Properties

Label 882.2.f.p.295.4
Level $882$
Weight $2$
Character 882.295
Analytic conductor $7.043$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [882,2,Mod(295,882)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(882, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("882.295"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 882.f (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-4,0,-4,0,0,0,8,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.04280545828\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.3317760000.3
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{6} + 7x^{4} - 36x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 295.4
Root \(-1.01575 - 1.40294i\) of defining polynomial
Character \(\chi\) \(=\) 882.295
Dual form 882.2.f.p.589.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(0.707107 + 1.58114i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-1.01575 - 1.75934i) q^{5} +(-1.72286 - 0.178197i) q^{6} +1.00000 q^{8} +(-2.00000 + 2.23607i) q^{9} +2.03151 q^{10} +(-2.00000 + 3.46410i) q^{11} +(1.01575 - 1.40294i) q^{12} +(2.12132 + 3.67423i) q^{13} +(2.06351 - 2.85008i) q^{15} +(-0.500000 + 0.866025i) q^{16} +1.41421 q^{17} +(-0.936492 - 2.85008i) q^{18} -0.796921 q^{19} +(-1.01575 + 1.75934i) q^{20} +(-2.00000 - 3.46410i) q^{22} +(-3.37298 - 5.84218i) q^{23} +(0.707107 + 1.58114i) q^{24} +(0.436492 - 0.756026i) q^{25} -4.24264 q^{26} +(-4.94975 - 1.58114i) q^{27} +(-4.43649 + 7.68423i) q^{29} +(1.43649 + 3.21209i) q^{30} +(2.73861 + 4.74342i) q^{31} +(-0.500000 - 0.866025i) q^{32} +(-6.89144 - 0.712788i) q^{33} +(-0.707107 + 1.22474i) q^{34} +(2.93649 + 0.614017i) q^{36} -9.74597 q^{37} +(0.398461 - 0.690154i) q^{38} +(-4.30948 + 5.95218i) q^{39} +(-1.01575 - 1.75934i) q^{40} +(-2.82843 - 4.89898i) q^{41} +(-4.43649 + 7.68423i) q^{43} +4.00000 q^{44} +(5.96550 + 1.24738i) q^{45} +6.74597 q^{46} +(-3.44572 + 5.96816i) q^{47} +(-1.72286 - 0.178197i) q^{48} +(0.436492 + 0.756026i) q^{50} +(1.00000 + 2.23607i) q^{51} +(2.12132 - 3.67423i) q^{52} -10.6190 q^{53} +(3.84418 - 3.49604i) q^{54} +8.12602 q^{55} +(-0.563508 - 1.26004i) q^{57} +(-4.43649 - 7.68423i) q^{58} +(-1.32440 - 2.29393i) q^{59} +(-3.50000 - 0.362008i) q^{60} +(-0.398461 + 0.690154i) q^{61} -5.47723 q^{62} +1.00000 q^{64} +(4.30948 - 7.46423i) q^{65} +(4.06301 - 5.61177i) q^{66} +(-0.436492 - 0.756026i) q^{67} +(-0.707107 - 1.22474i) q^{68} +(6.85224 - 9.46420i) q^{69} -2.12702 q^{71} +(-2.00000 + 2.23607i) q^{72} +15.3767 q^{73} +(4.87298 - 8.44025i) q^{74} +(1.50403 + 0.155563i) q^{75} +(0.398461 + 0.690154i) q^{76} +(-3.00000 - 6.70820i) q^{78} +(-2.93649 + 5.08615i) q^{79} +2.03151 q^{80} +(-1.00000 - 8.94427i) q^{81} +5.65685 q^{82} +(-4.15283 + 7.19291i) q^{83} +(-1.43649 - 2.48808i) q^{85} +(-4.43649 - 7.68423i) q^{86} +(-15.2869 - 1.58114i) q^{87} +(-2.00000 + 3.46410i) q^{88} +7.07107 q^{89} +(-4.06301 + 4.54259i) q^{90} +(-3.37298 + 5.84218i) q^{92} +(-5.56351 + 7.68423i) q^{93} +(-3.44572 - 5.96816i) q^{94} +(0.809475 + 1.40205i) q^{95} +(1.01575 - 1.40294i) q^{96} +(8.92295 - 15.4550i) q^{97} +(-3.74597 - 11.4003i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{2} - 4 q^{4} + 8 q^{8} - 16 q^{9} - 16 q^{11} + 32 q^{15} - 4 q^{16} + 8 q^{18} - 16 q^{22} + 4 q^{23} - 12 q^{25} - 20 q^{29} - 4 q^{30} - 4 q^{32} + 8 q^{36} - 16 q^{37} + 12 q^{39} - 20 q^{43}+ \cdots + 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/882\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) 0.707107 + 1.58114i 0.408248 + 0.912871i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −1.01575 1.75934i −0.454259 0.786799i 0.544387 0.838834i \(-0.316762\pi\)
−0.998645 + 0.0520355i \(0.983429\pi\)
\(6\) −1.72286 0.178197i −0.703355 0.0727486i
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) −2.00000 + 2.23607i −0.666667 + 0.745356i
\(10\) 2.03151 0.642419
\(11\) −2.00000 + 3.46410i −0.603023 + 1.04447i 0.389338 + 0.921095i \(0.372704\pi\)
−0.992361 + 0.123371i \(0.960630\pi\)
\(12\) 1.01575 1.40294i 0.293223 0.404994i
\(13\) 2.12132 + 3.67423i 0.588348 + 1.01905i 0.994449 + 0.105221i \(0.0335550\pi\)
−0.406100 + 0.913828i \(0.633112\pi\)
\(14\) 0 0
\(15\) 2.06351 2.85008i 0.532796 0.735889i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 1.41421 0.342997 0.171499 0.985184i \(-0.445139\pi\)
0.171499 + 0.985184i \(0.445139\pi\)
\(18\) −0.936492 2.85008i −0.220733 0.671771i
\(19\) −0.796921 −0.182826 −0.0914131 0.995813i \(-0.529138\pi\)
−0.0914131 + 0.995813i \(0.529138\pi\)
\(20\) −1.01575 + 1.75934i −0.227129 + 0.393399i
\(21\) 0 0
\(22\) −2.00000 3.46410i −0.426401 0.738549i
\(23\) −3.37298 5.84218i −0.703316 1.21818i −0.967296 0.253650i \(-0.918369\pi\)
0.263980 0.964528i \(-0.414965\pi\)
\(24\) 0.707107 + 1.58114i 0.144338 + 0.322749i
\(25\) 0.436492 0.756026i 0.0872983 0.151205i
\(26\) −4.24264 −0.832050
\(27\) −4.94975 1.58114i −0.952579 0.304290i
\(28\) 0 0
\(29\) −4.43649 + 7.68423i −0.823836 + 1.42693i 0.0789700 + 0.996877i \(0.474837\pi\)
−0.902806 + 0.430049i \(0.858496\pi\)
\(30\) 1.43649 + 3.21209i 0.262266 + 0.586445i
\(31\) 2.73861 + 4.74342i 0.491869 + 0.851943i 0.999956 0.00936313i \(-0.00298042\pi\)
−0.508087 + 0.861306i \(0.669647\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) −6.89144 0.712788i −1.19965 0.124080i
\(34\) −0.707107 + 1.22474i −0.121268 + 0.210042i
\(35\) 0 0
\(36\) 2.93649 + 0.614017i 0.489415 + 0.102336i
\(37\) −9.74597 −1.60223 −0.801114 0.598512i \(-0.795759\pi\)
−0.801114 + 0.598512i \(0.795759\pi\)
\(38\) 0.398461 0.690154i 0.0646388 0.111958i
\(39\) −4.30948 + 5.95218i −0.690068 + 0.953111i
\(40\) −1.01575 1.75934i −0.160605 0.278175i
\(41\) −2.82843 4.89898i −0.441726 0.765092i 0.556092 0.831121i \(-0.312300\pi\)
−0.997818 + 0.0660290i \(0.978967\pi\)
\(42\) 0 0
\(43\) −4.43649 + 7.68423i −0.676559 + 1.17183i 0.299452 + 0.954111i \(0.403196\pi\)
−0.976011 + 0.217723i \(0.930137\pi\)
\(44\) 4.00000 0.603023
\(45\) 5.96550 + 1.24738i 0.889284 + 0.185948i
\(46\) 6.74597 0.994639
\(47\) −3.44572 + 5.96816i −0.502610 + 0.870546i 0.497386 + 0.867530i \(0.334293\pi\)
−0.999995 + 0.00301623i \(0.999040\pi\)
\(48\) −1.72286 0.178197i −0.248673 0.0257205i
\(49\) 0 0
\(50\) 0.436492 + 0.756026i 0.0617292 + 0.106918i
\(51\) 1.00000 + 2.23607i 0.140028 + 0.313112i
\(52\) 2.12132 3.67423i 0.294174 0.509525i
\(53\) −10.6190 −1.45862 −0.729312 0.684181i \(-0.760160\pi\)
−0.729312 + 0.684181i \(0.760160\pi\)
\(54\) 3.84418 3.49604i 0.523127 0.475750i
\(55\) 8.12602 1.09571
\(56\) 0 0
\(57\) −0.563508 1.26004i −0.0746385 0.166897i
\(58\) −4.43649 7.68423i −0.582540 1.00899i
\(59\) −1.32440 2.29393i −0.172422 0.298644i 0.766844 0.641833i \(-0.221826\pi\)
−0.939266 + 0.343190i \(0.888493\pi\)
\(60\) −3.50000 0.362008i −0.451848 0.0467351i
\(61\) −0.398461 + 0.690154i −0.0510176 + 0.0883652i −0.890406 0.455166i \(-0.849580\pi\)
0.839389 + 0.543531i \(0.182913\pi\)
\(62\) −5.47723 −0.695608
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 4.30948 7.46423i 0.534525 0.925824i
\(66\) 4.06301 5.61177i 0.500122 0.690761i
\(67\) −0.436492 0.756026i −0.0533259 0.0923632i 0.838130 0.545470i \(-0.183649\pi\)
−0.891456 + 0.453107i \(0.850316\pi\)
\(68\) −0.707107 1.22474i −0.0857493 0.148522i
\(69\) 6.85224 9.46420i 0.824912 1.13936i
\(70\) 0 0
\(71\) −2.12702 −0.252430 −0.126215 0.992003i \(-0.540283\pi\)
−0.126215 + 0.992003i \(0.540283\pi\)
\(72\) −2.00000 + 2.23607i −0.235702 + 0.263523i
\(73\) 15.3767 1.79971 0.899855 0.436190i \(-0.143673\pi\)
0.899855 + 0.436190i \(0.143673\pi\)
\(74\) 4.87298 8.44025i 0.566473 0.981160i
\(75\) 1.50403 + 0.155563i 0.173670 + 0.0179629i
\(76\) 0.398461 + 0.690154i 0.0457066 + 0.0791661i
\(77\) 0 0
\(78\) −3.00000 6.70820i −0.339683 0.759555i
\(79\) −2.93649 + 5.08615i −0.330381 + 0.572237i −0.982587 0.185805i \(-0.940511\pi\)
0.652205 + 0.758042i \(0.273844\pi\)
\(80\) 2.03151 0.227129
\(81\) −1.00000 8.94427i −0.111111 0.993808i
\(82\) 5.65685 0.624695
\(83\) −4.15283 + 7.19291i −0.455832 + 0.789524i −0.998736 0.0502709i \(-0.983992\pi\)
0.542904 + 0.839795i \(0.317325\pi\)
\(84\) 0 0
\(85\) −1.43649 2.48808i −0.155809 0.269870i
\(86\) −4.43649 7.68423i −0.478399 0.828612i
\(87\) −15.2869 1.58114i −1.63893 0.169516i
\(88\) −2.00000 + 3.46410i −0.213201 + 0.369274i
\(89\) 7.07107 0.749532 0.374766 0.927119i \(-0.377723\pi\)
0.374766 + 0.927119i \(0.377723\pi\)
\(90\) −4.06301 + 4.54259i −0.428279 + 0.478831i
\(91\) 0 0
\(92\) −3.37298 + 5.84218i −0.351658 + 0.609089i
\(93\) −5.56351 + 7.68423i −0.576909 + 0.796817i
\(94\) −3.44572 5.96816i −0.355399 0.615569i
\(95\) 0.809475 + 1.40205i 0.0830504 + 0.143847i
\(96\) 1.01575 1.40294i 0.103670 0.143187i
\(97\) 8.92295 15.4550i 0.905988 1.56922i 0.0864021 0.996260i \(-0.472463\pi\)
0.819586 0.572957i \(-0.194204\pi\)
\(98\) 0 0
\(99\) −3.74597 11.4003i −0.376484 1.14578i
\(100\) −0.872983 −0.0872983
\(101\) 3.93399 6.81388i 0.391447 0.678006i −0.601194 0.799103i \(-0.705308\pi\)
0.992641 + 0.121097i \(0.0386413\pi\)
\(102\) −2.43649 0.252009i −0.241249 0.0249526i
\(103\) 9.01276 + 15.6106i 0.888054 + 1.53815i 0.842173 + 0.539207i \(0.181276\pi\)
0.0458803 + 0.998947i \(0.485391\pi\)
\(104\) 2.12132 + 3.67423i 0.208013 + 0.360288i
\(105\) 0 0
\(106\) 5.30948 9.19628i 0.515702 0.893222i
\(107\) 15.7460 1.52222 0.761110 0.648623i \(-0.224655\pi\)
0.761110 + 0.648623i \(0.224655\pi\)
\(108\) 1.10557 + 5.07718i 0.106383 + 0.488552i
\(109\) 9.12702 0.874210 0.437105 0.899411i \(-0.356004\pi\)
0.437105 + 0.899411i \(0.356004\pi\)
\(110\) −4.06301 + 7.03734i −0.387393 + 0.670984i
\(111\) −6.89144 15.4097i −0.654106 1.46263i
\(112\) 0 0
\(113\) 1.93649 + 3.35410i 0.182170 + 0.315527i 0.942619 0.333870i \(-0.108355\pi\)
−0.760449 + 0.649397i \(0.775021\pi\)
\(114\) 1.37298 + 0.142009i 0.128592 + 0.0133004i
\(115\) −6.85224 + 11.8684i −0.638974 + 1.10674i
\(116\) 8.87298 0.823836
\(117\) −12.4585 2.60505i −1.15179 0.240837i
\(118\) 2.64880 0.243842
\(119\) 0 0
\(120\) 2.06351 2.85008i 0.188372 0.260176i
\(121\) −2.50000 4.33013i −0.227273 0.393648i
\(122\) −0.398461 0.690154i −0.0360749 0.0624836i
\(123\) 5.74597 7.93624i 0.518096 0.715586i
\(124\) 2.73861 4.74342i 0.245935 0.425971i
\(125\) −11.9310 −1.06714
\(126\) 0 0
\(127\) 14.7460 1.30849 0.654246 0.756281i \(-0.272986\pi\)
0.654246 + 0.756281i \(0.272986\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) −15.2869 1.58114i −1.34594 0.139212i
\(130\) 4.30948 + 7.46423i 0.377966 + 0.654656i
\(131\) −3.93399 6.81388i −0.343715 0.595331i 0.641405 0.767203i \(-0.278352\pi\)
−0.985119 + 0.171871i \(0.945019\pi\)
\(132\) 2.82843 + 6.32456i 0.246183 + 0.550482i
\(133\) 0 0
\(134\) 0.872983 0.0754143
\(135\) 2.24597 + 10.3143i 0.193302 + 0.887715i
\(136\) 1.41421 0.121268
\(137\) −7.74597 + 13.4164i −0.661783 + 1.14624i 0.318364 + 0.947968i \(0.396866\pi\)
−0.980147 + 0.198273i \(0.936467\pi\)
\(138\) 4.77012 + 10.6663i 0.406059 + 0.907977i
\(139\) 9.23159 + 15.9896i 0.783013 + 1.35622i 0.930179 + 0.367107i \(0.119652\pi\)
−0.147165 + 0.989112i \(0.547015\pi\)
\(140\) 0 0
\(141\) −11.8730 1.22803i −0.999886 0.103419i
\(142\) 1.06351 1.84205i 0.0892476 0.154581i
\(143\) −16.9706 −1.41915
\(144\) −0.936492 2.85008i −0.0780410 0.237507i
\(145\) 18.0255 1.49694
\(146\) −7.68836 + 13.3166i −0.636293 + 1.10209i
\(147\) 0 0
\(148\) 4.87298 + 8.44025i 0.400557 + 0.693785i
\(149\) 0.127017 + 0.219999i 0.0104056 + 0.0180230i 0.871181 0.490961i \(-0.163354\pi\)
−0.860776 + 0.508984i \(0.830021\pi\)
\(150\) −0.886735 + 1.22474i −0.0724016 + 0.100000i
\(151\) −5.50000 + 9.52628i −0.447584 + 0.775238i −0.998228 0.0595022i \(-0.981049\pi\)
0.550645 + 0.834740i \(0.314382\pi\)
\(152\) −0.796921 −0.0646388
\(153\) −2.82843 + 3.16228i −0.228665 + 0.255655i
\(154\) 0 0
\(155\) 5.56351 9.63628i 0.446872 0.774005i
\(156\) 7.30948 + 0.756026i 0.585226 + 0.0605305i
\(157\) −3.22689 5.58913i −0.257534 0.446061i 0.708047 0.706165i \(-0.249576\pi\)
−0.965581 + 0.260104i \(0.916243\pi\)
\(158\) −2.93649 5.08615i −0.233615 0.404633i
\(159\) −7.50873 16.7900i −0.595481 1.33154i
\(160\) −1.01575 + 1.75934i −0.0803023 + 0.139088i
\(161\) 0 0
\(162\) 8.24597 + 3.60611i 0.647864 + 0.283323i
\(163\) 10.0000 0.783260 0.391630 0.920123i \(-0.371911\pi\)
0.391630 + 0.920123i \(0.371911\pi\)
\(164\) −2.82843 + 4.89898i −0.220863 + 0.382546i
\(165\) 5.74597 + 12.8484i 0.447323 + 1.00024i
\(166\) −4.15283 7.19291i −0.322322 0.558278i
\(167\) 6.18433 + 10.7116i 0.478558 + 0.828887i 0.999698 0.0245846i \(-0.00782630\pi\)
−0.521140 + 0.853471i \(0.674493\pi\)
\(168\) 0 0
\(169\) −2.50000 + 4.33013i −0.192308 + 0.333087i
\(170\) 2.87298 0.220348
\(171\) 1.59384 1.78197i 0.121884 0.136271i
\(172\) 8.87298 0.676559
\(173\) −6.36396 + 11.0227i −0.483843 + 0.838041i −0.999828 0.0185571i \(-0.994093\pi\)
0.515985 + 0.856598i \(0.327426\pi\)
\(174\) 9.01276 12.4483i 0.683256 0.943702i
\(175\) 0 0
\(176\) −2.00000 3.46410i −0.150756 0.261116i
\(177\) 2.69052 3.71611i 0.202232 0.279320i
\(178\) −3.53553 + 6.12372i −0.264999 + 0.458993i
\(179\) 0.872983 0.0652498 0.0326249 0.999468i \(-0.489613\pi\)
0.0326249 + 0.999468i \(0.489613\pi\)
\(180\) −1.90249 5.78996i −0.141803 0.431558i
\(181\) −7.86799 −0.584823 −0.292412 0.956293i \(-0.594458\pi\)
−0.292412 + 0.956293i \(0.594458\pi\)
\(182\) 0 0
\(183\) −1.37298 0.142009i −0.101494 0.0104976i
\(184\) −3.37298 5.84218i −0.248660 0.430691i
\(185\) 9.89949 + 17.1464i 0.727825 + 1.26063i
\(186\) −3.87298 8.66025i −0.283981 0.635001i
\(187\) −2.82843 + 4.89898i −0.206835 + 0.358249i
\(188\) 6.89144 0.502610
\(189\) 0 0
\(190\) −1.61895 −0.117451
\(191\) 6.93649 12.0144i 0.501907 0.869328i −0.498091 0.867125i \(-0.665965\pi\)
0.999998 0.00220333i \(-0.000701341\pi\)
\(192\) 0.707107 + 1.58114i 0.0510310 + 0.114109i
\(193\) −8.06351 13.9664i −0.580424 1.00532i −0.995429 0.0955048i \(-0.969553\pi\)
0.415005 0.909819i \(-0.363780\pi\)
\(194\) 8.92295 + 15.4550i 0.640630 + 1.10960i
\(195\) 14.8492 + 1.53587i 1.06338 + 0.109986i
\(196\) 0 0
\(197\) −6.61895 −0.471581 −0.235790 0.971804i \(-0.575768\pi\)
−0.235790 + 0.971804i \(0.575768\pi\)
\(198\) 11.7460 + 2.45607i 0.834750 + 0.174545i
\(199\) −20.6743 −1.46556 −0.732782 0.680464i \(-0.761778\pi\)
−0.732782 + 0.680464i \(0.761778\pi\)
\(200\) 0.436492 0.756026i 0.0308646 0.0534591i
\(201\) 0.886735 1.22474i 0.0625455 0.0863868i
\(202\) 3.93399 + 6.81388i 0.276795 + 0.479423i
\(203\) 0 0
\(204\) 1.43649 1.98406i 0.100575 0.138912i
\(205\) −5.74597 + 9.95231i −0.401316 + 0.695099i
\(206\) −18.0255 −1.25590
\(207\) 19.8095 + 4.14214i 1.37685 + 0.287898i
\(208\) −4.24264 −0.294174
\(209\) 1.59384 2.76062i 0.110248 0.190956i
\(210\) 0 0
\(211\) 1.30948 + 2.26808i 0.0901480 + 0.156141i 0.907573 0.419894i \(-0.137933\pi\)
−0.817425 + 0.576035i \(0.804599\pi\)
\(212\) 5.30948 + 9.19628i 0.364656 + 0.631603i
\(213\) −1.50403 3.36311i −0.103054 0.230436i
\(214\) −7.87298 + 13.6364i −0.538186 + 0.932166i
\(215\) 18.0255 1.22933
\(216\) −4.94975 1.58114i −0.336788 0.107583i
\(217\) 0 0
\(218\) −4.56351 + 7.90423i −0.309080 + 0.535342i
\(219\) 10.8730 + 24.3127i 0.734728 + 1.64290i
\(220\) −4.06301 7.03734i −0.273928 0.474458i
\(221\) 3.00000 + 5.19615i 0.201802 + 0.349531i
\(222\) 16.7909 + 1.73670i 1.12693 + 0.116560i
\(223\) 5.74667 9.95352i 0.384825 0.666537i −0.606920 0.794763i \(-0.707595\pi\)
0.991745 + 0.128226i \(0.0409283\pi\)
\(224\) 0 0
\(225\) 0.817542 + 2.48808i 0.0545028 + 0.165872i
\(226\) −3.87298 −0.257627
\(227\) 3.04726 5.27801i 0.202254 0.350314i −0.747001 0.664823i \(-0.768507\pi\)
0.949254 + 0.314510i \(0.101840\pi\)
\(228\) −0.809475 + 1.11803i −0.0536088 + 0.0740436i
\(229\) −3.93399 6.81388i −0.259966 0.450274i 0.706267 0.707946i \(-0.250378\pi\)
−0.966232 + 0.257672i \(0.917045\pi\)
\(230\) −6.85224 11.8684i −0.451823 0.782580i
\(231\) 0 0
\(232\) −4.43649 + 7.68423i −0.291270 + 0.504494i
\(233\) 22.7460 1.49014 0.745069 0.666987i \(-0.232417\pi\)
0.745069 + 0.666987i \(0.232417\pi\)
\(234\) 8.48528 9.48683i 0.554700 0.620174i
\(235\) 14.0000 0.913259
\(236\) −1.32440 + 2.29393i −0.0862110 + 0.149322i
\(237\) −10.1183 1.04655i −0.657256 0.0679806i
\(238\) 0 0
\(239\) 7.50000 + 12.9904i 0.485135 + 0.840278i 0.999854 0.0170808i \(-0.00543724\pi\)
−0.514719 + 0.857359i \(0.672104\pi\)
\(240\) 1.43649 + 3.21209i 0.0927251 + 0.207340i
\(241\) 0.886735 1.53587i 0.0571197 0.0989341i −0.836052 0.548651i \(-0.815142\pi\)
0.893171 + 0.449717i \(0.148475\pi\)
\(242\) 5.00000 0.321412
\(243\) 13.4350 7.90569i 0.861858 0.507151i
\(244\) 0.796921 0.0510176
\(245\) 0 0
\(246\) 4.00000 + 8.94427i 0.255031 + 0.570266i
\(247\) −1.69052 2.92808i −0.107566 0.186309i
\(248\) 2.73861 + 4.74342i 0.173902 + 0.301207i
\(249\) −14.3095 1.48004i −0.906826 0.0937939i
\(250\) 5.96550 10.3325i 0.377291 0.653488i
\(251\) 25.8935 1.63438 0.817192 0.576366i \(-0.195530\pi\)
0.817192 + 0.576366i \(0.195530\pi\)
\(252\) 0 0
\(253\) 26.9839 1.69646
\(254\) −7.37298 + 12.7704i −0.462622 + 0.801285i
\(255\) 2.91824 4.03063i 0.182747 0.252408i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −6.98125 12.0919i −0.435479 0.754271i 0.561856 0.827235i \(-0.310088\pi\)
−0.997335 + 0.0729640i \(0.976754\pi\)
\(258\) 9.01276 12.4483i 0.561110 0.774996i
\(259\) 0 0
\(260\) −8.61895 −0.534525
\(261\) −8.30948 25.2888i −0.514344 1.56533i
\(262\) 7.86799 0.486086
\(263\) −2.80948 + 4.86615i −0.173240 + 0.300060i −0.939551 0.342410i \(-0.888757\pi\)
0.766311 + 0.642470i \(0.222090\pi\)
\(264\) −6.89144 0.712788i −0.424139 0.0438691i
\(265\) 10.7862 + 18.6823i 0.662593 + 1.14764i
\(266\) 0 0
\(267\) 5.00000 + 11.1803i 0.305995 + 0.684226i
\(268\) −0.436492 + 0.756026i −0.0266630 + 0.0461816i
\(269\) 3.44572 0.210089 0.105045 0.994468i \(-0.466501\pi\)
0.105045 + 0.994468i \(0.466501\pi\)
\(270\) −10.0554 3.21209i −0.611955 0.195482i
\(271\) 7.07107 0.429537 0.214768 0.976665i \(-0.431100\pi\)
0.214768 + 0.976665i \(0.431100\pi\)
\(272\) −0.707107 + 1.22474i −0.0428746 + 0.0742611i
\(273\) 0 0
\(274\) −7.74597 13.4164i −0.467951 0.810515i
\(275\) 1.74597 + 3.02410i 0.105286 + 0.182360i
\(276\) −11.6224 1.20211i −0.699584 0.0723586i
\(277\) 12.1825 21.1006i 0.731973 1.26781i −0.224066 0.974574i \(-0.571933\pi\)
0.956039 0.293240i \(-0.0947336\pi\)
\(278\) −18.4632 −1.10735
\(279\) −16.0838 3.36311i −0.962914 0.201344i
\(280\) 0 0
\(281\) 3.37298 5.84218i 0.201215 0.348515i −0.747705 0.664031i \(-0.768844\pi\)
0.948920 + 0.315516i \(0.102178\pi\)
\(282\) 7.00000 9.66829i 0.416844 0.575738i
\(283\) −5.25839 9.10781i −0.312579 0.541403i 0.666341 0.745647i \(-0.267860\pi\)
−0.978920 + 0.204244i \(0.934526\pi\)
\(284\) 1.06351 + 1.84205i 0.0631076 + 0.109306i
\(285\) −1.64445 + 2.27129i −0.0974090 + 0.134540i
\(286\) 8.48528 14.6969i 0.501745 0.869048i
\(287\) 0 0
\(288\) 2.93649 + 0.614017i 0.173034 + 0.0361813i
\(289\) −15.0000 −0.882353
\(290\) −9.01276 + 15.6106i −0.529247 + 0.916683i
\(291\) 30.7460 + 3.18008i 1.80236 + 0.186420i
\(292\) −7.68836 13.3166i −0.449927 0.779297i
\(293\) 3.13707 + 5.43357i 0.183270 + 0.317433i 0.942992 0.332815i \(-0.107998\pi\)
−0.759722 + 0.650248i \(0.774665\pi\)
\(294\) 0 0
\(295\) −2.69052 + 4.66013i −0.156648 + 0.271323i
\(296\) −9.74597 −0.566473
\(297\) 15.3767 13.9842i 0.892248 0.811443i
\(298\) −0.254033 −0.0147158
\(299\) 14.3104 24.7863i 0.827589 1.43343i
\(300\) −0.617292 1.38031i −0.0356394 0.0796921i
\(301\) 0 0
\(302\) −5.50000 9.52628i −0.316489 0.548176i
\(303\) 13.5554 + 1.40205i 0.778740 + 0.0805458i
\(304\) 0.398461 0.690154i 0.0228533 0.0395830i
\(305\) 1.61895 0.0927008
\(306\) −1.32440 4.03063i −0.0757109 0.230416i
\(307\) −24.1200 −1.37660 −0.688302 0.725425i \(-0.741643\pi\)
−0.688302 + 0.725425i \(0.741643\pi\)
\(308\) 0 0
\(309\) −18.3095 + 25.2888i −1.04159 + 1.43863i
\(310\) 5.56351 + 9.63628i 0.315986 + 0.547304i
\(311\) 0.707107 + 1.22474i 0.0400963 + 0.0694489i 0.885377 0.464873i \(-0.153900\pi\)
−0.845281 + 0.534322i \(0.820567\pi\)
\(312\) −4.30948 + 5.95218i −0.243976 + 0.336976i
\(313\) −13.3452 + 23.1146i −0.754316 + 1.30651i 0.191397 + 0.981513i \(0.438698\pi\)
−0.945714 + 0.325001i \(0.894635\pi\)
\(314\) 6.45378 0.364208
\(315\) 0 0
\(316\) 5.87298 0.330381
\(317\) −0.690525 + 1.19602i −0.0387837 + 0.0671754i −0.884766 0.466036i \(-0.845682\pi\)
0.845982 + 0.533212i \(0.179015\pi\)
\(318\) 18.2950 + 1.89226i 1.02593 + 0.106113i
\(319\) −17.7460 30.7369i −0.993583 1.72094i
\(320\) −1.01575 1.75934i −0.0567823 0.0983499i
\(321\) 11.1341 + 24.8966i 0.621444 + 1.38959i
\(322\) 0 0
\(323\) −1.12702 −0.0627089
\(324\) −7.24597 + 5.33816i −0.402554 + 0.296565i
\(325\) 3.70375 0.205447
\(326\) −5.00000 + 8.66025i −0.276924 + 0.479647i
\(327\) 6.45378 + 14.4311i 0.356895 + 0.798041i
\(328\) −2.82843 4.89898i −0.156174 0.270501i
\(329\) 0 0
\(330\) −14.0000 1.44803i −0.770675 0.0797116i
\(331\) 9.18246 15.9045i 0.504714 0.874190i −0.495272 0.868738i \(-0.664931\pi\)
0.999985 0.00545133i \(-0.00173522\pi\)
\(332\) 8.30565 0.455832
\(333\) 19.4919 21.7926i 1.06815 1.19423i
\(334\) −12.3687 −0.676783
\(335\) −0.886735 + 1.53587i −0.0484475 + 0.0839136i
\(336\) 0 0
\(337\) −0.127017 0.219999i −0.00691904 0.0119841i 0.862545 0.505980i \(-0.168869\pi\)
−0.869464 + 0.493996i \(0.835536\pi\)
\(338\) −2.50000 4.33013i −0.135982 0.235528i
\(339\) −3.93399 + 5.43357i −0.213665 + 0.295111i
\(340\) −1.43649 + 2.48808i −0.0779047 + 0.134935i
\(341\) −21.9089 −1.18643
\(342\) 0.746310 + 2.27129i 0.0403558 + 0.122817i
\(343\) 0 0
\(344\) −4.43649 + 7.68423i −0.239200 + 0.414306i
\(345\) −23.6109 2.44210i −1.27117 0.131478i
\(346\) −6.36396 11.0227i −0.342129 0.592584i
\(347\) 3.87298 + 6.70820i 0.207913 + 0.360115i 0.951057 0.309016i \(-0.0999997\pi\)
−0.743144 + 0.669131i \(0.766666\pi\)
\(348\) 6.27415 + 14.0294i 0.336330 + 0.752056i
\(349\) −8.21584 + 14.2302i −0.439784 + 0.761728i −0.997672 0.0681880i \(-0.978278\pi\)
0.557889 + 0.829916i \(0.311612\pi\)
\(350\) 0 0
\(351\) −4.69052 21.5406i −0.250362 1.14975i
\(352\) 4.00000 0.213201
\(353\) 9.01276 15.6106i 0.479701 0.830866i −0.520028 0.854149i \(-0.674079\pi\)
0.999729 + 0.0232830i \(0.00741188\pi\)
\(354\) 1.87298 + 4.18812i 0.0995479 + 0.222596i
\(355\) 2.16052 + 3.74214i 0.114669 + 0.198612i
\(356\) −3.53553 6.12372i −0.187383 0.324557i
\(357\) 0 0
\(358\) −0.436492 + 0.756026i −0.0230693 + 0.0399572i
\(359\) −28.2379 −1.49034 −0.745170 0.666875i \(-0.767632\pi\)
−0.745170 + 0.666875i \(0.767632\pi\)
\(360\) 5.96550 + 1.24738i 0.314409 + 0.0657426i
\(361\) −18.3649 −0.966575
\(362\) 3.93399 6.81388i 0.206766 0.358129i
\(363\) 5.07877 7.01471i 0.266566 0.368177i
\(364\) 0 0
\(365\) −15.6190 27.0528i −0.817533 1.41601i
\(366\) 0.809475 1.11803i 0.0423119 0.0584406i
\(367\) 2.03151 3.51867i 0.106044 0.183673i −0.808120 0.589017i \(-0.799515\pi\)
0.914164 + 0.405344i \(0.132848\pi\)
\(368\) 6.74597 0.351658
\(369\) 16.6113 + 3.47340i 0.864750 + 0.180818i
\(370\) −19.7990 −1.02930
\(371\) 0 0
\(372\) 9.43649 + 0.976025i 0.489259 + 0.0506045i
\(373\) 4.43649 + 7.68423i 0.229713 + 0.397874i 0.957723 0.287692i \(-0.0928880\pi\)
−0.728010 + 0.685566i \(0.759555\pi\)
\(374\) −2.82843 4.89898i −0.146254 0.253320i
\(375\) −8.43649 18.8646i −0.435659 0.974162i
\(376\) −3.44572 + 5.96816i −0.177699 + 0.307784i
\(377\) −37.6449 −1.93881
\(378\) 0 0
\(379\) −12.3649 −0.635143 −0.317572 0.948234i \(-0.602867\pi\)
−0.317572 + 0.948234i \(0.602867\pi\)
\(380\) 0.809475 1.40205i 0.0415252 0.0719237i
\(381\) 10.4270 + 23.3154i 0.534190 + 1.19449i
\(382\) 6.93649 + 12.0144i 0.354902 + 0.614708i
\(383\) 11.9310 + 20.6651i 0.609646 + 1.05594i 0.991299 + 0.131632i \(0.0420216\pi\)
−0.381653 + 0.924306i \(0.624645\pi\)
\(384\) −1.72286 0.178197i −0.0879193 0.00909358i
\(385\) 0 0
\(386\) 16.1270 0.820844
\(387\) −8.30948 25.2888i −0.422394 1.28550i
\(388\) −17.8459 −0.905988
\(389\) −10.4365 + 18.0765i −0.529151 + 0.916517i 0.470271 + 0.882522i \(0.344156\pi\)
−0.999422 + 0.0339945i \(0.989177\pi\)
\(390\) −8.75472 + 12.0919i −0.443313 + 0.612296i
\(391\) −4.77012 8.26209i −0.241235 0.417832i
\(392\) 0 0
\(393\) 7.99193 11.0383i 0.403140 0.556810i
\(394\) 3.30948 5.73218i 0.166729 0.288783i
\(395\) 11.9310 0.600314
\(396\) −8.00000 + 8.94427i −0.402015 + 0.449467i
\(397\) 7.07107 0.354887 0.177443 0.984131i \(-0.443217\pi\)
0.177443 + 0.984131i \(0.443217\pi\)
\(398\) 10.3372 17.9045i 0.518155 0.897471i
\(399\) 0 0
\(400\) 0.436492 + 0.756026i 0.0218246 + 0.0378013i
\(401\) −1.93649 3.35410i −0.0967038 0.167496i 0.813615 0.581405i \(-0.197497\pi\)
−0.910318 + 0.413909i \(0.864163\pi\)
\(402\) 0.617292 + 1.38031i 0.0307877 + 0.0688435i
\(403\) −11.6190 + 20.1246i −0.578781 + 1.00248i
\(404\) −7.86799 −0.391447
\(405\) −14.7202 + 10.8445i −0.731454 + 0.538868i
\(406\) 0 0
\(407\) 19.4919 33.7610i 0.966179 1.67347i
\(408\) 1.00000 + 2.23607i 0.0495074 + 0.110702i
\(409\) 15.8144 + 27.3913i 0.781971 + 1.35441i 0.930792 + 0.365549i \(0.119119\pi\)
−0.148821 + 0.988864i \(0.547548\pi\)
\(410\) −5.74597 9.95231i −0.283773 0.491509i
\(411\) −26.6904 2.76062i −1.31654 0.136171i
\(412\) 9.01276 15.6106i 0.444027 0.769077i
\(413\) 0 0
\(414\) −13.4919 + 15.0844i −0.663092 + 0.741360i
\(415\) 16.8730 0.828262
\(416\) 2.12132 3.67423i 0.104006 0.180144i
\(417\) −18.7540 + 25.9028i −0.918389 + 1.26846i
\(418\) 1.59384 + 2.76062i 0.0779574 + 0.135026i
\(419\) 1.99230 + 3.45077i 0.0973304 + 0.168581i 0.910579 0.413335i \(-0.135636\pi\)
−0.813248 + 0.581917i \(0.802303\pi\)
\(420\) 0 0
\(421\) 2.56351 4.44013i 0.124938 0.216399i −0.796771 0.604282i \(-0.793460\pi\)
0.921709 + 0.387883i \(0.126794\pi\)
\(422\) −2.61895 −0.127488
\(423\) −6.45378 19.6412i −0.313793 0.954987i
\(424\) −10.6190 −0.515702
\(425\) 0.617292 1.06918i 0.0299431 0.0518629i
\(426\) 3.66455 + 0.379028i 0.177548 + 0.0183640i
\(427\) 0 0
\(428\) −7.87298 13.6364i −0.380555 0.659141i
\(429\) −12.0000 26.8328i −0.579365 1.29550i
\(430\) −9.01276 + 15.6106i −0.434634 + 0.752808i
\(431\) 9.49193 0.457210 0.228605 0.973519i \(-0.426584\pi\)
0.228605 + 0.973519i \(0.426584\pi\)
\(432\) 3.84418 3.49604i 0.184953 0.168203i
\(433\) −29.6985 −1.42722 −0.713609 0.700544i \(-0.752941\pi\)
−0.713609 + 0.700544i \(0.752941\pi\)
\(434\) 0 0
\(435\) 12.7460 + 28.5008i 0.611122 + 1.36651i
\(436\) −4.56351 7.90423i −0.218552 0.378544i
\(437\) 2.68800 + 4.65576i 0.128585 + 0.222715i
\(438\) −26.4919 2.74009i −1.26583 0.130926i
\(439\) −5.47723 + 9.48683i −0.261414 + 0.452782i −0.966618 0.256223i \(-0.917522\pi\)
0.705204 + 0.709004i \(0.250855\pi\)
\(440\) 8.12602 0.387393
\(441\) 0 0
\(442\) −6.00000 −0.285391
\(443\) −12.1825 + 21.1006i −0.578806 + 1.00252i 0.416811 + 0.908993i \(0.363148\pi\)
−0.995617 + 0.0935281i \(0.970185\pi\)
\(444\) −9.89949 + 13.6730i −0.469809 + 0.648893i
\(445\) −7.18246 12.4404i −0.340481 0.589731i
\(446\) 5.74667 + 9.95352i 0.272113 + 0.471313i
\(447\) −0.258035 + 0.356394i −0.0122046 + 0.0168569i
\(448\) 0 0
\(449\) 9.00000 0.424736 0.212368 0.977190i \(-0.431882\pi\)
0.212368 + 0.977190i \(0.431882\pi\)
\(450\) −2.56351 0.536026i −0.120845 0.0252685i
\(451\) 22.6274 1.06548
\(452\) 1.93649 3.35410i 0.0910849 0.157764i
\(453\) −18.9515 1.96017i −0.890417 0.0920967i
\(454\) 3.04726 + 5.27801i 0.143015 + 0.247709i
\(455\) 0 0
\(456\) −0.563508 1.26004i −0.0263887 0.0590069i
\(457\) −16.9365 + 29.3349i −0.792256 + 1.37223i 0.132312 + 0.991208i \(0.457760\pi\)
−0.924567 + 0.381019i \(0.875573\pi\)
\(458\) 7.86799 0.367647
\(459\) −7.00000 2.23607i −0.326732 0.104371i
\(460\) 13.7045 0.638974
\(461\) 4.98895 8.64112i 0.232359 0.402457i −0.726143 0.687544i \(-0.758689\pi\)
0.958502 + 0.285087i \(0.0920224\pi\)
\(462\) 0 0
\(463\) −10.8095 18.7226i −0.502359 0.870111i −0.999996 0.00272598i \(-0.999132\pi\)
0.497637 0.867385i \(-0.334201\pi\)
\(464\) −4.43649 7.68423i −0.205959 0.356731i
\(465\) 19.1703 + 1.98280i 0.889001 + 0.0919502i
\(466\) −11.3730 + 19.6986i −0.526843 + 0.912519i
\(467\) 39.0591 1.80744 0.903720 0.428125i \(-0.140826\pi\)
0.903720 + 0.428125i \(0.140826\pi\)
\(468\) 3.97320 + 12.0919i 0.183661 + 0.558948i
\(469\) 0 0
\(470\) −7.00000 + 12.1244i −0.322886 + 0.559255i
\(471\) 6.55544 9.05427i 0.302059 0.417199i
\(472\) −1.32440 2.29393i −0.0609604 0.105587i
\(473\) −17.7460 30.7369i −0.815960 1.41328i
\(474\) 5.96550 8.23945i 0.274005 0.378451i
\(475\) −0.347849 + 0.602493i −0.0159604 + 0.0276443i
\(476\) 0 0
\(477\) 21.2379 23.7447i 0.972417 1.08719i
\(478\) −15.0000 −0.686084
\(479\) 9.01276 15.6106i 0.411803 0.713265i −0.583284 0.812269i \(-0.698232\pi\)
0.995087 + 0.0990041i \(0.0315657\pi\)
\(480\) −3.50000 0.362008i −0.159752 0.0165233i
\(481\) −20.6743 35.8090i −0.942668 1.63275i
\(482\) 0.886735 + 1.53587i 0.0403897 + 0.0699570i
\(483\) 0 0
\(484\) −2.50000 + 4.33013i −0.113636 + 0.196824i
\(485\) −36.2540 −1.64621
\(486\) 0.129018 + 15.5879i 0.00585235 + 0.707083i
\(487\) 30.4919 1.38172 0.690861 0.722988i \(-0.257232\pi\)
0.690861 + 0.722988i \(0.257232\pi\)
\(488\) −0.398461 + 0.690154i −0.0180375 + 0.0312418i
\(489\) 7.07107 + 15.8114i 0.319765 + 0.715016i
\(490\) 0 0
\(491\) 6.87298 + 11.9044i 0.310173 + 0.537236i 0.978400 0.206722i \(-0.0662796\pi\)
−0.668226 + 0.743958i \(0.732946\pi\)
\(492\) −9.74597 1.00803i −0.439382 0.0454457i
\(493\) −6.27415 + 10.8671i −0.282573 + 0.489431i
\(494\) 3.38105 0.152121
\(495\) −16.2520 + 18.1703i −0.730475 + 0.816696i
\(496\) −5.47723 −0.245935
\(497\) 0 0
\(498\) 8.43649 11.6523i 0.378048 0.522154i
\(499\) 7.12702 + 12.3444i 0.319049 + 0.552609i 0.980290 0.197564i \(-0.0633032\pi\)
−0.661241 + 0.750174i \(0.729970\pi\)
\(500\) 5.96550 + 10.3325i 0.266785 + 0.462086i
\(501\) −12.5635 + 17.3525i −0.561296 + 0.775253i
\(502\) −12.9468 + 22.4244i −0.577842 + 1.00085i
\(503\) 18.0255 0.803718 0.401859 0.915702i \(-0.368364\pi\)
0.401859 + 0.915702i \(0.368364\pi\)
\(504\) 0 0
\(505\) −15.9839 −0.711273
\(506\) −13.4919 + 23.3687i −0.599790 + 1.03887i
\(507\) −8.61430 0.890985i −0.382574 0.0395700i
\(508\) −7.37298 12.7704i −0.327123 0.566594i
\(509\) −16.8807 29.2383i −0.748226 1.29597i −0.948672 0.316261i \(-0.897573\pi\)
0.200446 0.979705i \(-0.435761\pi\)
\(510\) 2.03151 + 4.54259i 0.0899566 + 0.201149i
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) 3.94456 + 1.26004i 0.174157 + 0.0556323i
\(514\) 13.9625 0.615860
\(515\) 18.3095 31.7129i 0.806812 1.39744i
\(516\) 6.27415 + 14.0294i 0.276204 + 0.617611i
\(517\) −13.7829 23.8726i −0.606170 1.04992i
\(518\) 0 0
\(519\) −21.9284 2.26808i −0.962551 0.0995575i
\(520\) 4.30948 7.46423i 0.188983 0.327328i
\(521\) 1.41421 0.0619578 0.0309789 0.999520i \(-0.490138\pi\)
0.0309789 + 0.999520i \(0.490138\pi\)
\(522\) 26.0554 + 5.44816i 1.14042 + 0.238460i
\(523\) −31.0115 −1.35604 −0.678019 0.735045i \(-0.737161\pi\)
−0.678019 + 0.735045i \(0.737161\pi\)
\(524\) −3.93399 + 6.81388i −0.171857 + 0.297666i
\(525\) 0 0
\(526\) −2.80948 4.86615i −0.122499 0.212174i
\(527\) 3.87298 + 6.70820i 0.168710 + 0.292214i
\(528\) 4.06301 5.61177i 0.176820 0.244221i
\(529\) −11.2540 + 19.4926i −0.489306 + 0.847502i
\(530\) −21.5725 −0.937048
\(531\) 7.77817 + 1.62641i 0.337544 + 0.0705800i
\(532\) 0 0
\(533\) 12.0000 20.7846i 0.519778 0.900281i
\(534\) −12.1825 1.26004i −0.527187 0.0545274i
\(535\) −15.9940 27.7024i −0.691481 1.19768i
\(536\) −0.436492 0.756026i −0.0188536 0.0326553i
\(537\) 0.617292 + 1.38031i 0.0266381 + 0.0595647i
\(538\) −1.72286 + 2.98408i −0.0742778 + 0.128653i
\(539\) 0 0
\(540\) 7.80948 7.10222i 0.336066 0.305631i
\(541\) 16.1109 0.692661 0.346330 0.938113i \(-0.387428\pi\)
0.346330 + 0.938113i \(0.387428\pi\)
\(542\) −3.53553 + 6.12372i −0.151864 + 0.263036i
\(543\) −5.56351 12.4404i −0.238753 0.533868i
\(544\) −0.707107 1.22474i −0.0303170 0.0525105i
\(545\) −9.27079 16.0575i −0.397117 0.687827i
\(546\) 0 0
\(547\) −14.4919 + 25.1008i −0.619630 + 1.07323i 0.369923 + 0.929062i \(0.379384\pi\)
−0.989553 + 0.144169i \(0.953949\pi\)
\(548\) 15.4919 0.661783
\(549\) −0.746310 2.27129i −0.0318517 0.0969364i
\(550\) −3.49193 −0.148897
\(551\) 3.53553 6.12372i 0.150619 0.260879i
\(552\) 6.85224 9.46420i 0.291651 0.402823i
\(553\) 0 0
\(554\) 12.1825 + 21.1006i 0.517583 + 0.896480i
\(555\) −20.1109 + 27.7768i −0.853659 + 1.17906i
\(556\) 9.23159 15.9896i 0.391507 0.678109i
\(557\) 3.38105 0.143260 0.0716298 0.997431i \(-0.477180\pi\)
0.0716298 + 0.997431i \(0.477180\pi\)
\(558\) 10.9545 12.2474i 0.463739 0.518476i
\(559\) −37.6449 −1.59221
\(560\) 0 0
\(561\) −9.74597 1.00803i −0.411475 0.0425592i
\(562\) 3.37298 + 5.84218i 0.142281 + 0.246437i
\(563\) 2.60960 + 4.51995i 0.109981 + 0.190493i 0.915762 0.401720i \(-0.131588\pi\)
−0.805781 + 0.592213i \(0.798254\pi\)
\(564\) 4.87298 + 10.8963i 0.205190 + 0.458818i
\(565\) 3.93399 6.81388i 0.165504 0.286662i
\(566\) 10.5168 0.442054
\(567\) 0 0
\(568\) −2.12702 −0.0892476
\(569\) −3.74597 + 6.48820i −0.157039 + 0.272000i −0.933800 0.357796i \(-0.883528\pi\)
0.776761 + 0.629796i \(0.216862\pi\)
\(570\) −1.14477 2.55978i −0.0479492 0.107218i
\(571\) −0.254033 0.439999i −0.0106310 0.0184134i 0.860661 0.509178i \(-0.170051\pi\)
−0.871292 + 0.490765i \(0.836717\pi\)
\(572\) 8.48528 + 14.6969i 0.354787 + 0.614510i
\(573\) 23.9012 + 2.47212i 0.998487 + 0.103274i
\(574\) 0 0
\(575\) −5.88912 −0.245593
\(576\) −2.00000 + 2.23607i −0.0833333 + 0.0931695i
\(577\) 35.1757 1.46438 0.732192 0.681098i \(-0.238497\pi\)
0.732192 + 0.681098i \(0.238497\pi\)
\(578\) 7.50000 12.9904i 0.311959 0.540329i
\(579\) 16.3811 22.6253i 0.680774 0.940274i
\(580\) −9.01276 15.6106i −0.374234 0.648193i
\(581\) 0 0
\(582\) −18.1270 + 25.0367i −0.751389 + 1.03781i
\(583\) 21.2379 36.7851i 0.879584 1.52348i
\(584\) 15.3767 0.636293
\(585\) 8.07157 + 24.5647i 0.333719 + 1.01563i
\(586\) −6.27415 −0.259183
\(587\) 14.8884 25.7875i 0.614512 1.06437i −0.375958 0.926637i \(-0.622686\pi\)
0.990470 0.137729i \(-0.0439804\pi\)
\(588\) 0 0
\(589\) −2.18246 3.78013i −0.0899266 0.155757i
\(590\) −2.69052 4.66013i −0.110767 0.191854i
\(591\) −4.68030 10.4655i −0.192522 0.430492i
\(592\) 4.87298 8.44025i 0.200278 0.346892i
\(593\) 22.8070 0.936573 0.468287 0.883577i \(-0.344871\pi\)
0.468287 + 0.883577i \(0.344871\pi\)
\(594\) 4.42227 + 20.3087i 0.181448 + 0.833276i
\(595\) 0 0
\(596\) 0.127017 0.219999i 0.00520280 0.00901152i
\(597\) −14.6190 32.6890i −0.598314 1.33787i
\(598\) 14.3104 + 24.7863i 0.585194 + 1.01359i
\(599\) −0.618950 1.07205i −0.0252896 0.0438029i 0.853104 0.521742i \(-0.174717\pi\)
−0.878393 + 0.477939i \(0.841384\pi\)
\(600\) 1.50403 + 0.155563i 0.0614017 + 0.00635083i
\(601\) 18.8224 32.6014i 0.767783 1.32984i −0.170979 0.985275i \(-0.554693\pi\)
0.938762 0.344565i \(-0.111974\pi\)
\(602\) 0 0
\(603\) 2.56351 + 0.536026i 0.104394 + 0.0218287i
\(604\) 11.0000 0.447584
\(605\) −5.07877 + 8.79668i −0.206481 + 0.357636i
\(606\) −7.99193 + 11.0383i −0.324650 + 0.448402i
\(607\) −7.86799 13.6278i −0.319352 0.553134i 0.661001 0.750385i \(-0.270132\pi\)
−0.980353 + 0.197251i \(0.936799\pi\)
\(608\) 0.398461 + 0.690154i 0.0161597 + 0.0279894i
\(609\) 0 0
\(610\) −0.809475 + 1.40205i −0.0327747 + 0.0567674i
\(611\) −29.2379 −1.18284
\(612\) 4.15283 + 0.868351i 0.167868 + 0.0351010i
\(613\) 3.38105 0.136559 0.0682797 0.997666i \(-0.478249\pi\)
0.0682797 + 0.997666i \(0.478249\pi\)
\(614\) 12.0600 20.8886i 0.486703 0.842994i
\(615\) −19.7990 2.04783i −0.798372 0.0825764i
\(616\) 0 0
\(617\) 13.8730 + 24.0287i 0.558505 + 0.967360i 0.997622 + 0.0689293i \(0.0219583\pi\)
−0.439116 + 0.898430i \(0.644708\pi\)
\(618\) −12.7460 28.5008i −0.512718 1.14647i
\(619\) −11.1733 + 19.3527i −0.449092 + 0.777850i −0.998327 0.0578175i \(-0.981586\pi\)
0.549235 + 0.835668i \(0.314919\pi\)
\(620\) −11.1270 −0.446872
\(621\) 7.45812 + 34.2505i 0.299284 + 1.37442i
\(622\) −1.41421 −0.0567048
\(623\) 0 0
\(624\) −3.00000 6.70820i −0.120096 0.268543i
\(625\) 9.93649 + 17.2105i 0.397460 + 0.688420i
\(626\) −13.3452 23.1146i −0.533382 0.923845i
\(627\) 5.49193 + 0.568036i 0.219327 + 0.0226852i
\(628\) −3.22689 + 5.58913i −0.128767 + 0.223031i
\(629\) −13.7829 −0.549559
\(630\) 0 0
\(631\) −27.6190 −1.09949 −0.549747 0.835332i \(-0.685276\pi\)
−0.549747 + 0.835332i \(0.685276\pi\)
\(632\) −2.93649 + 5.08615i −0.116807 + 0.202316i
\(633\) −2.66021 + 3.67423i −0.105734 + 0.146038i
\(634\) −0.690525 1.19602i −0.0274243 0.0475002i
\(635\) −14.9783 25.9431i −0.594394 1.02952i
\(636\) −10.7862 + 14.8978i −0.427702 + 0.590735i
\(637\) 0 0
\(638\) 35.4919 1.40514
\(639\) 4.25403 4.75615i 0.168287 0.188151i
\(640\) 2.03151 0.0803023
\(641\) 18.5554 32.1390i 0.732896 1.26941i −0.222744 0.974877i \(-0.571502\pi\)
0.955640 0.294536i \(-0.0951651\pi\)
\(642\) −27.1281 2.80588i −1.07066 0.110739i
\(643\) 20.1468 + 34.8953i 0.794514 + 1.37614i 0.923147 + 0.384446i \(0.125608\pi\)
−0.128634 + 0.991692i \(0.541059\pi\)
\(644\) 0 0
\(645\) 12.7460 + 28.5008i 0.501872 + 1.12222i
\(646\) 0.563508 0.976025i 0.0221709 0.0384012i
\(647\) 5.47723 0.215332 0.107666 0.994187i \(-0.465662\pi\)
0.107666 + 0.994187i \(0.465662\pi\)
\(648\) −1.00000 8.94427i −0.0392837 0.351364i
\(649\) 10.5952 0.415898
\(650\) −1.85188 + 3.20755i −0.0726366 + 0.125810i
\(651\) 0 0
\(652\) −5.00000 8.66025i −0.195815 0.339162i
\(653\) 22.7460 + 39.3972i 0.890118 + 1.54173i 0.839732 + 0.543001i \(0.182712\pi\)
0.0503861 + 0.998730i \(0.483955\pi\)
\(654\) −15.7246 1.62641i −0.614879 0.0635975i
\(655\) −7.99193 + 13.8424i −0.312271 + 0.540869i
\(656\) 5.65685 0.220863
\(657\) −30.7534 + 34.3834i −1.19981 + 1.34142i
\(658\) 0 0
\(659\) −18.4365 + 31.9329i −0.718184 + 1.24393i 0.243535 + 0.969892i \(0.421693\pi\)
−0.961719 + 0.274039i \(0.911640\pi\)
\(660\) 8.25403 11.4003i 0.321288 0.443758i
\(661\) −12.4977 21.6466i −0.486104 0.841956i 0.513769 0.857929i \(-0.328249\pi\)
−0.999872 + 0.0159726i \(0.994916\pi\)
\(662\) 9.18246 + 15.9045i 0.356886 + 0.618145i
\(663\) −6.09452 + 8.41765i −0.236691 + 0.326914i
\(664\) −4.15283 + 7.19291i −0.161161 + 0.279139i
\(665\) 0 0
\(666\) 9.12702 + 27.7768i 0.353665 + 1.07633i
\(667\) 59.8569 2.31767
\(668\) 6.18433 10.7116i 0.239279 0.414443i
\(669\) 19.8014 + 2.04808i 0.765567 + 0.0791833i
\(670\) −0.886735 1.53587i −0.0342576 0.0593359i
\(671\) −1.59384 2.76062i −0.0615296 0.106572i
\(672\) 0 0
\(673\) 16.1190 27.9188i 0.621340 1.07619i −0.367897 0.929867i \(-0.619922\pi\)
0.989236 0.146326i \(-0.0467447\pi\)
\(674\) 0.254033 0.00978500
\(675\) −3.35591 + 3.05198i −0.129169 + 0.117471i
\(676\) 5.00000 0.192308
\(677\) −6.36396 + 11.0227i −0.244587 + 0.423637i −0.962015 0.272995i \(-0.911986\pi\)
0.717428 + 0.696632i \(0.245319\pi\)
\(678\) −2.73861 6.12372i −0.105176 0.235180i
\(679\) 0 0
\(680\) −1.43649 2.48808i −0.0550869 0.0954134i
\(681\) 10.5000 + 1.08602i 0.402361 + 0.0416166i
\(682\) 10.9545 18.9737i 0.419468 0.726539i
\(683\) −7.74597 −0.296391 −0.148196 0.988958i \(-0.547347\pi\)
−0.148196 + 0.988958i \(0.547347\pi\)
\(684\) −2.34015 0.489323i −0.0894780 0.0187097i
\(685\) 31.4720 1.20248
\(686\) 0 0
\(687\) 7.99193 11.0383i 0.304911 0.421139i
\(688\) −4.43649 7.68423i −0.169140 0.292958i
\(689\) −22.5262 39.0165i −0.858180 1.48641i
\(690\) 13.9204 19.2266i 0.529939 0.731943i
\(691\) 10.6458 18.4391i 0.404986 0.701455i −0.589334 0.807889i \(-0.700610\pi\)
0.994320 + 0.106434i \(0.0339432\pi\)
\(692\) 12.7279 0.483843
\(693\) 0 0
\(694\) −7.74597 −0.294033
\(695\) 18.7540 32.4829i 0.711381 1.23215i
\(696\) −15.2869 1.58114i −0.579449 0.0599329i
\(697\) −4.00000 6.92820i −0.151511 0.262424i
\(698\) −8.21584 14.2302i −0.310974 0.538623i
\(699\) 16.0838 + 35.9645i 0.608346 + 1.36030i
\(700\) 0 0
\(701\) −31.7460 −1.19903 −0.599514 0.800364i \(-0.704640\pi\)
−0.599514 + 0.800364i \(0.704640\pi\)
\(702\) 21.0000 + 6.70820i 0.792594 + 0.253185i
\(703\) 7.76677 0.292929
\(704\) −2.00000 + 3.46410i −0.0753778 + 0.130558i
\(705\) 9.89949 + 22.1359i 0.372837 + 0.833688i
\(706\) 9.01276 + 15.6106i 0.339200 + 0.587511i
\(707\) 0 0
\(708\) −4.56351 0.472008i −0.171507 0.0177391i
\(709\) −12.3649 + 21.4167i −0.464374 + 0.804320i −0.999173 0.0406597i \(-0.987054\pi\)
0.534799 + 0.844979i \(0.320387\pi\)
\(710\) −4.32105 −0.162166
\(711\) −5.50000 16.7385i −0.206266 0.627743i
\(712\) 7.07107 0.264999
\(713\) 18.4746 31.9989i 0.691879 1.19837i
\(714\) 0 0
\(715\) 17.2379 + 29.8569i 0.644661 + 1.11659i
\(716\) −0.436492 0.756026i −0.0163125 0.0282540i
\(717\) −15.2363 + 21.0441i −0.569010 + 0.785907i
\(718\) 14.1190 24.4547i 0.526915 0.912643i
\(719\) 9.36061 0.349092 0.174546 0.984649i \(-0.444154\pi\)
0.174546 + 0.984649i \(0.444154\pi\)
\(720\) −4.06301 + 4.54259i −0.151420 + 0.169292i
\(721\) 0 0
\(722\) 9.18246 15.9045i 0.341736 0.591904i
\(723\) 3.05544 + 0.316027i 0.113633 + 0.0117532i
\(724\) 3.93399 + 6.81388i 0.146206 + 0.253236i
\(725\) 3.87298 + 6.70820i 0.143839 + 0.249136i
\(726\) 3.53553 + 7.90569i 0.131216 + 0.293408i
\(727\) −18.1153 + 31.3767i −0.671861 + 1.16370i 0.305515 + 0.952187i \(0.401171\pi\)
−0.977376 + 0.211509i \(0.932162\pi\)
\(728\) 0 0
\(729\) 22.0000 + 15.6525i 0.814815 + 0.579721i
\(730\) 31.2379 1.15617
\(731\) −6.27415 + 10.8671i −0.232058 + 0.401936i
\(732\) 0.563508 + 1.26004i 0.0208279 + 0.0465725i
\(733\) 4.82073 + 8.34975i 0.178058 + 0.308405i 0.941215 0.337808i \(-0.109685\pi\)
−0.763157 + 0.646213i \(0.776352\pi\)
\(734\) 2.03151 + 3.51867i 0.0749843 + 0.129877i
\(735\) 0 0
\(736\) −3.37298 + 5.84218i −0.124330 + 0.215346i
\(737\) 3.49193 0.128627
\(738\) −11.3137 + 12.6491i −0.416463 + 0.465620i
\(739\) −30.0000 −1.10357 −0.551784 0.833987i \(-0.686053\pi\)
−0.551784 + 0.833987i \(0.686053\pi\)
\(740\) 9.89949 17.1464i 0.363913 0.630315i
\(741\) 3.43431 4.74342i 0.126163 0.174254i
\(742\) 0 0
\(743\) 13.8730 + 24.0287i 0.508950 + 0.881528i 0.999946 + 0.0103660i \(0.00329968\pi\)
−0.490996 + 0.871162i \(0.663367\pi\)
\(744\) −5.56351 + 7.68423i −0.203968 + 0.281718i
\(745\) 0.258035 0.446930i 0.00945367 0.0163742i
\(746\) −8.87298 −0.324863
\(747\) −7.77817 23.6718i −0.284589 0.866106i
\(748\) 5.65685 0.206835
\(749\) 0 0
\(750\) 20.5554 + 2.12607i 0.750579 + 0.0776330i
\(751\) 6.50000 + 11.2583i 0.237188 + 0.410822i 0.959906 0.280321i \(-0.0904408\pi\)
−0.722718 + 0.691143i \(0.757107\pi\)
\(752\) −3.44572 5.96816i −0.125652 0.217636i
\(753\) 18.3095 + 40.9412i 0.667234 + 1.49198i
\(754\) 18.8224 32.6014i 0.685473 1.18727i
\(755\) 22.3466 0.813275
\(756\) 0 0
\(757\) −15.2379 −0.553831 −0.276915 0.960894i \(-0.589312\pi\)
−0.276915 + 0.960894i \(0.589312\pi\)
\(758\) 6.18246 10.7083i 0.224557 0.388944i
\(759\) 19.0805 + 42.6652i 0.692577 + 1.54865i
\(760\) 0.809475 + 1.40205i 0.0293627 + 0.0508578i
\(761\) −1.14477 1.98280i −0.0414979 0.0718765i 0.844530 0.535508i \(-0.179880\pi\)
−0.886028 + 0.463631i \(0.846546\pi\)
\(762\) −25.4052 2.62769i −0.920334 0.0951910i
\(763\) 0 0
\(764\) −13.8730 −0.501907
\(765\) 8.43649 + 1.76406i 0.305022 + 0.0637797i
\(766\) −23.8620 −0.862169
\(767\) 5.61895 9.73231i 0.202889 0.351413i
\(768\) 1.01575 1.40294i 0.0366528 0.0506243i
\(769\) −4.85993 8.41765i −0.175254 0.303548i 0.764995 0.644036i \(-0.222741\pi\)
−0.940249 + 0.340488i \(0.889408\pi\)
\(770\) 0 0
\(771\) 14.1825 19.5886i 0.510769 0.705466i
\(772\) −8.06351 + 13.9664i −0.290212 + 0.502662i
\(773\) 3.44572 0.123934 0.0619670 0.998078i \(-0.480263\pi\)
0.0619670 + 0.998078i \(0.480263\pi\)
\(774\) 26.0554 + 5.44816i 0.936544 + 0.195830i
\(775\) 4.78153 0.171758
\(776\) 8.92295 15.4550i 0.320315 0.554802i
\(777\) 0 0
\(778\) −10.4365 18.0765i −0.374166 0.648075i
\(779\) 2.25403 + 3.90410i 0.0807591 + 0.139879i
\(780\) −6.09452 13.6278i −0.218219 0.487952i
\(781\) 4.25403 7.36820i 0.152221 0.263655i
\(782\) 9.54024 0.341158
\(783\) 34.1093 31.0203i 1.21897 1.10857i
\(784\) 0 0
\(785\) −6.55544 + 11.3544i −0.233974 + 0.405254i
\(786\) 5.56351 + 12.4404i 0.198444 + 0.443734i
\(787\) 4.77012 + 8.26209i 0.170036 + 0.294512i 0.938432 0.345463i \(-0.112278\pi\)
−0.768396 + 0.639975i \(0.778945\pi\)
\(788\) 3.30948 + 5.73218i 0.117895 + 0.204200i
\(789\) −9.68066 1.00128i −0.344641 0.0356465i
\(790\) −5.96550 + 10.3325i −0.212243 + 0.367616i
\(791\) 0 0
\(792\) −3.74597 11.4003i −0.133107 0.405093i
\(793\) −3.38105 −0.120065
\(794\) −3.53553 + 6.12372i −0.125471 + 0.217323i
\(795\) −21.9123 + 30.2649i −0.777149 + 1.07339i
\(796\) 10.3372 + 17.9045i 0.366391 + 0.634608i
\(797\) 13.0366 + 22.5800i 0.461779 + 0.799825i 0.999050 0.0435852i \(-0.0138780\pi\)
−0.537271 + 0.843410i \(0.680545\pi\)
\(798\) 0 0
\(799\) −4.87298 + 8.44025i −0.172394 + 0.298595i
\(800\) −0.872983 −0.0308646
\(801\) −14.1421 + 15.8114i −0.499688 + 0.558668i
\(802\) 3.87298 0.136760
\(803\) −30.7534 + 53.2665i −1.08527 + 1.87973i
\(804\) −1.50403 0.155563i −0.0530430 0.00548628i
\(805\) 0 0
\(806\) −11.6190 20.1246i −0.409260 0.708859i
\(807\) 2.43649 + 5.44816i 0.0857686 + 0.191784i
\(808\) 3.93399 6.81388i 0.138397 0.239711i
\(809\) −30.7298 −1.08040 −0.540202 0.841536i \(-0.681652\pi\)
−0.540202 + 0.841536i \(0.681652\pi\)
\(810\) −2.03151 18.1703i −0.0713798 0.638441i
\(811\) −13.9625 −0.490290 −0.245145 0.969486i \(-0.578836\pi\)
−0.245145 + 0.969486i \(0.578836\pi\)
\(812\) 0 0
\(813\) 5.00000 + 11.1803i 0.175358 + 0.392112i
\(814\) 19.4919 + 33.7610i 0.683192 + 1.18332i
\(815\) −10.1575 17.5934i −0.355803 0.616268i
\(816\) −2.43649 0.252009i −0.0852943 0.00882207i
\(817\) 3.53553 6.12372i 0.123693 0.214242i
\(818\) −31.6288 −1.10587
\(819\) 0 0
\(820\) 11.4919 0.401316
\(821\) −10.7460 + 18.6126i −0.375037 + 0.649583i −0.990333 0.138714i \(-0.955703\pi\)
0.615296 + 0.788296i \(0.289037\pi\)
\(822\) 15.7360 21.7343i 0.548855 0.758070i
\(823\) 10.8730 + 18.8326i 0.379008 + 0.656462i 0.990918 0.134466i \(-0.0429318\pi\)
−0.611910 + 0.790928i \(0.709598\pi\)
\(824\) 9.01276 + 15.6106i 0.313974 + 0.543820i
\(825\) −3.54694 + 4.89898i −0.123489 + 0.170561i
\(826\) 0 0
\(827\) 41.1270 1.43013 0.715063 0.699060i \(-0.246398\pi\)
0.715063 + 0.699060i \(0.246398\pi\)
\(828\) −6.31754 19.2266i −0.219550 0.668170i
\(829\) −54.4358 −1.89063 −0.945317 0.326153i \(-0.894248\pi\)
−0.945317 + 0.326153i \(0.894248\pi\)
\(830\) −8.43649 + 14.6124i −0.292835 + 0.507205i
\(831\) 41.9773 + 4.34175i 1.45618 + 0.150614i
\(832\) 2.12132 + 3.67423i 0.0735436 + 0.127381i
\(833\) 0 0
\(834\) −13.0554 29.1929i −0.452073 1.01087i
\(835\) 12.5635 21.7606i 0.434778 0.753058i
\(836\) −3.18768 −0.110248
\(837\) −6.05544 27.8088i −0.209307 0.961214i
\(838\) −3.98461 −0.137646
\(839\) 19.9672 34.5842i 0.689345 1.19398i −0.282706 0.959207i \(-0.591232\pi\)
0.972050 0.234773i \(-0.0754348\pi\)
\(840\) 0 0
\(841\) −24.8649 43.0673i −0.857411 1.48508i
\(842\) 2.56351 + 4.44013i 0.0883443 + 0.153017i
\(843\) 11.6224 + 1.20211i 0.400295 + 0.0414029i
\(844\) 1.30948 2.26808i 0.0450740 0.0780704i
\(845\) 10.1575 0.349430
\(846\) 20.2367 + 4.23146i 0.695750 + 0.145481i
\(847\) 0 0
\(848\) 5.30948 9.19628i 0.182328 0.315802i
\(849\) 10.6825 14.7544i 0.366621 0.506371i
\(850\) 0.617292 + 1.06918i 0.0211730 + 0.0366726i
\(851\) 32.8730 + 56.9377i 1.12687 + 1.95180i
\(852\) −2.16052 + 2.98408i −0.0740183 + 0.102233i
\(853\) 22.7564 39.4153i 0.779165 1.34955i −0.153258 0.988186i \(-0.548976\pi\)
0.932423 0.361368i \(-0.117690\pi\)
\(854\) 0 0
\(855\) −4.75403 0.994063i −0.162585 0.0339962i
\(856\) 15.7460 0.538186
\(857\) −23.8620 + 41.3302i −0.815110 + 1.41181i 0.0941381 + 0.995559i \(0.469990\pi\)
−0.909249 + 0.416254i \(0.863343\pi\)
\(858\) 29.2379 + 3.02410i 0.998165 + 0.103241i
\(859\) 1.14477 + 1.98280i 0.0390591 + 0.0676523i 0.884894 0.465792i \(-0.154231\pi\)
−0.845835 + 0.533445i \(0.820897\pi\)
\(860\) −9.01276 15.6106i −0.307333 0.532316i
\(861\) 0 0
\(862\) −4.74597 + 8.22026i −0.161648 + 0.279983i
\(863\) −36.1270 −1.22978 −0.614889 0.788614i \(-0.710799\pi\)
−0.614889 + 0.788614i \(0.710799\pi\)
\(864\) 1.10557 + 5.07718i 0.0376122 + 0.172729i
\(865\) 25.8569 0.879159
\(866\) 14.8492 25.7196i 0.504598 0.873989i
\(867\) −10.6066 23.7171i −0.360219 0.805474i
\(868\) 0 0
\(869\) −11.7460 20.3446i −0.398455 0.690144i
\(870\) −31.0554 3.21209i −1.05288 0.108900i
\(871\) 1.85188 3.20755i 0.0627485 0.108684i
\(872\) 9.12702 0.309080
\(873\) 16.7125 + 50.8623i 0.565633 + 1.72143i
\(874\) −5.37600 −0.181846
\(875\) 0 0
\(876\) 15.6190 21.5726i 0.527715 0.728872i
\(877\) −19.4365 33.6650i −0.656324 1.13679i −0.981560 0.191153i \(-0.938777\pi\)
0.325237 0.945633i \(-0.394556\pi\)
\(878\) −5.47723 9.48683i −0.184847 0.320165i
\(879\) −6.37298 + 8.80226i −0.214955 + 0.296893i
\(880\) −4.06301 + 7.03734i −0.136964 + 0.237229i
\(881\) 15.7360 0.530159 0.265079 0.964227i \(-0.414602\pi\)
0.265079 + 0.964227i \(0.414602\pi\)
\(882\) 0 0
\(883\) 4.50807 0.151709 0.0758543 0.997119i \(-0.475832\pi\)
0.0758543 + 0.997119i \(0.475832\pi\)
\(884\) 3.00000 5.19615i 0.100901 0.174766i
\(885\) −9.27079 0.958887i −0.311634 0.0322326i
\(886\) −12.1825 21.1006i −0.409278 0.708890i
\(887\) 18.0255 + 31.2211i 0.605238 + 1.04830i 0.992014 + 0.126129i \(0.0402553\pi\)
−0.386776 + 0.922174i \(0.626411\pi\)
\(888\) −6.89144 15.4097i −0.231262 0.517117i
\(889\) 0 0
\(890\) 14.3649 0.481513
\(891\) 32.9839 + 14.4244i 1.10500 + 0.483237i
\(892\) −11.4933 −0.384825
\(893\) 2.74597 4.75615i 0.0918903 0.159159i
\(894\) −0.179629 0.401662i −0.00600768 0.0134336i
\(895\) −0.886735 1.53587i −0.0296403 0.0513385i
\(896\) 0 0
\(897\) 49.3095 + 5.10012i 1.64640 + 0.170288i
\(898\) −4.50000 + 7.79423i −0.150167 + 0.260097i
\(899\) −48.5993 −1.62088
\(900\) 1.74597 1.95205i 0.0581989 0.0650683i
\(901\) −15.0175 −0.500304
\(902\) −11.3137 + 19.5959i −0.376705 + 0.652473i
\(903\) 0 0
\(904\) 1.93649 + 3.35410i 0.0644068 + 0.111556i
\(905\) 7.99193 + 13.8424i 0.265661 + 0.460138i
\(906\) 11.1733 15.4324i 0.371207 0.512706i
\(907\) 2.30948 4.00013i 0.0766849 0.132822i −0.825133 0.564939i \(-0.808900\pi\)
0.901818 + 0.432117i \(0.142233\pi\)
\(908\) −6.09452 −0.202254
\(909\) 7.36831 + 22.4244i 0.244391 + 0.743772i
\(910\) 0 0
\(911\) 11.6270 20.1386i 0.385220 0.667221i −0.606579 0.795023i \(-0.707459\pi\)
0.991800 + 0.127802i \(0.0407921\pi\)
\(912\) 1.37298 + 0.142009i 0.0454640 + 0.00470239i
\(913\) −16.6113 28.7716i −0.549754 0.952202i
\(914\) −16.9365 29.3349i −0.560209 0.970311i
\(915\) 1.14477 + 2.55978i 0.0378449 + 0.0846239i
\(916\) −3.93399 + 6.81388i −0.129983 + 0.225137i
\(917\) 0 0
\(918\) 5.43649 4.94414i 0.179431 0.163181i
\(919\) −39.3649 −1.29853 −0.649264 0.760563i \(-0.724923\pi\)
−0.649264 + 0.760563i \(0.724923\pi\)
\(920\) −6.85224 + 11.8684i −0.225912 + 0.391290i
\(921\) −17.0554 38.1371i −0.561996 1.25666i
\(922\) 4.98895 + 8.64112i 0.164302 + 0.284580i
\(923\) −4.51208 7.81516i −0.148517 0.257239i
\(924\) 0 0
\(925\) −4.25403 + 7.36820i −0.139872 + 0.242265i
\(926\) 21.6190 0.710443
\(927\) −52.9318 11.0680i −1.73851 0.363520i
\(928\) 8.87298 0.291270
\(929\) 5.30900 9.19547i 0.174183 0.301693i −0.765695 0.643203i \(-0.777605\pi\)
0.939878 + 0.341510i \(0.110938\pi\)
\(930\) −11.3023 + 15.6106i −0.370617 + 0.511890i
\(931\) 0 0
\(932\) −11.3730 19.6986i −0.372534 0.645249i
\(933\) −1.43649 + 1.98406i −0.0470286 + 0.0649552i
\(934\) −19.5295 + 33.8262i −0.639026 + 1.10683i
\(935\) 11.4919 0.375826
\(936\) −12.4585 2.60505i −0.407218 0.0851488i
\(937\) 42.4036 1.38526 0.692632 0.721291i \(-0.256451\pi\)
0.692632 + 0.721291i \(0.256451\pi\)
\(938\) 0 0
\(939\) −45.9839 4.75615i −1.50063 0.155211i
\(940\) −7.00000 12.1244i −0.228315 0.395453i
\(941\) 0.836124 + 1.44821i 0.0272569 + 0.0472103i 0.879332 0.476209i \(-0.157989\pi\)
−0.852075 + 0.523419i \(0.824656\pi\)
\(942\) 4.56351 + 10.2043i 0.148687 + 0.332475i
\(943\) −19.0805 + 33.0484i −0.621346 + 1.07620i
\(944\) 2.64880 0.0862110
\(945\) 0 0
\(946\) 35.4919 1.15394
\(947\) −13.8014 + 23.9047i −0.448486 + 0.776800i −0.998288 0.0584952i \(-0.981370\pi\)
0.549802 + 0.835295i \(0.314703\pi\)
\(948\) 4.15283 + 9.28600i 0.134878 + 0.301595i
\(949\) 32.6190 + 56.4977i 1.05886 + 1.83399i
\(950\) −0.347849 0.602493i −0.0112857 0.0195475i
\(951\) −2.37936 0.246099i −0.0771559 0.00798030i
\(952\) 0 0
\(953\) −28.5081 −0.923467 −0.461733 0.887019i \(-0.652772\pi\)
−0.461733 + 0.887019i \(0.652772\pi\)
\(954\) 9.94456 + 30.2649i 0.321967 + 0.979863i
\(955\) −28.1830 −0.911982
\(956\) 7.50000 12.9904i 0.242567 0.420139i
\(957\) 36.0510 49.7931i 1.16536 1.60958i
\(958\) 9.01276 + 15.6106i 0.291189 + 0.504354i
\(959\) 0 0
\(960\) 2.06351 2.85008i 0.0665994 0.0919861i
\(961\) 0.500000 0.866025i 0.0161290 0.0279363i
\(962\) 41.3486 1.33313
\(963\) −31.4919 + 35.2091i −1.01481 + 1.13460i
\(964\) −1.77347 −0.0571197
\(965\) −16.3811 + 28.3728i −0.527325 + 0.913354i
\(966\) 0 0
\(967\) −14.7540 25.5547i −0.474458 0.821785i 0.525114 0.851032i \(-0.324022\pi\)
−0.999572 + 0.0292467i \(0.990689\pi\)
\(968\) −2.50000 4.33013i −0.0803530 0.139176i
\(969\) −0.796921 1.78197i −0.0256008 0.0572451i
\(970\) 18.1270 31.3969i 0.582023 1.00809i
\(971\) −36.8480 −1.18251 −0.591254 0.806486i \(-0.701367\pi\)
−0.591254 + 0.806486i \(0.701367\pi\)
\(972\) −13.5640 7.68223i −0.435067 0.246408i
\(973\) 0 0
\(974\) −15.2460 + 26.4068i −0.488512 + 0.846128i
\(975\) 2.61895 + 5.85615i 0.0838735 + 0.187547i
\(976\) −0.398461 0.690154i −0.0127544 0.0220913i
\(977\) −7.25403 12.5644i −0.232077 0.401969i 0.726342 0.687333i \(-0.241219\pi\)
−0.958419 + 0.285364i \(0.907885\pi\)
\(978\) −17.2286 1.78197i −0.550910 0.0569811i
\(979\) −14.1421 + 24.4949i −0.451985 + 0.782860i
\(980\) 0 0
\(981\) −18.2540 + 20.4086i −0.582806 + 0.651597i
\(982\) −13.7460 −0.438651
\(983\) 4.94975 8.57321i 0.157872 0.273443i −0.776229 0.630451i \(-0.782870\pi\)
0.934101 + 0.357008i \(0.116203\pi\)
\(984\) 5.74597 7.93624i 0.183175 0.252998i
\(985\) 6.72322 + 11.6450i 0.214220 + 0.371039i
\(986\) −6.27415 10.8671i −0.199810 0.346080i
\(987\) 0 0
\(988\) −1.69052 + 2.92808i −0.0537828 + 0.0931545i
\(989\) 59.8569 1.90334
\(990\) −7.60995 23.1599i −0.241860 0.736069i
\(991\) 3.74597 0.118995 0.0594973 0.998228i \(-0.481050\pi\)
0.0594973 + 0.998228i \(0.481050\pi\)
\(992\) 2.73861 4.74342i 0.0869510 0.150604i
\(993\) 31.6402 + 3.27257i 1.00407 + 0.103852i
\(994\) 0 0
\(995\) 21.0000 + 36.3731i 0.665745 + 1.15310i
\(996\) 5.87298 + 13.1324i 0.186093 + 0.416116i
\(997\) −0.129018 + 0.223465i −0.00408603 + 0.00707721i −0.868061 0.496457i \(-0.834634\pi\)
0.863975 + 0.503534i \(0.167967\pi\)
\(998\) −14.2540 −0.451204
\(999\) 48.2401 + 15.4097i 1.52625 + 0.487542i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.2.f.p.295.4 yes 8
3.2 odd 2 2646.2.f.s.883.3 8
7.2 even 3 882.2.e.t.655.1 8
7.3 odd 6 882.2.h.r.79.2 8
7.4 even 3 882.2.h.r.79.3 8
7.5 odd 6 882.2.e.t.655.4 8
7.6 odd 2 inner 882.2.f.p.295.1 8
9.2 odd 6 7938.2.a.cd.1.2 4
9.4 even 3 inner 882.2.f.p.589.3 yes 8
9.5 odd 6 2646.2.f.s.1765.3 8
9.7 even 3 7938.2.a.cu.1.3 4
21.2 odd 6 2646.2.e.r.2125.3 8
21.5 even 6 2646.2.e.r.2125.2 8
21.11 odd 6 2646.2.h.s.667.2 8
21.17 even 6 2646.2.h.s.667.3 8
21.20 even 2 2646.2.f.s.883.2 8
63.4 even 3 882.2.e.t.373.1 8
63.5 even 6 2646.2.h.s.361.3 8
63.13 odd 6 inner 882.2.f.p.589.2 yes 8
63.20 even 6 7938.2.a.cd.1.3 4
63.23 odd 6 2646.2.h.s.361.2 8
63.31 odd 6 882.2.e.t.373.4 8
63.32 odd 6 2646.2.e.r.1549.3 8
63.34 odd 6 7938.2.a.cu.1.2 4
63.40 odd 6 882.2.h.r.67.2 8
63.41 even 6 2646.2.f.s.1765.2 8
63.58 even 3 882.2.h.r.67.3 8
63.59 even 6 2646.2.e.r.1549.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
882.2.e.t.373.1 8 63.4 even 3
882.2.e.t.373.4 8 63.31 odd 6
882.2.e.t.655.1 8 7.2 even 3
882.2.e.t.655.4 8 7.5 odd 6
882.2.f.p.295.1 8 7.6 odd 2 inner
882.2.f.p.295.4 yes 8 1.1 even 1 trivial
882.2.f.p.589.2 yes 8 63.13 odd 6 inner
882.2.f.p.589.3 yes 8 9.4 even 3 inner
882.2.h.r.67.2 8 63.40 odd 6
882.2.h.r.67.3 8 63.58 even 3
882.2.h.r.79.2 8 7.3 odd 6
882.2.h.r.79.3 8 7.4 even 3
2646.2.e.r.1549.2 8 63.59 even 6
2646.2.e.r.1549.3 8 63.32 odd 6
2646.2.e.r.2125.2 8 21.5 even 6
2646.2.e.r.2125.3 8 21.2 odd 6
2646.2.f.s.883.2 8 21.20 even 2
2646.2.f.s.883.3 8 3.2 odd 2
2646.2.f.s.1765.2 8 63.41 even 6
2646.2.f.s.1765.3 8 9.5 odd 6
2646.2.h.s.361.2 8 63.23 odd 6
2646.2.h.s.361.3 8 63.5 even 6
2646.2.h.s.667.2 8 21.11 odd 6
2646.2.h.s.667.3 8 21.17 even 6
7938.2.a.cd.1.2 4 9.2 odd 6
7938.2.a.cd.1.3 4 63.20 even 6
7938.2.a.cu.1.2 4 63.34 odd 6
7938.2.a.cu.1.3 4 9.7 even 3