Properties

Label 220.6.a.c
Level $220$
Weight $6$
Character orbit 220.a
Self dual yes
Analytic conductor $35.284$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,6,Mod(1,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 220.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(35.2844403589\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 601x^{2} - 2160x - 1800 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{3} - 25 q^{5} + ( - \beta_{3} + \beta_{2} - \beta_1 - 63) q^{7} + (\beta_{3} + 7 \beta_{2} + 3 \beta_1 + 58) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_1 q^{3} - 25 q^{5} + ( - \beta_{3} + \beta_{2} - \beta_1 - 63) q^{7} + (\beta_{3} + 7 \beta_{2} + 3 \beta_1 + 58) q^{9} - 121 q^{11} + ( - 2 \beta_{3} - 3 \beta_{2} + \cdots - 46) q^{13}+ \cdots + ( - 121 \beta_{3} - 847 \beta_{2} + \cdots - 7018) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 100 q^{5} - 250 q^{7} + 230 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 100 q^{5} - 250 q^{7} + 230 q^{9} - 484 q^{11} - 180 q^{13} - 1320 q^{17} + 1438 q^{19} - 236 q^{21} + 3500 q^{23} + 2500 q^{25} + 6480 q^{27} + 9688 q^{29} + 3604 q^{31} + 6250 q^{35} - 270 q^{37} + 35592 q^{39} + 16756 q^{41} + 12740 q^{43} - 5750 q^{45} - 15080 q^{47} - 1402 q^{49} + 24322 q^{51} + 42010 q^{53} + 12100 q^{55} + 112720 q^{57} + 24516 q^{59} + 216 q^{61} - 23640 q^{63} + 4500 q^{65} + 46680 q^{67} + 179824 q^{69} + 119692 q^{71} + 44440 q^{73} + 30250 q^{77} + 116592 q^{79} + 89540 q^{81} - 14180 q^{83} + 33000 q^{85} + 131370 q^{87} - 138554 q^{89} + 78220 q^{91} + 55430 q^{93} - 35950 q^{95} - 26000 q^{97} - 27830 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 601x^{2} - 2160x - 1800 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - 601\nu - 1620 ) / 15 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -7\nu^{3} + 15\nu^{2} + 4162\nu + 6825 ) / 15 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + 7\beta_{2} + 3\beta _1 + 301 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 15\beta_{2} + 601\beta _1 + 1620 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−22.5561
−2.32916
−1.30804
26.1933
0 −22.5561 0 −25.0000 0 −70.4493 0 265.777 0
1.2 0 −2.32916 0 −25.0000 0 103.751 0 −237.575 0
1.3 0 −1.30804 0 −25.0000 0 −212.251 0 −241.289 0
1.4 0 26.1933 0 −25.0000 0 −71.0503 0 443.087 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(11\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 220.6.a.c 4
4.b odd 2 1 880.6.a.o 4
5.b even 2 1 1100.6.a.f 4
5.c odd 4 2 1100.6.b.e 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
220.6.a.c 4 1.a even 1 1 trivial
880.6.a.o 4 4.b odd 2 1
1100.6.a.f 4 5.b even 2 1
1100.6.b.e 8 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} - 601T_{3}^{2} - 2160T_{3} - 1800 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(220))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 601 T^{2} + \cdots - 1800 \) Copy content Toggle raw display
$5$ \( (T + 25)^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 250 T^{3} + \cdots - 110225964 \) Copy content Toggle raw display
$11$ \( (T + 121)^{4} \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 16784312736 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 736474398264 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 7202574183104 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots - 930562481376 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots - 23121783630900 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots - 19049730350400 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 13\!\cdots\!64 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 91\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 23\!\cdots\!00 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots - 24\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots - 16\!\cdots\!56 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots - 12\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 29\!\cdots\!64 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 19\!\cdots\!96 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots - 33\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 44\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots - 10\!\cdots\!36 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 28\!\cdots\!56 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots - 45\!\cdots\!56 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots - 10\!\cdots\!36 \) Copy content Toggle raw display
show more
show less