Defining parameters
| Level: | \( N \) | \(=\) | \( 880 = 2^{4} \cdot 5 \cdot 11 \) |
| Weight: | \( k \) | \(=\) | \( 6 \) |
| Character orbit: | \([\chi]\) | \(=\) | 880.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 26 \) | ||
| Sturm bound: | \(864\) | ||
| Trace bound: | \(7\) | ||
| Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(880))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 732 | 100 | 632 |
| Cusp forms | 708 | 100 | 608 |
| Eisenstein series | 24 | 0 | 24 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(5\) | \(11\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(87\) | \(13\) | \(74\) | \(84\) | \(13\) | \(71\) | \(3\) | \(0\) | \(3\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(96\) | \(13\) | \(83\) | \(93\) | \(13\) | \(80\) | \(3\) | \(0\) | \(3\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(93\) | \(12\) | \(81\) | \(90\) | \(12\) | \(78\) | \(3\) | \(0\) | \(3\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(90\) | \(12\) | \(78\) | \(87\) | \(12\) | \(75\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(92\) | \(13\) | \(79\) | \(89\) | \(13\) | \(76\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(91\) | \(11\) | \(80\) | \(88\) | \(11\) | \(77\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(94\) | \(12\) | \(82\) | \(91\) | \(12\) | \(79\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(89\) | \(14\) | \(75\) | \(86\) | \(14\) | \(72\) | \(3\) | \(0\) | \(3\) | |||
| Plus space | \(+\) | \(362\) | \(48\) | \(314\) | \(350\) | \(48\) | \(302\) | \(12\) | \(0\) | \(12\) | |||||
| Minus space | \(-\) | \(370\) | \(52\) | \(318\) | \(358\) | \(52\) | \(306\) | \(12\) | \(0\) | \(12\) | |||||
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(880))\) into newform subspaces
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(880))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_0(880)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 10}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 10}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(22))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(55))\)\(^{\oplus 5}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(80))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(88))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(110))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(176))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(220))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(440))\)\(^{\oplus 2}\)