Properties

Label 605.6.a.e
Level $605$
Weight $6$
Character orbit 605.a
Self dual yes
Analytic conductor $97.032$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [605,6,Mod(1,605)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("605.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(605, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 605 = 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 605.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(97.0322109869\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 149x^{4} + 297x^{3} + 4052x^{2} - 6522x - 20692 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 55)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 1) q^{2} + ( - \beta_{3} - \beta_1) q^{3} + ( - \beta_{4} + \beta_{2} - \beta_1 + 20) q^{4} - 25 q^{5} + (\beta_{5} + 2 \beta_{3} - 2 \beta_{2} + \cdots - 55) q^{6} + ( - 4 \beta_{5} - 2 \beta_{4} + \cdots + 10) q^{7}+ \cdots + (1001 \beta_{5} - 1222 \beta_{4} + \cdots + 51898) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{2} + 115 q^{4} - 150 q^{5} - 325 q^{6} + 66 q^{7} - 249 q^{8} + 832 q^{9} + 75 q^{10} + 1301 q^{12} + 972 q^{13} + 2017 q^{14} + 6675 q^{16} - 712 q^{17} - 5920 q^{18} - 610 q^{19} - 2875 q^{20}+ \cdots + 351884 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 3x^{5} - 149x^{4} + 297x^{3} + 4052x^{2} - 6522x - 20692 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{5} - 135\nu^{3} - 120\nu^{2} + 1946\nu + 804 ) / 78 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{5} + 8\nu^{4} - 153\nu^{3} - 1218\nu^{2} + 2930\nu + 17668 ) / 312 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{5} - 135\nu^{3} - 198\nu^{2} + 2024\nu + 4782 ) / 78 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{5} - \nu^{4} + 147\nu^{3} + 267\nu^{2} - 3044\nu - 3692 ) / 78 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{4} + \beta_{2} + \beta _1 + 51 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 8\beta_{5} + \beta_{4} + 4\beta_{3} + 6\beta_{2} + 99\beta _1 + 29 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 18\beta_{5} - 135\beta_{4} + 48\beta_{3} + 141\beta_{2} + 237\beta _1 + 4957 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 1080\beta_{5} + 15\beta_{4} + 540\beta_{3} + 1008\beta_{2} + 11539\beta _1 + 9231 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−10.2169
−5.32252
−1.73538
4.01414
4.74230
11.5183
−11.2169 11.4706 93.8183 −25.0000 −128.664 132.518 −693.408 −111.426 280.422
1.2 −6.32252 28.4424 7.97424 −25.0000 −179.828 −115.579 151.903 565.969 158.063
1.3 −2.73538 −29.5841 −24.5177 −25.0000 80.9238 −175.856 154.598 632.218 68.3846
1.4 3.01414 −13.7145 −22.9149 −25.0000 −41.3374 131.565 −165.521 −54.9135 −75.3536
1.5 3.74230 13.5338 −17.9952 −25.0000 50.6477 −134.766 −187.097 −59.8351 −93.5576
1.6 10.5183 −10.1483 78.6353 −25.0000 −106.743 228.119 490.525 −140.013 −262.958
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 605.6.a.e 6
11.b odd 2 1 55.6.a.d 6
33.d even 2 1 495.6.a.l 6
44.c even 2 1 880.6.a.u 6
55.d odd 2 1 275.6.a.f 6
55.e even 4 2 275.6.b.f 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
55.6.a.d 6 11.b odd 2 1
275.6.a.f 6 55.d odd 2 1
275.6.b.f 12 55.e even 4 2
495.6.a.l 6 33.d even 2 1
605.6.a.e 6 1.a even 1 1 trivial
880.6.a.u 6 44.c even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{6} + 3T_{2}^{5} - 149T_{2}^{4} - 309T_{2}^{3} + 4034T_{2}^{2} + 1868T_{2} - 23016 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(605))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + 3 T^{5} + \cdots - 23016 \) Copy content Toggle raw display
$3$ \( T^{6} - 1145 T^{4} + \cdots - 18180288 \) Copy content Toggle raw display
$5$ \( (T + 25)^{6} \) Copy content Toggle raw display
$7$ \( T^{6} + \cdots - 10894071216816 \) Copy content Toggle raw display
$11$ \( T^{6} \) Copy content Toggle raw display
$13$ \( T^{6} + \cdots - 24\!\cdots\!32 \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots - 20\!\cdots\!92 \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots - 13\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots - 28\!\cdots\!68 \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots + 94\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots + 11\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots + 22\!\cdots\!12 \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots + 80\!\cdots\!56 \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots + 11\!\cdots\!76 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots - 70\!\cdots\!68 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots - 18\!\cdots\!56 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots - 84\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots - 24\!\cdots\!64 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots - 26\!\cdots\!16 \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots - 10\!\cdots\!28 \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots - 23\!\cdots\!72 \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots + 29\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots - 30\!\cdots\!84 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots + 30\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots - 41\!\cdots\!28 \) Copy content Toggle raw display
show more
show less