Properties

Label 880.6.a.u
Level $880$
Weight $6$
Character orbit 880.a
Self dual yes
Analytic conductor $141.138$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [880,6,Mod(1,880)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("880.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(880, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 880.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,-150,0,66] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(141.137761435\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 149x^{4} + 297x^{3} + 4052x^{2} - 6522x - 20692 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{9} \)
Twist minimal: no (minimal twist has level 55)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{3} - 25 q^{5} + (\beta_{3} + \beta_{2} - \beta_1 + 11) q^{7} + (3 \beta_{5} + \beta_{4} - 2 \beta_{3} + \cdots + 140) q^{9} - 121 q^{11} + ( - 4 \beta_{5} - 6 \beta_{4} + \cdots - 165) q^{13}+ \cdots + ( - 363 \beta_{5} - 121 \beta_{4} + \cdots - 16940) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 150 q^{5} + 66 q^{7} + 832 q^{9} - 726 q^{11} - 972 q^{13} + 712 q^{17} - 610 q^{19} + 2508 q^{21} - 7100 q^{23} + 3750 q^{25} + 2520 q^{27} + 10964 q^{29} - 8868 q^{31} - 1650 q^{35} - 15506 q^{37}+ \cdots - 100672 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 3x^{5} - 149x^{4} + 297x^{3} + 4052x^{2} - 6522x - 20692 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -5\nu^{5} - 16\nu^{4} + 789\nu^{3} + 2250\nu^{2} - 17938\nu - 13100 ) / 312 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{5} + 8\nu^{4} - 153\nu^{3} - 1218\nu^{2} + 3242\nu + 17668 ) / 312 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 5\nu^{5} - 701\nu^{3} - 626\nu^{2} + 13266\nu + 5684 ) / 104 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -11\nu^{5} + 1563\nu^{3} + 2022\nu^{2} - 29518\nu - 46908 ) / 312 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 13\nu^{5} + 8\nu^{4} - 1773\nu^{3} - 3282\nu^{2} + 26594\nu + 59140 ) / 312 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{5} + \beta_{3} + 3\beta_{2} + \beta _1 + 7 ) / 16 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{5} + 6\beta_{4} + 3\beta_{3} - 7\beta_{2} - 3\beta _1 + 819 ) / 16 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -47\beta_{5} + 54\beta_{4} + 99\beta_{3} + 265\beta_{2} + 109\beta _1 + 1187 ) / 16 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 135\beta_{5} + 906\beta_{4} + 453\beta_{3} - 129\beta_{2} - 309\beta _1 + 80197 ) / 16 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -3811\beta_{5} + 8322\beta_{4} + 11935\beta_{3} + 28317\beta_{2} + 12253\beta _1 + 232195 ) / 16 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−5.32252
4.74230
−10.2169
11.5183
4.01414
−1.73538
0 −28.4424 0 −25.0000 0 −115.579 0 565.969 0
1.2 0 −13.5338 0 −25.0000 0 −134.766 0 −59.8351 0
1.3 0 −11.4706 0 −25.0000 0 132.518 0 −111.426 0
1.4 0 10.1483 0 −25.0000 0 228.119 0 −140.013 0
1.5 0 13.7145 0 −25.0000 0 131.565 0 −54.9135 0
1.6 0 29.5841 0 −25.0000 0 −175.856 0 632.218 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(11\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 880.6.a.u 6
4.b odd 2 1 55.6.a.d 6
12.b even 2 1 495.6.a.l 6
20.d odd 2 1 275.6.a.f 6
20.e even 4 2 275.6.b.f 12
44.c even 2 1 605.6.a.e 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
55.6.a.d 6 4.b odd 2 1
275.6.a.f 6 20.d odd 2 1
275.6.b.f 12 20.e even 4 2
495.6.a.l 6 12.b even 2 1
605.6.a.e 6 44.c even 2 1
880.6.a.u 6 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{6} - 1145T_{3}^{4} - 840T_{3}^{3} + 276192T_{3}^{2} + 164160T_{3} - 18180288 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(880))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} - 1145 T^{4} + \cdots - 18180288 \) Copy content Toggle raw display
$5$ \( (T + 25)^{6} \) Copy content Toggle raw display
$7$ \( T^{6} + \cdots - 10894071216816 \) Copy content Toggle raw display
$11$ \( (T + 121)^{6} \) Copy content Toggle raw display
$13$ \( T^{6} + \cdots - 24\!\cdots\!32 \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots - 20\!\cdots\!92 \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots - 13\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots - 28\!\cdots\!68 \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots + 94\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots + 11\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots + 22\!\cdots\!12 \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots + 80\!\cdots\!56 \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots + 11\!\cdots\!76 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots - 70\!\cdots\!68 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots - 18\!\cdots\!56 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots - 84\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots - 24\!\cdots\!64 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots - 26\!\cdots\!16 \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots - 10\!\cdots\!28 \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots - 23\!\cdots\!72 \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots + 29\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots - 30\!\cdots\!84 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots + 30\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots - 41\!\cdots\!28 \) Copy content Toggle raw display
show more
show less