Properties

Label 220.6.a.b
Level $220$
Weight $6$
Character orbit 220.a
Self dual yes
Analytic conductor $35.284$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,6,Mod(1,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 220.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(35.2844403589\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.399324.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 159x - 680 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{3} + 25 q^{5} + ( - 2 \beta_{2} + 7 \beta_1 - 50) q^{7} + (3 \beta_{2} - 7 \beta_1 - 36) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - \beta_1 q^{3} + 25 q^{5} + ( - 2 \beta_{2} + 7 \beta_1 - 50) q^{7} + (3 \beta_{2} - 7 \beta_1 - 36) q^{9} - 121 q^{11} + (12 \beta_{2} + 16 \beta_1 + 374) q^{13} - 25 \beta_1 q^{15} + ( - 29 \beta_{2} - 9 \beta_1 - 19) q^{17} + (47 \beta_{2} + 115 \beta_1 - 1161) q^{19} + ( - 9 \beta_{2} + 141 \beta_1 - 1581) q^{21} + ( - 73 \beta_{2} + 40 \beta_1 - 1721) q^{23} + 625 q^{25} + (3 \beta_{2} + 167 \beta_1 + 1647) q^{27} + (91 \beta_{2} - 125 \beta_1 + 2813) q^{29} + ( - 119 \beta_{2} - 53 \beta_1 - 1739) q^{31} + 121 \beta_1 q^{33} + ( - 50 \beta_{2} + 175 \beta_1 - 1250) q^{35} + (247 \beta_{2} + 237 \beta_1 - 1295) q^{37} + ( - 120 \beta_{2} - 514 \beta_1 - 2520) q^{39} + ( - 4 \beta_{2} - 304 \beta_1 - 6338) q^{41} + (231 \beta_{2} + 554 \beta_1 - 6961) q^{43} + (75 \beta_{2} - 175 \beta_1 - 900) q^{45} + ( - 211 \beta_{2} - 856 \beta_1 - 9467) q^{47} + (91 \beta_{2} - 1551 \beta_1 + 2336) q^{49} + (201 \beta_{2} + 565 \beta_1 - 51) q^{51} + ( - 369 \beta_{2} - 1167 \beta_1 - 10839) q^{53} - 3025 q^{55} + ( - 627 \beta_{2} + 979 \beta_1 - 20703) q^{57} + (172 \beta_{2} - 1774 \beta_1 - 22672) q^{59} + (29 \beta_{2} + 1965 \beta_1 - 8937) q^{61} + (117 \beta_{2} + 1056 \beta_1 - 17631) q^{63} + (300 \beta_{2} + 400 \beta_1 + 9350) q^{65} + (15 \beta_{2} - 3038 \beta_1 - 21781) q^{67} + (318 \beta_{2} + 3534 \beta_1 - 13098) q^{69} + (855 \beta_{2} + 969 \beta_1 + 3291) q^{71} + ( - 1018 \beta_{2} - 708 \beta_1 - 21852) q^{73} - 625 \beta_1 q^{75} + (242 \beta_{2} - 847 \beta_1 + 6050) q^{77} + ( - 1450 \beta_{2} - 122 \beta_1 - 38106) q^{79} + ( - 1248 \beta_{2} + 1160 \beta_1 - 25623) q^{81} + (745 \beta_{2} - 1172 \beta_1 - 38479) q^{83} + ( - 725 \beta_{2} - 225 \beta_1 - 475) q^{85} + ( - 171 \beta_{2} - 5599 \beta_1 + 31881) q^{87} + (2501 \beta_{2} - 1377 \beta_1 + 31651) q^{89} + ( - 172 \beta_{2} + 1646 \beta_1 - 26860) q^{91} + (873 \beta_{2} + 3867 \beta_1 + 3117) q^{93} + (1175 \beta_{2} + 2875 \beta_1 - 29025) q^{95} + (2374 \beta_{2} + 4154 \beta_1 - 19400) q^{97} + ( - 363 \beta_{2} + 847 \beta_1 + 4356) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + q^{3} + 75 q^{5} - 155 q^{7} - 104 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q + q^{3} + 75 q^{5} - 155 q^{7} - 104 q^{9} - 363 q^{11} + 1094 q^{13} + 25 q^{15} - 19 q^{17} - 3645 q^{19} - 4875 q^{21} - 5130 q^{23} + 1875 q^{25} + 4771 q^{27} + 8473 q^{29} - 5045 q^{31} - 121 q^{33} - 3875 q^{35} - 4369 q^{37} - 6926 q^{39} - 18706 q^{41} - 21668 q^{43} - 2600 q^{45} - 27334 q^{47} + 8468 q^{49} - 919 q^{51} - 30981 q^{53} - 9075 q^{55} - 62461 q^{57} - 66414 q^{59} - 28805 q^{61} - 54066 q^{63} + 27350 q^{65} - 62320 q^{67} - 43146 q^{69} + 8049 q^{71} - 63830 q^{73} + 625 q^{75} + 18755 q^{77} - 112746 q^{79} - 76781 q^{81} - 115010 q^{83} - 475 q^{85} + 101413 q^{87} + 93829 q^{89} - 82054 q^{91} + 4611 q^{93} - 91125 q^{95} - 64728 q^{97} + 12584 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 159x - 680 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{2} - 4\nu - 107 ) / 3 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -2\nu^{2} + 20\nu + 211 ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + 2\beta _1 + 1 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 5\beta _1 + 108 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
14.3645
−9.24279
−5.12171
0 −13.9603 0 25.0000 0 −9.35268 0 −48.1099 0
1.2 0 −5.13342 0 25.0000 0 82.4100 0 −216.648 0
1.3 0 20.0937 0 25.0000 0 −228.057 0 160.758 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)
\(11\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 220.6.a.b 3
4.b odd 2 1 880.6.a.j 3
5.b even 2 1 1100.6.a.d 3
5.c odd 4 2 1100.6.b.d 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
220.6.a.b 3 1.a even 1 1 trivial
880.6.a.j 3 4.b odd 2 1
1100.6.a.d 3 5.b even 2 1
1100.6.b.d 6 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} - T_{3}^{2} - 312T_{3} - 1440 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(220))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} - T^{2} + \cdots - 1440 \) Copy content Toggle raw display
$5$ \( (T - 25)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} + 155 T^{2} + \cdots - 175776 \) Copy content Toggle raw display
$11$ \( (T + 121)^{3} \) Copy content Toggle raw display
$13$ \( T^{3} - 1094 T^{2} + \cdots + 31937144 \) Copy content Toggle raw display
$17$ \( T^{3} + 19 T^{2} + \cdots - 493345380 \) Copy content Toggle raw display
$19$ \( T^{3} + \cdots - 13139307248 \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots - 25323871968 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots + 57124516620 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots - 63522375360 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots - 156308522956 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots + 25081114200 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots - 1547993112000 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots - 382738023840 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots + 208612572228 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots - 27595270294560 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots - 230105423484 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots - 96069431484160 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots - 259369439040 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots - 38281908027960 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots - 159067707906944 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots + 2693394216480 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots + 854013774895068 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots - 700110118756688 \) Copy content Toggle raw display
show more
show less