Properties

Label 220.6.a.e
Level $220$
Weight $6$
Character orbit 220.a
Self dual yes
Analytic conductor $35.284$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,6,Mod(1,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 220.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(35.2844403589\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 809x^{3} + 562x^{2} + 88864x + 320704 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 4) q^{3} + 25 q^{5} + (\beta_{3} - \beta_1 + 26) q^{7} + (\beta_{2} - 6 \beta_1 + 97) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta_1 + 4) q^{3} + 25 q^{5} + (\beta_{3} - \beta_1 + 26) q^{7} + (\beta_{2} - 6 \beta_1 + 97) q^{9} + 121 q^{11} + ( - \beta_{4} + \beta_{3} - \beta_{2} + \cdots + 122) q^{13}+ \cdots + (121 \beta_{2} - 726 \beta_1 + 11737) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 18 q^{3} + 125 q^{5} + 130 q^{7} + 471 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 5 q + 18 q^{3} + 125 q^{5} + 130 q^{7} + 471 q^{9} + 605 q^{11} + 600 q^{13} + 450 q^{15} - 176 q^{17} + 102 q^{19} + 1468 q^{21} + 4434 q^{23} + 3125 q^{25} + 7764 q^{27} - 742 q^{29} + 3132 q^{31} + 2178 q^{33} + 3250 q^{35} + 11296 q^{37} + 12032 q^{39} + 7154 q^{41} + 18956 q^{43} + 11775 q^{45} + 32370 q^{47} + 34263 q^{49} + 29014 q^{51} + 13328 q^{53} + 15125 q^{55} + 34168 q^{57} + 72728 q^{59} + 73402 q^{61} + 73700 q^{63} + 15000 q^{65} + 61018 q^{67} + 47124 q^{69} + 86120 q^{71} + 62784 q^{73} + 11250 q^{75} + 15730 q^{77} + 93320 q^{79} + 133785 q^{81} + 107548 q^{83} - 4400 q^{85} - 18114 q^{87} + 22164 q^{89} + 28404 q^{91} + 135290 q^{93} + 2550 q^{95} + 26934 q^{97} + 56991 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - 2x^{4} - 809x^{3} + 562x^{2} + 88864x + 320704 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2\nu - 324 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 3\nu^{4} - 14\nu^{3} - 2213\nu^{2} + 9248\nu + 146036 ) / 318 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -2\nu^{4} + 27\nu^{3} + 1546\nu^{2} - 16677\nu - 127214 ) / 159 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2\beta _1 + 324 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 9\beta_{4} + 12\beta_{3} - 4\beta_{2} + 587\beta _1 + 394 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 42\beta_{4} + 162\beta_{3} + 719\beta_{2} + 1132\beta _1 + 192164 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
26.3640
13.5744
−4.58904
−7.57706
−25.7722
0 −22.3640 0 25.0000 0 139.452 0 257.147 0
1.2 0 −9.57436 0 25.0000 0 −205.693 0 −151.332 0
1.3 0 8.58904 0 25.0000 0 218.249 0 −169.228 0
1.4 0 11.5771 0 25.0000 0 −76.8335 0 −108.972 0
1.5 0 29.7722 0 25.0000 0 54.8255 0 643.385 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 220.6.a.e 5
4.b odd 2 1 880.6.a.p 5
5.b even 2 1 1100.6.a.g 5
5.c odd 4 2 1100.6.b.g 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
220.6.a.e 5 1.a even 1 1 trivial
880.6.a.p 5 4.b odd 2 1
1100.6.a.g 5 5.b even 2 1
1100.6.b.g 10 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{5} - 18T_{3}^{4} - 681T_{3}^{3} + 8698T_{3}^{2} + 55296T_{3} - 633888 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(220))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} \) Copy content Toggle raw display
$3$ \( T^{5} - 18 T^{4} + \cdots - 633888 \) Copy content Toggle raw display
$5$ \( (T - 25)^{5} \) Copy content Toggle raw display
$7$ \( T^{5} + \cdots - 26371065600 \) Copy content Toggle raw display
$11$ \( (T - 121)^{5} \) Copy content Toggle raw display
$13$ \( T^{5} + \cdots - 153867162240 \) Copy content Toggle raw display
$17$ \( T^{5} + \cdots - 23117856213936 \) Copy content Toggle raw display
$19$ \( T^{5} + \cdots + 696671609378624 \) Copy content Toggle raw display
$23$ \( T^{5} + \cdots - 88\!\cdots\!16 \) Copy content Toggle raw display
$29$ \( T^{5} + \cdots + 56\!\cdots\!08 \) Copy content Toggle raw display
$31$ \( T^{5} + \cdots + 58\!\cdots\!60 \) Copy content Toggle raw display
$37$ \( T^{5} + \cdots - 37\!\cdots\!04 \) Copy content Toggle raw display
$41$ \( T^{5} + \cdots - 17\!\cdots\!60 \) Copy content Toggle raw display
$43$ \( T^{5} + \cdots - 19\!\cdots\!24 \) Copy content Toggle raw display
$47$ \( T^{5} + \cdots - 30\!\cdots\!80 \) Copy content Toggle raw display
$53$ \( T^{5} + \cdots - 11\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( T^{5} + \cdots + 80\!\cdots\!04 \) Copy content Toggle raw display
$61$ \( T^{5} + \cdots + 81\!\cdots\!24 \) Copy content Toggle raw display
$67$ \( T^{5} + \cdots - 24\!\cdots\!48 \) Copy content Toggle raw display
$71$ \( T^{5} + \cdots - 13\!\cdots\!96 \) Copy content Toggle raw display
$73$ \( T^{5} + \cdots - 38\!\cdots\!96 \) Copy content Toggle raw display
$79$ \( T^{5} + \cdots + 27\!\cdots\!12 \) Copy content Toggle raw display
$83$ \( T^{5} + \cdots - 14\!\cdots\!32 \) Copy content Toggle raw display
$89$ \( T^{5} + \cdots + 53\!\cdots\!64 \) Copy content Toggle raw display
$97$ \( T^{5} + \cdots + 55\!\cdots\!16 \) Copy content Toggle raw display
show more
show less