Properties

Label 880.6.a
Level $880$
Weight $6$
Character orbit 880.a
Rep. character $\chi_{880}(1,\cdot)$
Character field $\Q$
Dimension $100$
Newform subspaces $26$
Sturm bound $864$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 880.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 26 \)
Sturm bound: \(864\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(880))\).

Total New Old
Modular forms 732 100 632
Cusp forms 708 100 608
Eisenstein series 24 0 24

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)\(11\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(87\)\(13\)\(74\)\(84\)\(13\)\(71\)\(3\)\(0\)\(3\)
\(+\)\(+\)\(-\)\(-\)\(96\)\(13\)\(83\)\(93\)\(13\)\(80\)\(3\)\(0\)\(3\)
\(+\)\(-\)\(+\)\(-\)\(93\)\(12\)\(81\)\(90\)\(12\)\(78\)\(3\)\(0\)\(3\)
\(+\)\(-\)\(-\)\(+\)\(90\)\(12\)\(78\)\(87\)\(12\)\(75\)\(3\)\(0\)\(3\)
\(-\)\(+\)\(+\)\(-\)\(92\)\(13\)\(79\)\(89\)\(13\)\(76\)\(3\)\(0\)\(3\)
\(-\)\(+\)\(-\)\(+\)\(91\)\(11\)\(80\)\(88\)\(11\)\(77\)\(3\)\(0\)\(3\)
\(-\)\(-\)\(+\)\(+\)\(94\)\(12\)\(82\)\(91\)\(12\)\(79\)\(3\)\(0\)\(3\)
\(-\)\(-\)\(-\)\(-\)\(89\)\(14\)\(75\)\(86\)\(14\)\(72\)\(3\)\(0\)\(3\)
Plus space\(+\)\(362\)\(48\)\(314\)\(350\)\(48\)\(302\)\(12\)\(0\)\(12\)
Minus space\(-\)\(370\)\(52\)\(318\)\(358\)\(52\)\(306\)\(12\)\(0\)\(12\)

Trace form

\( 100 q - 36 q^{3} + 248 q^{7} + 8100 q^{9} + 900 q^{15} - 8832 q^{19} + 1640 q^{21} + 6348 q^{23} + 62500 q^{25} - 19128 q^{27} - 7960 q^{29} + 1512 q^{31} - 88176 q^{39} + 73952 q^{43} - 11800 q^{45} + 44180 q^{47}+ \cdots + 149208 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(880))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5 11
880.6.a.a 880.a 1.a $1$ $141.138$ \(\Q\) None 440.6.a.a \(0\) \(-23\) \(25\) \(-211\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-23q^{3}+5^{2}q^{5}-211q^{7}+286q^{9}+\cdots\)
880.6.a.b 880.a 1.a $1$ $141.138$ \(\Q\) None 110.6.a.b \(0\) \(-12\) \(-25\) \(-54\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-12q^{3}-5^{2}q^{5}-54q^{7}-99q^{9}+\cdots\)
880.6.a.c 880.a 1.a $1$ $141.138$ \(\Q\) None 110.6.a.a \(0\) \(-2\) \(25\) \(40\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{3}+5^{2}q^{5}+40q^{7}-239q^{9}+\cdots\)
880.6.a.d 880.a 1.a $1$ $141.138$ \(\Q\) None 110.6.a.d \(0\) \(2\) \(25\) \(204\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{3}+5^{2}q^{5}+204q^{7}-239q^{9}+\cdots\)
880.6.a.e 880.a 1.a $1$ $141.138$ \(\Q\) None 110.6.a.c \(0\) \(12\) \(-25\) \(-110\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+12q^{3}-5^{2}q^{5}-110q^{7}-99q^{9}+\cdots\)
880.6.a.f 880.a 1.a $2$ $141.138$ \(\Q(\sqrt{889}) \) None 110.6.a.e \(0\) \(-21\) \(-50\) \(-35\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(-10-\beta )q^{3}-5^{2}q^{5}+(-20+5\beta )q^{7}+\cdots\)
880.6.a.g 880.a 1.a $2$ $141.138$ \(\Q(\sqrt{1321}) \) None 110.6.a.f \(0\) \(3\) \(-50\) \(-237\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{3}-5^{2}q^{5}+(-11^{2}+5\beta )q^{7}+\cdots\)
880.6.a.h 880.a 1.a $2$ $141.138$ \(\Q(\sqrt{1761}) \) None 220.6.a.a \(0\) \(19\) \(50\) \(131\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(10-\beta )q^{3}+5^{2}q^{5}+(68-5\beta )q^{7}+\cdots\)
880.6.a.i 880.a 1.a $3$ $141.138$ 3.3.709185.1 None 110.6.a.h \(0\) \(-25\) \(75\) \(-159\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(-8-\beta _{2})q^{3}+5^{2}q^{5}+(-53-\beta _{1}+\cdots)q^{7}+\cdots\)
880.6.a.j 880.a 1.a $3$ $141.138$ 3.3.399324.1 None 220.6.a.b \(0\) \(-1\) \(75\) \(155\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}+5^{2}q^{5}+(50-7\beta _{1}+2\beta _{2})q^{7}+\cdots\)
880.6.a.k 880.a 1.a $3$ $141.138$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 110.6.a.g \(0\) \(7\) \(75\) \(-273\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(2+\beta _{1})q^{3}+5^{2}q^{5}+(-93+5\beta _{1}+\cdots)q^{7}+\cdots\)
880.6.a.l 880.a 1.a $3$ $141.138$ 3.3.21865.1 None 55.6.a.a \(0\) \(36\) \(75\) \(102\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(11+3\beta _{1})q^{3}+5^{2}q^{5}+(2^{5}+\beta _{1}+\cdots)q^{7}+\cdots\)
880.6.a.m 880.a 1.a $4$ $141.138$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 220.6.a.d \(0\) \(0\) \(-100\) \(30\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}-5^{2}q^{5}+(8-2\beta _{1}+\beta _{2}+\beta _{3})q^{7}+\cdots\)
880.6.a.n 880.a 1.a $4$ $141.138$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 55.6.a.b \(0\) \(0\) \(-100\) \(90\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{3}q^{3}-5^{2}q^{5}+(17-6\beta _{1}-5\beta _{2}+\cdots)q^{7}+\cdots\)
880.6.a.o 880.a 1.a $4$ $141.138$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 220.6.a.c \(0\) \(0\) \(-100\) \(250\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{3}-5^{2}q^{5}+(63+\beta _{1}-\beta _{2}+\beta _{3})q^{7}+\cdots\)
880.6.a.p 880.a 1.a $5$ $141.138$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 220.6.a.e \(0\) \(-18\) \(125\) \(-130\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(-4+\beta _{1})q^{3}+5^{2}q^{5}+(-26+\beta _{1}+\cdots)q^{7}+\cdots\)
880.6.a.q 880.a 1.a $5$ $141.138$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 440.6.a.c \(0\) \(-2\) \(125\) \(-134\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{3}+5^{2}q^{5}+(-28+3\beta _{1}+\beta _{2}+\cdots)q^{7}+\cdots\)
880.6.a.r 880.a 1.a $5$ $141.138$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 55.6.a.c \(0\) \(0\) \(125\) \(-70\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{2}q^{3}+5^{2}q^{5}+(-14+\beta _{1}+\beta _{4})q^{7}+\cdots\)
880.6.a.s 880.a 1.a $5$ $141.138$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 440.6.a.b \(0\) \(2\) \(125\) \(250\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}+5^{2}q^{5}+(51-2\beta _{1}+\beta _{4})q^{7}+\cdots\)
880.6.a.t 880.a 1.a $6$ $141.138$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 440.6.a.f \(0\) \(-12\) \(-150\) \(338\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(-2+\beta _{1})q^{3}-5^{2}q^{5}+(56+\beta _{1}+\cdots)q^{7}+\cdots\)
880.6.a.u 880.a 1.a $6$ $141.138$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 55.6.a.d \(0\) \(0\) \(-150\) \(66\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{2}q^{3}-5^{2}q^{5}+(11-\beta _{1}+\beta _{2}+\beta _{3}+\cdots)q^{7}+\cdots\)
880.6.a.v 880.a 1.a $6$ $141.138$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 440.6.a.e \(0\) \(12\) \(-150\) \(62\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(2-\beta _{1})q^{3}-5^{2}q^{5}+(10-\beta _{5})q^{7}+\cdots\)
880.6.a.w 880.a 1.a $6$ $141.138$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 440.6.a.d \(0\) \(30\) \(150\) \(170\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(5-\beta _{1})q^{3}+5^{2}q^{5}+(28+2\beta _{1}+\beta _{3}+\cdots)q^{7}+\cdots\)
880.6.a.x 880.a 1.a $7$ $141.138$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 440.6.a.i \(0\) \(-25\) \(175\) \(49\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(-4+\beta _{1})q^{3}+5^{2}q^{5}+(7-\beta _{1}+\beta _{4}+\cdots)q^{7}+\cdots\)
880.6.a.y 880.a 1.a $7$ $141.138$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 440.6.a.h \(0\) \(-21\) \(-175\) \(-49\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(-3+\beta _{1})q^{3}-5^{2}q^{5}+(-7+\beta _{1}+\cdots)q^{7}+\cdots\)
880.6.a.z 880.a 1.a $7$ $141.138$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 440.6.a.g \(0\) \(3\) \(-175\) \(-227\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}-5^{2}q^{5}+(-2^{5}+\beta _{3})q^{7}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(880))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_0(880)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 10}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 10}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(22))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(55))\)\(^{\oplus 5}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(80))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(88))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(110))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(176))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(220))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(440))\)\(^{\oplus 2}\)