922\pi\)
0.989236 0.146326i \(-0.0467447\pi\)
\(674\) −0.127017 0.219999i −0.00489250 0.00847406i
\(675\) 0.965142 + 4.43229i 0.0371483 + 0.170599i
\(676\) −2.50000 + 4.33013i −0.0961538 + 0.166543i
\(677\) −12.7279 −0.489174 −0.244587 0.969627i \(-0.578652\pi\)
−0.244587 + 0.969627i \(0.578652\pi\)
\(678\) 2.73861 + 6.12372i 0.105176 + 0.235180i
\(679\) 0 0
\(680\) −1.43649 2.48808i −0.0550869 0.0954134i
\(681\) −4.30948 9.63628i −0.165139 0.369263i
\(682\) −10.9545 18.9737i −0.419468 0.726539i
\(683\) 3.87298 6.70820i 0.148196 0.256682i −0.782365 0.622820i \(-0.785987\pi\)
0.930561 + 0.366138i \(0.119320\pi\)
\(684\) −0.746310 2.27129i −0.0285359 0.0868450i
\(685\) −31.4720 −1.20248
\(686\) 0 0
\(687\) 7.99193 11.0383i 0.304911 0.421139i
\(688\) −4.43649 + 7.68423i −0.169140 + 0.292958i
\(689\) −45.0524 −1.71636
\(690\) 9.69052 + 21.6687i 0.368912 + 0.824912i
\(691\) 21.2916 0.809971 0.404986 0.914323i \(-0.367277\pi\)
0.404986 + 0.914323i \(0.367277\pi\)
\(692\) −12.7279 −0.483843
\(693\) 0 0
\(694\) −7.74597 −0.294033
\(695\) −37.5081 −1.42276
\(696\) −9.01276 + 12.4483i −0.341628 + 0.471851i
\(697\) 8.00000 0.303022
\(698\) 8.21584 14.2302i 0.310974 0.538623i
\(699\) −16.0838 35.9645i −0.608346 1.36030i
\(700\) 0 0
\(701\) −31.7460 −1.19903 −0.599514 0.800364i \(-0.704640\pi\)
−0.599514 + 0.800364i \(0.704640\pi\)
\(702\) −4.69052 21.5406i −0.177032 0.812999i
\(703\) 3.88338 6.72622i 0.146465 0.253684i
\(704\) −2.00000 3.46410i −0.0753778 0.130558i
\(705\) −14.2205 + 19.6412i −0.535577 + 0.739730i
\(706\) −9.01276 15.6106i −0.339200 0.587511i
\(707\) 0 0
\(708\) −4.56351 0.472008i −0.171507 0.0177391i
\(709\) 24.7298 0.928748 0.464374 0.885639i \(-0.346279\pi\)
0.464374 + 0.885639i \(0.346279\pi\)
\(710\) −2.16052 + 3.74214i −0.0810830 + 0.140440i
\(711\) 17.2460 + 3.60611i 0.646774 + 0.135240i
\(712\) 3.53553 + 6.12372i 0.132500 + 0.229496i
\(713\) −18.4746 + 31.9989i −0.691879 + 1.19837i
\(714\) 0 0
\(715\) 17.2379 + 29.8569i 0.644661 + 1.11659i
\(716\) −0.436492 + 0.756026i −0.0163125 + 0.0282540i
\(717\) 10.6066 + 23.7171i 0.396111 + 0.885731i
\(718\) 14.1190 + 24.4547i 0.526915 + 0.912643i
\(719\) 4.68030 + 8.10653i 0.174546 + 0.302322i 0.940004 0.341163i \(-0.110821\pi\)
−0.765458 + 0.643486i \(0.777488\pi\)
\(720\) 4.06301 4.54259i 0.151420 0.169292i
\(721\) 0 0
\(722\) 9.18246 15.9045i 0.341736 0.591904i
\(723\) −1.25403 2.80410i −0.0466380 0.104286i
\(724\) 7.86799 0.292412
\(725\) −7.74597 −0.287678
\(726\) −5.07877 + 7.01471i −0.188491 + 0.260340i
\(727\) 18.1153 31.3767i 0.671861 1.16370i −0.305515 0.952187i \(-0.598829\pi\)
0.977376 0.211509i \(-0.0678379\pi\)
\(728\) 0 0
\(729\) 22.0000 + 15.6525i 0.814815 + 0.579721i
\(730\) −15.6190 27.0528i −0.578083 1.00127i
\(731\) 6.27415 + 10.8671i 0.232058 + 0.401936i
\(732\) −1.37298 0.142009i −0.0507469 0.00524880i
\(733\) −4.82073 + 8.34975i −0.178058 + 0.308405i −0.941215 0.337808i \(-0.890315\pi\)
0.763157 + 0.646213i \(0.223648\pi\)
\(734\) −2.03151 3.51867i −0.0749843 0.129877i
\(735\) 0 0
\(736\) −3.37298 + 5.84218i −0.124330 + 0.215346i
\(737\) −1.74597 3.02410i −0.0643135 0.111394i
\(738\) 5.29760 + 16.1225i 0.195007 + 0.593478i
\(739\) 15.0000 25.9808i 0.551784 0.955718i −0.446362 0.894852i \(-0.647281\pi\)
0.998146 0.0608653i \(-0.0193860\pi\)
\(740\) 19.7990 0.727825
\(741\) −3.43431 + 4.74342i −0.126163 + 0.174254i
\(742\) 0 0
\(743\) 13.8730 + 24.0287i 0.508950 + 0.881528i 0.999946 + 0.0103660i \(0.00329968\pi\)
−0.490996 + 0.871162i \(0.663367\pi\)
\(744\) 9.43649 + 0.976025i 0.345959 + 0.0357828i
\(745\) −0.258035 0.446930i −0.00945367 0.0163742i
\(746\) 4.43649 7.68423i 0.162432 0.281340i
\(747\) 16.6113 18.5720i 0.607776 0.679514i
\(748\) −5.65685 −0.206835
\(749\) 0 0
\(750\) 20.5554 + 2.12607i 0.750579 + 0.0776330i
\(751\) 6.50000 11.2583i 0.237188 0.410822i −0.722718 0.691143i \(-0.757107\pi\)
0.959906 + 0.280321i \(0.0904408\pi\)
\(752\) −6.89144 −0.251305
\(753\) −44.6109 4.61414i −1.62571 0.168149i
\(754\) 37.6449 1.37095
\(755\) −22.3466 −0.813275
\(756\) 0 0
\(757\) −15.2379 −0.553831 −0.276915 0.960894i \(-0.589312\pi\)
−0.276915 + 0.960894i \(0.589312\pi\)
\(758\) −12.3649 −0.449114
\(759\) 46.4894 + 4.80844i 1.68746 + 0.174535i
\(760\) −1.61895 −0.0587255
\(761\) 1.14477 1.98280i 0.0414979 0.0718765i −0.844530 0.535508i \(-0.820120\pi\)
0.886028 + 0.463631i \(0.153454\pi\)
\(762\) 25.4052 + 2.62769i 0.920334 + 0.0951910i
\(763\) 0 0
\(764\) −13.8730 −0.501907
\(765\) −2.69052 8.18825i −0.0972761 0.296047i
\(766\) −11.9310 + 20.6651i −0.431085 + 0.746660i
\(767\) 5.61895 + 9.73231i 0.202889 + 0.351413i
\(768\) 1.72286 + 0.178197i 0.0621683 + 0.00643013i
\(769\) 4.85993 + 8.41765i 0.175254 + 0.303548i 0.940249 0.340488i \(-0.110592\pi\)
−0.764995 + 0.644036i \(0.777259\pi\)
\(770\) 0 0
\(771\) 14.1825 19.5886i 0.510769 0.705466i
\(772\) 16.1270 0.580424
\(773\) 1.72286 2.98408i 0.0619670 0.107330i −0.833378 0.552704i \(-0.813596\pi\)
0.895345 + 0.445374i \(0.146929\pi\)
\(774\) −17.7460 + 19.8406i −0.637866 + 0.713155i
\(775\) 2.39076 + 4.14092i 0.0858788 + 0.148746i
\(776\) −8.92295 + 15.4550i −0.320315 + 0.554802i
\(777\) 0 0
\(778\) −10.4365 18.0765i −0.374166 0.648075i
\(779\) 2.25403 3.90410i 0.0807591 0.139879i
\(780\) −14.8492 1.53587i −0.531688 0.0549930i
\(781\) 4.25403 + 7.36820i 0.152221 + 0.263655i
\(782\) 4.77012 + 8.26209i 0.170579 + 0.295452i
\(783\) −34.1093 + 31.0203i −1.21897 + 1.10857i
\(784\) 0 0
\(785\) −6.55544 + 11.3544i −0.233974 + 0.405254i
\(786\) 7.99193 11.0383i 0.285063 0.393724i
\(787\) 9.54024 0.340073 0.170036 0.985438i \(-0.445611\pi\)
0.170036 + 0.985438i \(0.445611\pi\)
\(788\) −6.61895 −0.235790
\(789\) −3.97320 8.88434i −0.141450 0.316291i
\(790\) 5.96550 10.3325i 0.212243 0.367616i
\(791\) 0 0
\(792\) −3.74597 11.4003i −0.133107 0.405093i
\(793\) 1.69052 + 2.92808i 0.0600323 + 0.103979i
\(794\) 3.53553 + 6.12372i 0.125471 + 0.217323i
\(795\) −15.2540 34.1091i −0.541005 1.20972i
\(796\) −10.3372 + 17.9045i −0.366391 + 0.634608i
\(797\) −13.0366 22.5800i −0.461779 0.799825i 0.537271 0.843410i \(-0.319455\pi\)
−0.999050 + 0.0435852i \(0.986122\pi\)
\(798\) 0 0
\(799\) −4.87298 + 8.44025i −0.172394 + 0.298595i
\(800\) 0.436492 + 0.756026i 0.0154323 + 0.0267295i
\(801\) 6.62200 + 20.1531i 0.233977 + 0.712076i
\(802\) −1.93649 + 3.35410i −0.0683799 + 0.118437i
\(803\) −61.5069 −2.17053
\(804\) 1.50403 + 0.155563i 0.0530430 + 0.00548628i
\(805\) 0 0
\(806\) −11.6190 20.1246i −0.409260 0.708859i
\(807\) 3.50000 4.83414i 0.123206 0.170170i
\(808\) −3.93399 6.81388i −0.138397 0.239711i
\(809\) 15.3649 26.6128i 0.540202 0.935657i −0.458690 0.888596i \(-0.651681\pi\)
0.998892 0.0470606i \(-0.0149854\pi\)
\(810\) 14.7202 10.8445i 0.517216 0.381037i
\(811\) 13.9625 0.490290 0.245145 0.969486i \(-0.421164\pi\)
0.245145 + 0.969486i \(0.421164\pi\)
\(812\) 0 0
\(813\) 5.00000 + 11.1803i 0.175358 + 0.392112i
\(814\) 19.4919 33.7610i 0.683192 1.18332i
\(815\) −20.3151 −0.711606
\(816\) 1.43649 1.98406i 0.0502873 0.0694560i
\(817\) 7.07107 0.247385
\(818\) 31.6288 1.10587
\(819\) 0 0
\(820\) 11.4919 0.401316
\(821\) 21.4919 0.750074 0.375037 0.927010i \(-0.377630\pi\)
0.375037 + 0.927010i \(0.377630\pi\)
\(822\) −10.9545 24.4949i −0.382080 0.854358i
\(823\) −21.7460 −0.758017 −0.379008 0.925393i \(-0.623735\pi\)
−0.379008 + 0.925393i \(0.623735\pi\)
\(824\) −9.01276 + 15.6106i −0.313974 + 0.543820i
\(825\) 3.54694 4.89898i 0.123489 0.170561i
\(826\) 0 0
\(827\) 41.1270 1.43013 0.715063 0.699060i \(-0.246398\pi\)
0.715063 + 0.699060i \(0.246398\pi\)
\(828\) −13.4919 + 15.0844i −0.468877 + 0.524221i
\(829\) −27.2179 + 47.1428i −0.945317 + 1.63734i −0.190202 + 0.981745i \(0.560914\pi\)
−0.755115 + 0.655592i \(0.772419\pi\)
\(830\) −8.43649 14.6124i −0.292835 0.507205i
\(831\) 17.2286 + 38.5243i 0.597653 + 1.33639i
\(832\) −2.12132 3.67423i −0.0735436 0.127381i
\(833\) 0 0
\(834\) −13.0554 29.1929i −0.452073 1.01087i
\(835\) −25.1270 −0.869556
\(836\) −1.59384 + 2.76062i −0.0551242 + 0.0954779i
\(837\) 27.1109 + 8.66025i 0.937089 + 0.299342i
\(838\) −1.99230 3.45077i −0.0688230 0.119205i
\(839\) −19.9672 + 34.5842i −0.689345 + 1.19398i 0.282706 + 0.959207i \(0.408768\pi\)
−0.972050 + 0.234773i \(0.924565\pi\)
\(840\) 0 0
\(841\) −24.8649 43.0673i −0.857411 1.48508i
\(842\) 2.56351 4.44013i 0.0883443 0.153017i
\(843\) 6.85224 9.46420i 0.236004 0.325964i
\(844\) 1.30948 + 2.26808i 0.0450740 + 0.0780704i
\(845\) 5.07877 + 8.79668i 0.174715 + 0.302615i
\(846\) −20.2367 4.23146i −0.695750 0.145481i
\(847\) 0 0
\(848\) 5.30948 9.19628i 0.182328 0.315802i
\(849\) −18.1190 1.87406i −0.621841 0.0643176i
\(850\) 1.23458 0.0423459
\(851\) −65.7460 −2.25374
\(852\) −3.66455 0.379028i −0.125545 0.0129853i
\(853\) −22.7564 + 39.4153i −0.779165 + 1.34955i 0.153258 + 0.988186i \(0.451024\pi\)
−0.932423 + 0.361368i \(0.882310\pi\)
\(854\) 0 0
\(855\) −4.75403 0.994063i −0.162585 0.0339962i
\(856\) −7.87298 13.6364i −0.269093 0.466083i
\(857\) 23.8620 + 41.3302i 0.815110 + 1.41181i 0.909249 + 0.416254i \(0.136657\pi\)
−0.0941381 + 0.995559i \(0.530010\pi\)
\(858\) −17.2379 + 23.8087i −0.588492 + 0.812816i
\(859\) −1.14477 + 1.98280i −0.0390591 + 0.0676523i −0.884894 0.465792i \(-0.845769\pi\)
0.845835 + 0.533445i \(0.179103\pi\)
\(860\) 9.01276 + 15.6106i 0.307333 + 0.532316i
\(861\) 0 0
\(862\) −4.74597 + 8.22026i −0.161648 + 0.279983i
\(863\) 18.0635 + 31.2869i 0.614889 + 1.06502i 0.990404 + 0.138203i \(0.0441325\pi\)
−0.375515 + 0.926816i \(0.622534\pi\)
\(864\) 4.94975 + 1.58114i 0.168394 + 0.0537914i
\(865\) −12.9284 + 22.3927i −0.439580 + 0.761374i
\(866\) 29.6985 1.00920
\(867\) 10.6066 + 23.7171i 0.360219 + 0.805474i
\(868\) 0 0
\(869\) −11.7460 20.3446i −0.398455 0.690144i
\(870\) 12.7460 + 28.5008i 0.432129 + 0.966269i
\(871\) −1.85188 3.20755i −0.0627485 0.108684i
\(872\) −4.56351 + 7.90423i −0.154540 + 0.267671i
\(873\) −35.6918 + 39.9046i −1.20798 + 1.35057i
\(874\) 5.37600 0.181846
\(875\) 0 0
\(876\) 15.6190 21.5726i 0.527715 0.728872i
\(877\) −19.4365 + 33.6650i −0.656324 + 1.13679i 0.325237 + 0.945633i \(0.394556\pi\)
−0.981560 + 0.191153i \(0.938777\pi\)
\(878\) −10.9545 −0.369695
\(879\) −4.43649 9.92030i −0.149639 0.334603i
\(880\) −8.12602 −0.273928
\(881\) −15.7360 −0.530159 −0.265079 0.964227i \(-0.585398\pi\)
−0.265079 + 0.964227i \(0.585398\pi\)
\(882\) 0 0
\(883\) 4.50807 0.151709 0.0758543 0.997119i \(-0.475832\pi\)
0.0758543 + 0.997119i \(0.475832\pi\)
\(884\) −6.00000 −0.201802
\(885\) −5.46582 + 7.54930i −0.183731 + 0.253767i
\(886\) 24.3649 0.818555
\(887\) −18.0255 + 31.2211i −0.605238 + 1.04830i 0.386776 + 0.922174i \(0.373589\pi\)
−0.992014 + 0.126129i \(0.959745\pi\)
\(888\) 6.89144 + 15.4097i 0.231262 + 0.517117i
\(889\) 0 0
\(890\) 14.3649 0.481513
\(891\) −4.00000 35.7771i −0.134005 1.19858i
\(892\) −5.74667 + 9.95352i −0.192413 + 0.333269i
\(893\) 2.74597 + 4.75615i 0.0918903 + 0.159159i
\(894\) 0.258035 0.356394i 0.00862998 0.0119196i
\(895\) 0.886735 + 1.53587i 0.0296403 + 0.0513385i
\(896\) 0 0
\(897\) 49.3095 + 5.10012i 1.64640 + 0.170288i
\(898\) 9.00000 0.300334
\(899\) −24.2997 + 42.0883i −0.810439 + 1.40372i
\(900\) 0.817542 + 2.48808i 0.0272514 + 0.0829359i
\(901\) −7.50873 13.0055i −0.250152 0.433276i
\(902\) 11.3137 19.5959i 0.376705 0.652473i
\(903\) 0 0
\(904\) 1.93649 + 3.35410i 0.0644068 + 0.111556i
\(905\) 7.99193 13.8424i 0.265661 0.460138i
\(906\) −7.77817 17.3925i −0.258413 0.577828i
\(907\) 2.30948 + 4.00013i 0.0766849 + 0.132822i 0.901818 0.432117i \(-0.142233\pi\)
−0.825133 + 0.564939i \(0.808900\pi\)
\(908\) −3.04726 5.27801i −0.101127 0.175157i
\(909\) −7.36831 22.4244i −0.244391 0.743772i
\(910\) 0 0
\(911\) 11.6270 20.1386i 0.385220 0.667221i −0.606579 0.795023i \(-0.707459\pi\)
0.991800 + 0.127802i \(0.0407921\pi\)
\(912\) −0.563508 1.26004i −0.0186596 0.0417242i
\(913\) −33.2226 −1.09951
\(914\) 33.8730 1.12042
\(915\) −1.64445 + 2.27129i −0.0543640 + 0.0750866i
\(916\) 3.93399 6.81388i 0.129983 0.225137i
\(917\) 0 0
\(918\) 5.43649 4.94414i 0.179431 0.163181i
\(919\) 19.6825 + 34.0910i 0.649264 + 1.12456i 0.983299 + 0.181998i \(0.0582565\pi\)
−0.334034 + 0.942561i \(0.608410\pi\)
\(920\) 6.85224 + 11.8684i 0.225912 + 0.391290i
\(921\) 41.5554 + 4.29812i 1.36930 + 0.141628i
\(922\) −4.98895 + 8.64112i −0.164302 + 0.284580i
\(923\) 4.51208 + 7.81516i 0.148517 + 0.257239i
\(924\) 0 0
\(925\) −4.25403 + 7.36820i −0.139872 + 0.242265i
\(926\) −10.8095 18.7226i −0.355221 0.615261i
\(927\) −36.0510 + 40.3063i −1.18407 + 1.32383i
\(928\) −4.43649 + 7.68423i −0.145635 + 0.252247i
\(929\) 10.6180 0.348366 0.174183 0.984713i \(-0.444272\pi\)
0.174183 + 0.984713i \(0.444272\pi\)
\(930\) 11.3023 15.6106i 0.370617 0.511890i
\(931\) 0 0
\(932\) −11.3730 19.6986i −0.372534 0.645249i
\(933\) 2.43649 + 0.252009i 0.0797672 + 0.00825039i
\(934\) 19.5295 + 33.8262i 0.639026 + 1.10683i
\(935\) −5.74597 + 9.95231i −0.187913 + 0.325475i
\(936\) −3.97320 12.0919i −0.129868 0.395236i
\(937\) −42.4036 −1.38526 −0.692632 0.721291i \(-0.743549\pi\)
−0.692632 + 0.721291i \(0.743549\pi\)
\(938\) 0 0
\(939\) −45.9839 4.75615i −1.50063 0.155211i
\(940\) −7.00000 + 12.1244i −0.228315 + 0.395453i
\(941\) 1.67225 0.0545137 0.0272569 0.999628i \(-0.491323\pi\)
0.0272569 + 0.999628i \(0.491323\pi\)
\(942\) −11.1190 1.15004i −0.362275 0.0374704i
\(943\) −38.1610 −1.24269
\(944\) −2.64880 −0.0862110
\(945\) 0 0
\(946\) 35.4919 1.15394
\(947\) 27.6028 0.896971 0.448486 0.893790i \(-0.351964\pi\)
0.448486 + 0.893790i \(0.351964\pi\)
\(948\) 10.1183 + 1.04655i 0.328628 + 0.0339903i
\(949\) −65.2379 −2.11771
\(950\) 0.347849 0.602493i 0.0112857 0.0195475i
\(951\) 2.37936 + 0.246099i 0.0771559 + 0.00798030i
\(952\) 0 0
\(953\) −28.5081 −0.923467 −0.461733 0.887019i \(-0.652772\pi\)
−0.461733 + 0.887019i \(0.652772\pi\)
\(954\) 21.2379 23.7447i 0.687602 0.768763i
\(955\) −14.0915 + 24.4072i −0.455991 + 0.789800i
\(956\) 7.50000 + 12.9904i 0.242567 + 0.420139i
\(957\) 61.1476 + 6.32456i 1.97662 + 0.204444i
\(958\) −9.01276 15.6106i −0.291189 0.504354i
\(959\) 0 0
\(960\) 2.06351 2.85008i 0.0665994 0.0919861i
\(961\) −1.00000 −0.0322581
\(962\) 20.6743 35.8090i 0.666567 1.15453i
\(963\) −14.7460 44.8773i −0.475182 1.44615i
\(964\) −0.886735 1.53587i −0.0285598 0.0494671i
\(965\) 16.3811 28.3728i 0.527325 0.913354i
\(966\) 0 0
\(967\) −14.7540 25.5547i −0.474458 0.821785i 0.525114 0.851032i \(-0.324022\pi\)
−0.999572 + 0.0292467i \(0.990689\pi\)
\(968\) −2.50000 + 4.33013i −0.0803530 + 0.139176i
\(969\) −1.94169 0.200831i −0.0623761 0.00645162i
\(970\) 18.1270 + 31.3969i 0.582023 + 1.00809i
\(971\) −18.4240 31.9113i −0.591254 1.02408i −0.994064 0.108798i \(-0.965300\pi\)
0.402810 0.915284i \(-0.368033\pi\)
\(972\) 13.5640 + 7.68223i 0.435067 + 0.246408i
\(973\) 0 0
\(974\) −15.2460 + 26.4068i −0.488512 + 0.846128i
\(975\) 3.76210 5.19615i 0.120484 0.166410i
\(976\) −0.796921 −0.0255088
\(977\) 14.5081 0.464154 0.232077 0.972697i \(-0.425448\pi\)
0.232077 + 0.972697i \(0.425448\pi\)
\(978\) −7.07107 15.8114i −0.226108 0.505592i
\(979\) 14.1421 24.4949i 0.451985 0.782860i
\(980\) 0 0
\(981\) −18.2540 + 20.4086i −0.582806 + 0.651597i
\(982\) 6.87298 + 11.9044i 0.219326 + 0.379883i
\(983\) −4.94975 8.57321i −0.157872 0.273443i 0.776229 0.630451i \(-0.217130\pi\)
−0.934101 + 0.357008i \(0.883797\pi\)
\(984\) 4.00000 + 8.94427i 0.127515 + 0.285133i
\(985\) −6.72322 + 11.6450i −0.214220 + 0.371039i
\(986\) 6.27415 + 10.8671i 0.199810 + 0.346080i
\(987\) 0 0
\(988\) −1.69052 + 2.92808i −0.0537828 + 0.0931545i
\(989\) −29.9284 51.8376i −0.951669 1.64834i
\(990\) −23.8620 4.98952i −0.758384 0.158577i
\(991\) −1.87298 + 3.24410i −0.0594973 + 0.103052i −0.894240 0.447588i \(-0.852283\pi\)
0.834743 + 0.550640i \(0.185616\pi\)
\(992\) 5.47723 0.173902
\(993\) −31.6402 3.27257i −1.00407 0.103852i
\(994\) 0 0
\(995\) 21.0000 + 36.3731i 0.665745 + 1.15310i
\(996\) 8.43649 11.6523i 0.267320 0.369219i
\(997\) 0.129018 + 0.223465i 0.00408603 + 0.00707721i 0.868061 0.496457i \(-0.165366\pi\)
−0.863975 + 0.503534i \(0.832033\pi\)
\(998\) 7.12702 12.3444i 0.225602 0.390754i
\(999\) 10.7748 + 49.4820i 0.340900 + 1.56554i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.2.e.t.655.4 8
3.2 odd 2 2646.2.e.r.2125.2 8
7.2 even 3 882.2.h.r.79.2 8
7.3 odd 6 882.2.f.p.295.4 yes 8
7.4 even 3 882.2.f.p.295.1 8
7.5 odd 6 882.2.h.r.79.3 8
7.6 odd 2 inner 882.2.e.t.655.1 8
9.4 even 3 882.2.h.r.67.2 8
9.5 odd 6 2646.2.h.s.361.3 8
21.2 odd 6 2646.2.h.s.667.3 8
21.5 even 6 2646.2.h.s.667.2 8
21.11 odd 6 2646.2.f.s.883.2 8
21.17 even 6 2646.2.f.s.883.3 8
21.20 even 2 2646.2.e.r.2125.3 8
63.4 even 3 882.2.f.p.589.2 yes 8
63.5 even 6 2646.2.e.r.1549.3 8
63.11 odd 6 7938.2.a.cd.1.3 4
63.13 odd 6 882.2.h.r.67.3 8
63.23 odd 6 2646.2.e.r.1549.2 8
63.25 even 3 7938.2.a.cu.1.2 4
63.31 odd 6 882.2.f.p.589.3 yes 8
63.32 odd 6 2646.2.f.s.1765.2 8
63.38 even 6 7938.2.a.cd.1.2 4
63.40 odd 6 inner 882.2.e.t.373.1 8
63.41 even 6 2646.2.h.s.361.2 8
63.52 odd 6 7938.2.a.cu.1.3 4
63.58 even 3 inner 882.2.e.t.373.4 8
63.59 even 6 2646.2.f.s.1765.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
882.2.e.t.373.1 8 63.40 odd 6 inner
882.2.e.t.373.4 8 63.58 even 3 inner
882.2.e.t.655.1 8 7.6 odd 2 inner
882.2.e.t.655.4 8 1.1 even 1 trivial
882.2.f.p.295.1 8 7.4 even 3
882.2.f.p.295.4 yes 8 7.3 odd 6
882.2.f.p.589.2 yes 8 63.4 even 3
882.2.f.p.589.3 yes 8 63.31 odd 6
882.2.h.r.67.2 8 9.4 even 3
882.2.h.r.67.3 8 63.13 odd 6
882.2.h.r.79.2 8 7.2 even 3
882.2.h.r.79.3 8 7.5 odd 6
2646.2.e.r.1549.2 8 63.23 odd 6
2646.2.e.r.1549.3 8 63.5 even 6
2646.2.e.r.2125.2 8 3.2 odd 2
2646.2.e.r.2125.3 8 21.20 even 2
2646.2.f.s.883.2 8 21.11 odd 6
2646.2.f.s.883.3 8 21.17 even 6
2646.2.f.s.1765.2 8 63.32 odd 6
2646.2.f.s.1765.3 8 63.59 even 6
2646.2.h.s.361.2 8 63.41 even 6
2646.2.h.s.361.3 8 9.5 odd 6
2646.2.h.s.667.2 8 21.5 even 6
2646.2.h.s.667.3 8 21.2 odd 6
7938.2.a.cd.1.2 4 63.38 even 6
7938.2.a.cd.1.3 4 63.11 odd 6
7938.2.a.cu.1.2 4 63.25 even 3
7938.2.a.cu.1.3 4 63.52 odd 6