Properties

Label 880.2.cd.d.449.1
Level $880$
Weight $2$
Character 880.449
Analytic conductor $7.027$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [880,2,Mod(49,880)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("880.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(880, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 5, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 880.cd (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.02683537787\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{10})\)
Twist minimal: no (minimal twist has level 220)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 449.1
Character \(\chi\) \(=\) 880.449
Dual form 880.2.cd.d.49.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.60349 - 2.20702i) q^{3} +(-1.89499 + 1.18702i) q^{5} +(1.00600 - 1.38464i) q^{7} +(-1.37268 + 4.22469i) q^{9} +(1.49354 + 2.96131i) q^{11} +(4.52263 + 1.46949i) q^{13} +(5.65837 + 2.27889i) q^{15} +(0.621741 - 0.202016i) q^{17} +(-3.20263 + 2.32684i) q^{19} -4.66902 q^{21} -0.675167i q^{23} +(2.18197 - 4.49878i) q^{25} +(3.74152 - 1.21569i) q^{27} +(4.55804 + 3.31161i) q^{29} +(1.98216 - 6.10045i) q^{31} +(4.14077 - 8.04469i) q^{33} +(-0.262763 + 3.81801i) q^{35} +(0.653775 - 0.899844i) q^{37} +(-4.00881 - 12.3378i) q^{39} +(9.28765 - 6.74788i) q^{41} -5.72146i q^{43} +(-2.41357 - 9.63513i) q^{45} +(5.42888 + 7.47221i) q^{47} +(1.25793 + 3.87151i) q^{49} +(-1.44281 - 1.04826i) q^{51} +(-12.5493 - 4.07753i) q^{53} +(-6.34537 - 3.83878i) q^{55} +(10.2708 + 3.33717i) q^{57} +(4.79516 + 3.48389i) q^{59} +(-4.68840 - 14.4294i) q^{61} +(4.46874 + 6.15069i) q^{63} +(-10.3147 + 2.58378i) q^{65} +10.6913i q^{67} +(-1.49010 + 1.08262i) q^{69} +(0.466178 + 1.43475i) q^{71} +(4.90121 - 6.74593i) q^{73} +(-13.4276 + 2.39812i) q^{75} +(5.60284 + 0.911054i) q^{77} +(2.67995 - 8.24805i) q^{79} +(2.09864 + 1.52475i) q^{81} +(11.6443 - 3.78345i) q^{83} +(-0.938396 + 1.12084i) q^{85} -15.3698i q^{87} +1.80271 q^{89} +(6.58448 - 4.78390i) q^{91} +(-16.6422 + 5.40736i) q^{93} +(3.30693 - 8.21092i) q^{95} +(10.1851 + 3.30935i) q^{97} +(-14.5607 + 2.24481i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + q^{5} + 14 q^{9} + 2 q^{11} + q^{15} - 8 q^{19} - 28 q^{21} + 27 q^{25} - 16 q^{29} + 26 q^{31} - 17 q^{35} - 12 q^{39} + 10 q^{41} - 40 q^{45} - 46 q^{49} + 12 q^{51} + 33 q^{55} + 48 q^{59} - 10 q^{61}+ \cdots - 156 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/880\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(321\) \(661\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{3}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.60349 2.20702i −0.925776 1.27422i −0.961485 0.274859i \(-0.911369\pi\)
0.0357091 0.999362i \(-0.488631\pi\)
\(4\) 0 0
\(5\) −1.89499 + 1.18702i −0.847465 + 0.530852i
\(6\) 0 0
\(7\) 1.00600 1.38464i 0.380232 0.523344i −0.575414 0.817862i \(-0.695159\pi\)
0.955646 + 0.294518i \(0.0951592\pi\)
\(8\) 0 0
\(9\) −1.37268 + 4.22469i −0.457561 + 1.40823i
\(10\) 0 0
\(11\) 1.49354 + 2.96131i 0.450320 + 0.892867i
\(12\) 0 0
\(13\) 4.52263 + 1.46949i 1.25435 + 0.407564i 0.859479 0.511171i \(-0.170788\pi\)
0.394874 + 0.918735i \(0.370788\pi\)
\(14\) 0 0
\(15\) 5.65837 + 2.27889i 1.46098 + 0.588408i
\(16\) 0 0
\(17\) 0.621741 0.202016i 0.150794 0.0489961i −0.232647 0.972561i \(-0.574739\pi\)
0.383442 + 0.923565i \(0.374739\pi\)
\(18\) 0 0
\(19\) −3.20263 + 2.32684i −0.734733 + 0.533815i −0.891057 0.453891i \(-0.850035\pi\)
0.156324 + 0.987706i \(0.450035\pi\)
\(20\) 0 0
\(21\) −4.66902 −1.01886
\(22\) 0 0
\(23\) 0.675167i 0.140782i −0.997519 0.0703910i \(-0.977575\pi\)
0.997519 0.0703910i \(-0.0224247\pi\)
\(24\) 0 0
\(25\) 2.18197 4.49878i 0.436393 0.899756i
\(26\) 0 0
\(27\) 3.74152 1.21569i 0.720056 0.233961i
\(28\) 0 0
\(29\) 4.55804 + 3.31161i 0.846408 + 0.614951i 0.924153 0.382022i \(-0.124772\pi\)
−0.0777456 + 0.996973i \(0.524772\pi\)
\(30\) 0 0
\(31\) 1.98216 6.10045i 0.356006 1.09567i −0.599418 0.800436i \(-0.704601\pi\)
0.955424 0.295237i \(-0.0953986\pi\)
\(32\) 0 0
\(33\) 4.14077 8.04469i 0.720815 1.40040i
\(34\) 0 0
\(35\) −0.262763 + 3.81801i −0.0444150 + 0.645362i
\(36\) 0 0
\(37\) 0.653775 0.899844i 0.107480 0.147933i −0.751889 0.659290i \(-0.770857\pi\)
0.859369 + 0.511357i \(0.170857\pi\)
\(38\) 0 0
\(39\) −4.00881 12.3378i −0.641923 1.97564i
\(40\) 0 0
\(41\) 9.28765 6.74788i 1.45049 1.05384i 0.464771 0.885431i \(-0.346137\pi\)
0.985717 0.168410i \(-0.0538633\pi\)
\(42\) 0 0
\(43\) 5.72146i 0.872515i −0.899822 0.436257i \(-0.856304\pi\)
0.899822 0.436257i \(-0.143696\pi\)
\(44\) 0 0
\(45\) −2.41357 9.63513i −0.359793 1.43632i
\(46\) 0 0
\(47\) 5.42888 + 7.47221i 0.791883 + 1.08993i 0.993871 + 0.110546i \(0.0352599\pi\)
−0.201988 + 0.979388i \(0.564740\pi\)
\(48\) 0 0
\(49\) 1.25793 + 3.87151i 0.179704 + 0.553073i
\(50\) 0 0
\(51\) −1.44281 1.04826i −0.202034 0.146786i
\(52\) 0 0
\(53\) −12.5493 4.07753i −1.72379 0.560092i −0.731257 0.682102i \(-0.761066\pi\)
−0.992529 + 0.122011i \(0.961066\pi\)
\(54\) 0 0
\(55\) −6.34537 3.83878i −0.855610 0.517621i
\(56\) 0 0
\(57\) 10.2708 + 3.33717i 1.36040 + 0.442019i
\(58\) 0 0
\(59\) 4.79516 + 3.48389i 0.624277 + 0.453564i 0.854413 0.519595i \(-0.173917\pi\)
−0.230136 + 0.973159i \(0.573917\pi\)
\(60\) 0 0
\(61\) −4.68840 14.4294i −0.600288 1.84750i −0.526415 0.850227i \(-0.676464\pi\)
−0.0738722 0.997268i \(-0.523536\pi\)
\(62\) 0 0
\(63\) 4.46874 + 6.15069i 0.563009 + 0.774915i
\(64\) 0 0
\(65\) −10.3147 + 2.58378i −1.27938 + 0.320479i
\(66\) 0 0
\(67\) 10.6913i 1.30615i 0.757293 + 0.653076i \(0.226522\pi\)
−0.757293 + 0.653076i \(0.773478\pi\)
\(68\) 0 0
\(69\) −1.49010 + 1.08262i −0.179387 + 0.130333i
\(70\) 0 0
\(71\) 0.466178 + 1.43475i 0.0553251 + 0.170273i 0.974901 0.222640i \(-0.0714674\pi\)
−0.919576 + 0.392913i \(0.871467\pi\)
\(72\) 0 0
\(73\) 4.90121 6.74593i 0.573643 0.789552i −0.419337 0.907830i \(-0.637738\pi\)
0.992980 + 0.118279i \(0.0377376\pi\)
\(74\) 0 0
\(75\) −13.4276 + 2.39812i −1.55049 + 0.276911i
\(76\) 0 0
\(77\) 5.60284 + 0.911054i 0.638502 + 0.103824i
\(78\) 0 0
\(79\) 2.67995 8.24805i 0.301518 0.927978i −0.679435 0.733736i \(-0.737775\pi\)
0.980953 0.194243i \(-0.0622249\pi\)
\(80\) 0 0
\(81\) 2.09864 + 1.52475i 0.233183 + 0.169417i
\(82\) 0 0
\(83\) 11.6443 3.78345i 1.27812 0.415288i 0.410205 0.911993i \(-0.365457\pi\)
0.867919 + 0.496706i \(0.165457\pi\)
\(84\) 0 0
\(85\) −0.938396 + 1.12084i −0.101783 + 0.121572i
\(86\) 0 0
\(87\) 15.3698i 1.64782i
\(88\) 0 0
\(89\) 1.80271 0.191087 0.0955436 0.995425i \(-0.469541\pi\)
0.0955436 + 0.995425i \(0.469541\pi\)
\(90\) 0 0
\(91\) 6.58448 4.78390i 0.690241 0.501489i
\(92\) 0 0
\(93\) −16.6422 + 5.40736i −1.72571 + 0.560717i
\(94\) 0 0
\(95\) 3.30693 8.21092i 0.339284 0.842423i
\(96\) 0 0
\(97\) 10.1851 + 3.30935i 1.03414 + 0.336013i 0.776427 0.630207i \(-0.217030\pi\)
0.257716 + 0.966221i \(0.417030\pi\)
\(98\) 0 0
\(99\) −14.5607 + 2.24481i −1.46341 + 0.225612i
\(100\) 0 0
\(101\) −2.81593 + 8.66654i −0.280196 + 0.862353i 0.707602 + 0.706611i \(0.249777\pi\)
−0.987798 + 0.155742i \(0.950223\pi\)
\(102\) 0 0
\(103\) 4.51151 6.20957i 0.444533 0.611847i −0.526679 0.850064i \(-0.676563\pi\)
0.971212 + 0.238217i \(0.0765630\pi\)
\(104\) 0 0
\(105\) 8.84775 5.54223i 0.863452 0.540866i
\(106\) 0 0
\(107\) 6.44743 + 8.87413i 0.623297 + 0.857894i 0.997588 0.0694170i \(-0.0221139\pi\)
−0.374291 + 0.927311i \(0.622114\pi\)
\(108\) 0 0
\(109\) 9.84961 0.943422 0.471711 0.881753i \(-0.343637\pi\)
0.471711 + 0.881753i \(0.343637\pi\)
\(110\) 0 0
\(111\) −3.03429 −0.288002
\(112\) 0 0
\(113\) 3.50202 + 4.82012i 0.329442 + 0.453439i 0.941321 0.337513i \(-0.109586\pi\)
−0.611878 + 0.790952i \(0.709586\pi\)
\(114\) 0 0
\(115\) 0.801436 + 1.27943i 0.0747343 + 0.119308i
\(116\) 0 0
\(117\) −12.4163 + 17.0896i −1.14789 + 1.57993i
\(118\) 0 0
\(119\) 0.345752 1.06411i 0.0316950 0.0975472i
\(120\) 0 0
\(121\) −6.53867 + 8.84567i −0.594424 + 0.804152i
\(122\) 0 0
\(123\) −29.7853 9.67784i −2.68565 0.872621i
\(124\) 0 0
\(125\) 1.20534 + 11.1152i 0.107809 + 0.994172i
\(126\) 0 0
\(127\) −16.5263 + 5.36973i −1.46647 + 0.476486i −0.930041 0.367457i \(-0.880229\pi\)
−0.536433 + 0.843943i \(0.680229\pi\)
\(128\) 0 0
\(129\) −12.6274 + 9.17431i −1.11178 + 0.807753i
\(130\) 0 0
\(131\) −3.84691 −0.336106 −0.168053 0.985778i \(-0.553748\pi\)
−0.168053 + 0.985778i \(0.553748\pi\)
\(132\) 0 0
\(133\) 6.77528i 0.587491i
\(134\) 0 0
\(135\) −5.64709 + 6.74499i −0.486024 + 0.580516i
\(136\) 0 0
\(137\) −7.70919 + 2.50487i −0.658641 + 0.214005i −0.619220 0.785217i \(-0.712551\pi\)
−0.0394205 + 0.999223i \(0.512551\pi\)
\(138\) 0 0
\(139\) 16.1882 + 11.7614i 1.37306 + 0.997589i 0.997491 + 0.0707957i \(0.0225539\pi\)
0.375572 + 0.926793i \(0.377446\pi\)
\(140\) 0 0
\(141\) 7.78613 23.9632i 0.655710 2.01807i
\(142\) 0 0
\(143\) 2.40312 + 15.5876i 0.200959 + 1.30350i
\(144\) 0 0
\(145\) −12.5684 0.864980i −1.04375 0.0718327i
\(146\) 0 0
\(147\) 6.52740 8.98420i 0.538371 0.741004i
\(148\) 0 0
\(149\) −1.41102 4.34268i −0.115596 0.355766i 0.876475 0.481447i \(-0.159889\pi\)
−0.992071 + 0.125680i \(0.959889\pi\)
\(150\) 0 0
\(151\) 11.1394 8.09328i 0.906515 0.658621i −0.0336163 0.999435i \(-0.510702\pi\)
0.940131 + 0.340813i \(0.110702\pi\)
\(152\) 0 0
\(153\) 2.90396i 0.234772i
\(154\) 0 0
\(155\) 3.48519 + 13.9131i 0.279937 + 1.11753i
\(156\) 0 0
\(157\) −2.55560 3.51748i −0.203959 0.280725i 0.694768 0.719234i \(-0.255507\pi\)
−0.898727 + 0.438508i \(0.855507\pi\)
\(158\) 0 0
\(159\) 11.1236 + 34.2349i 0.882158 + 2.71500i
\(160\) 0 0
\(161\) −0.934861 0.679216i −0.0736774 0.0535297i
\(162\) 0 0
\(163\) −0.529107 0.171917i −0.0414429 0.0134656i 0.288222 0.957564i \(-0.406936\pi\)
−0.329665 + 0.944098i \(0.606936\pi\)
\(164\) 0 0
\(165\) 1.70251 + 20.1598i 0.132540 + 1.56944i
\(166\) 0 0
\(167\) 4.46642 + 1.45123i 0.345622 + 0.112299i 0.476684 0.879075i \(-0.341839\pi\)
−0.131062 + 0.991374i \(0.541839\pi\)
\(168\) 0 0
\(169\) 7.77758 + 5.65074i 0.598276 + 0.434673i
\(170\) 0 0
\(171\) −5.43399 16.7241i −0.415548 1.27892i
\(172\) 0 0
\(173\) 7.33369 + 10.0940i 0.557570 + 0.767429i 0.991015 0.133751i \(-0.0427022\pi\)
−0.433445 + 0.901180i \(0.642702\pi\)
\(174\) 0 0
\(175\) −4.03413 7.54700i −0.304951 0.570499i
\(176\) 0 0
\(177\) 16.1694i 1.21537i
\(178\) 0 0
\(179\) 15.5655 11.3090i 1.16342 0.845277i 0.173217 0.984884i \(-0.444584\pi\)
0.990207 + 0.139607i \(0.0445839\pi\)
\(180\) 0 0
\(181\) −0.193540 0.595656i −0.0143857 0.0442748i 0.943606 0.331071i \(-0.107410\pi\)
−0.957992 + 0.286796i \(0.907410\pi\)
\(182\) 0 0
\(183\) −24.3281 + 33.4848i −1.79839 + 2.47526i
\(184\) 0 0
\(185\) −0.170763 + 2.48124i −0.0125548 + 0.182424i
\(186\) 0 0
\(187\) 1.52683 + 1.53945i 0.111653 + 0.112575i
\(188\) 0 0
\(189\) 2.08067 6.40364i 0.151346 0.465796i
\(190\) 0 0
\(191\) −6.71370 4.87779i −0.485786 0.352944i 0.317775 0.948166i \(-0.397064\pi\)
−0.803561 + 0.595222i \(0.797064\pi\)
\(192\) 0 0
\(193\) −0.0179897 + 0.00584521i −0.00129493 + 0.000420747i −0.309664 0.950846i \(-0.600217\pi\)
0.308369 + 0.951267i \(0.400217\pi\)
\(194\) 0 0
\(195\) 22.2419 + 18.6215i 1.59278 + 1.33352i
\(196\) 0 0
\(197\) 2.53495i 0.180608i −0.995914 0.0903040i \(-0.971216\pi\)
0.995914 0.0903040i \(-0.0287839\pi\)
\(198\) 0 0
\(199\) −14.6101 −1.03568 −0.517841 0.855477i \(-0.673264\pi\)
−0.517841 + 0.855477i \(0.673264\pi\)
\(200\) 0 0
\(201\) 23.5959 17.1434i 1.66433 1.20920i
\(202\) 0 0
\(203\) 9.17077 2.97976i 0.643662 0.209138i
\(204\) 0 0
\(205\) −9.59014 + 23.8118i −0.669804 + 1.66309i
\(206\) 0 0
\(207\) 2.85237 + 0.926790i 0.198253 + 0.0644164i
\(208\) 0 0
\(209\) −11.6738 6.00872i −0.807490 0.415632i
\(210\) 0 0
\(211\) −0.642557 + 1.97759i −0.0442355 + 0.136143i −0.970735 0.240153i \(-0.922802\pi\)
0.926500 + 0.376296i \(0.122802\pi\)
\(212\) 0 0
\(213\) 2.41900 3.32947i 0.165747 0.228131i
\(214\) 0 0
\(215\) 6.79149 + 10.8421i 0.463176 + 0.739425i
\(216\) 0 0
\(217\) −6.45287 8.88161i −0.438049 0.602923i
\(218\) 0 0
\(219\) −22.7474 −1.53713
\(220\) 0 0
\(221\) 3.10877 0.209118
\(222\) 0 0
\(223\) 2.74866 + 3.78320i 0.184064 + 0.253342i 0.891071 0.453865i \(-0.149955\pi\)
−0.707007 + 0.707207i \(0.749955\pi\)
\(224\) 0 0
\(225\) 16.0108 + 15.3935i 1.06739 + 1.02623i
\(226\) 0 0
\(227\) −8.93440 + 12.2971i −0.592997 + 0.816190i −0.995045 0.0994287i \(-0.968298\pi\)
0.402048 + 0.915619i \(0.368298\pi\)
\(228\) 0 0
\(229\) 2.18447 6.72309i 0.144354 0.444274i −0.852574 0.522607i \(-0.824960\pi\)
0.996927 + 0.0783324i \(0.0249596\pi\)
\(230\) 0 0
\(231\) −6.97338 13.8264i −0.458815 0.909711i
\(232\) 0 0
\(233\) 21.8099 + 7.08647i 1.42881 + 0.464250i 0.918391 0.395673i \(-0.129489\pi\)
0.510423 + 0.859923i \(0.329489\pi\)
\(234\) 0 0
\(235\) −19.1573 7.71557i −1.24969 0.503308i
\(236\) 0 0
\(237\) −22.5009 + 7.31097i −1.46159 + 0.474899i
\(238\) 0 0
\(239\) −15.4399 + 11.2177i −0.998722 + 0.725614i −0.961814 0.273705i \(-0.911751\pi\)
−0.0369082 + 0.999319i \(0.511751\pi\)
\(240\) 0 0
\(241\) −11.5798 −0.745917 −0.372959 0.927848i \(-0.621657\pi\)
−0.372959 + 0.927848i \(0.621657\pi\)
\(242\) 0 0
\(243\) 18.8789i 1.21108i
\(244\) 0 0
\(245\) −6.97932 5.84328i −0.445893 0.373313i
\(246\) 0 0
\(247\) −17.9036 + 5.81723i −1.13918 + 0.370141i
\(248\) 0 0
\(249\) −27.0216 19.6323i −1.71242 1.24415i
\(250\) 0 0
\(251\) 5.27876 16.2463i 0.333192 1.02546i −0.634414 0.772994i \(-0.718758\pi\)
0.967606 0.252466i \(-0.0812417\pi\)
\(252\) 0 0
\(253\) 1.99937 1.00839i 0.125700 0.0633969i
\(254\) 0 0
\(255\) 3.97841 + 0.273802i 0.249138 + 0.0171461i
\(256\) 0 0
\(257\) 7.96319 10.9604i 0.496730 0.683690i −0.484881 0.874580i \(-0.661137\pi\)
0.981611 + 0.190890i \(0.0611373\pi\)
\(258\) 0 0
\(259\) −0.588261 1.81048i −0.0365528 0.112498i
\(260\) 0 0
\(261\) −20.2473 + 14.7105i −1.25327 + 0.910557i
\(262\) 0 0
\(263\) 1.28142i 0.0790155i 0.999219 + 0.0395077i \(0.0125790\pi\)
−0.999219 + 0.0395077i \(0.987421\pi\)
\(264\) 0 0
\(265\) 28.6210 7.16945i 1.75817 0.440416i
\(266\) 0 0
\(267\) −2.89063 3.97862i −0.176904 0.243487i
\(268\) 0 0
\(269\) −4.43132 13.6382i −0.270183 0.831537i −0.990454 0.137844i \(-0.955983\pi\)
0.720271 0.693692i \(-0.244017\pi\)
\(270\) 0 0
\(271\) 7.64657 + 5.55556i 0.464496 + 0.337476i 0.795292 0.606226i \(-0.207317\pi\)
−0.330796 + 0.943702i \(0.607317\pi\)
\(272\) 0 0
\(273\) −21.1163 6.86110i −1.27802 0.415253i
\(274\) 0 0
\(275\) 16.5811 0.257645i 0.999879 0.0155366i
\(276\) 0 0
\(277\) −11.1368 3.61857i −0.669147 0.217419i −0.0453094 0.998973i \(-0.514427\pi\)
−0.623838 + 0.781554i \(0.714427\pi\)
\(278\) 0 0
\(279\) 23.0516 + 16.7480i 1.38006 + 1.00267i
\(280\) 0 0
\(281\) −0.871465 2.68209i −0.0519873 0.160000i 0.921692 0.387922i \(-0.126807\pi\)
−0.973679 + 0.227922i \(0.926807\pi\)
\(282\) 0 0
\(283\) 1.08445 + 1.49262i 0.0644639 + 0.0887269i 0.840032 0.542537i \(-0.182536\pi\)
−0.775568 + 0.631264i \(0.782536\pi\)
\(284\) 0 0
\(285\) −23.4243 + 5.86769i −1.38753 + 0.347572i
\(286\) 0 0
\(287\) 19.6484i 1.15981i
\(288\) 0 0
\(289\) −13.4075 + 9.74115i −0.788679 + 0.573009i
\(290\) 0 0
\(291\) −9.02797 27.7852i −0.529229 1.62880i
\(292\) 0 0
\(293\) 2.20510 3.03506i 0.128823 0.177310i −0.739733 0.672901i \(-0.765048\pi\)
0.868556 + 0.495590i \(0.165048\pi\)
\(294\) 0 0
\(295\) −13.2222 0.909979i −0.769828 0.0529810i
\(296\) 0 0
\(297\) 9.18816 + 9.26410i 0.533151 + 0.537558i
\(298\) 0 0
\(299\) 0.992152 3.05353i 0.0573776 0.176590i
\(300\) 0 0
\(301\) −7.92215 5.75578i −0.456625 0.331758i
\(302\) 0 0
\(303\) 23.6425 7.68192i 1.35823 0.441315i
\(304\) 0 0
\(305\) 26.0124 + 21.7783i 1.48947 + 1.24702i
\(306\) 0 0
\(307\) 7.99801i 0.456470i −0.973606 0.228235i \(-0.926705\pi\)
0.973606 0.228235i \(-0.0732955\pi\)
\(308\) 0 0
\(309\) −20.9388 −1.19117
\(310\) 0 0
\(311\) −10.2107 + 7.41849i −0.578994 + 0.420664i −0.838361 0.545115i \(-0.816486\pi\)
0.259367 + 0.965779i \(0.416486\pi\)
\(312\) 0 0
\(313\) −11.7949 + 3.83241i −0.666690 + 0.216621i −0.622759 0.782414i \(-0.713988\pi\)
−0.0439310 + 0.999035i \(0.513988\pi\)
\(314\) 0 0
\(315\) −15.7692 6.35101i −0.888495 0.357839i
\(316\) 0 0
\(317\) 2.69675 + 0.876229i 0.151465 + 0.0492139i 0.383768 0.923429i \(-0.374626\pi\)
−0.232303 + 0.972643i \(0.574626\pi\)
\(318\) 0 0
\(319\) −2.99907 + 18.4438i −0.167916 + 1.03265i
\(320\) 0 0
\(321\) 9.24694 28.4592i 0.516114 1.58844i
\(322\) 0 0
\(323\) −1.52114 + 2.09368i −0.0846387 + 0.116495i
\(324\) 0 0
\(325\) 16.4792 17.1399i 0.914099 0.950753i
\(326\) 0 0
\(327\) −15.7938 21.7382i −0.873397 1.20213i
\(328\) 0 0
\(329\) 15.8077 0.871509
\(330\) 0 0
\(331\) 14.0009 0.769562 0.384781 0.923008i \(-0.374277\pi\)
0.384781 + 0.923008i \(0.374277\pi\)
\(332\) 0 0
\(333\) 2.90413 + 3.99719i 0.159145 + 0.219045i
\(334\) 0 0
\(335\) −12.6908 20.2599i −0.693372 1.10692i
\(336\) 0 0
\(337\) −8.18748 + 11.2691i −0.446000 + 0.613867i −0.971532 0.236907i \(-0.923866\pi\)
0.525532 + 0.850774i \(0.323866\pi\)
\(338\) 0 0
\(339\) 5.02262 15.4580i 0.272791 0.839565i
\(340\) 0 0
\(341\) 21.0257 3.24151i 1.13861 0.175537i
\(342\) 0 0
\(343\) 18.0203 + 5.85515i 0.973004 + 0.316148i
\(344\) 0 0
\(345\) 1.53863 3.82034i 0.0828372 0.205680i
\(346\) 0 0
\(347\) −29.8076 + 9.68506i −1.60015 + 0.519921i −0.967145 0.254224i \(-0.918180\pi\)
−0.633008 + 0.774145i \(0.718180\pi\)
\(348\) 0 0
\(349\) 17.1026 12.4258i 0.915482 0.665137i −0.0269132 0.999638i \(-0.508568\pi\)
0.942395 + 0.334501i \(0.108568\pi\)
\(350\) 0 0
\(351\) 18.7080 0.998559
\(352\) 0 0
\(353\) 18.6583i 0.993084i 0.868013 + 0.496542i \(0.165397\pi\)
−0.868013 + 0.496542i \(0.834603\pi\)
\(354\) 0 0
\(355\) −2.58648 2.16547i −0.137276 0.114931i
\(356\) 0 0
\(357\) −2.90292 + 0.943217i −0.153639 + 0.0499204i
\(358\) 0 0
\(359\) −9.43404 6.85423i −0.497910 0.361752i 0.310308 0.950636i \(-0.399568\pi\)
−0.808218 + 0.588883i \(0.799568\pi\)
\(360\) 0 0
\(361\) −1.02871 + 3.16605i −0.0541428 + 0.166634i
\(362\) 0 0
\(363\) 30.0072 + 0.246989i 1.57497 + 0.0129635i
\(364\) 0 0
\(365\) −1.28018 + 18.6013i −0.0670075 + 0.973637i
\(366\) 0 0
\(367\) 20.2757 27.9070i 1.05838 1.45674i 0.177070 0.984198i \(-0.443338\pi\)
0.881311 0.472537i \(-0.156662\pi\)
\(368\) 0 0
\(369\) 15.7586 + 48.5001i 0.820362 + 2.52481i
\(370\) 0 0
\(371\) −18.2705 + 13.2743i −0.948558 + 0.689168i
\(372\) 0 0
\(373\) 23.3283i 1.20789i −0.797025 0.603947i \(-0.793594\pi\)
0.797025 0.603947i \(-0.206406\pi\)
\(374\) 0 0
\(375\) 22.5986 20.4833i 1.16699 1.05775i
\(376\) 0 0
\(377\) 15.7480 + 21.6752i 0.811062 + 1.11633i
\(378\) 0 0
\(379\) 3.82655 + 11.7769i 0.196557 + 0.604940i 0.999955 + 0.00949730i \(0.00302313\pi\)
−0.803398 + 0.595442i \(0.796977\pi\)
\(380\) 0 0
\(381\) 38.3509 + 27.8635i 1.96477 + 1.42749i
\(382\) 0 0
\(383\) 10.1594 + 3.30098i 0.519120 + 0.168672i 0.556846 0.830616i \(-0.312011\pi\)
−0.0377259 + 0.999288i \(0.512011\pi\)
\(384\) 0 0
\(385\) −11.6988 + 4.92424i −0.596224 + 0.250963i
\(386\) 0 0
\(387\) 24.1714 + 7.85375i 1.22870 + 0.399229i
\(388\) 0 0
\(389\) −4.99450 3.62872i −0.253231 0.183983i 0.453926 0.891039i \(-0.350023\pi\)
−0.707158 + 0.707056i \(0.750023\pi\)
\(390\) 0 0
\(391\) −0.136394 0.419779i −0.00689776 0.0212291i
\(392\) 0 0
\(393\) 6.16849 + 8.49019i 0.311159 + 0.428274i
\(394\) 0 0
\(395\) 4.71212 + 18.8111i 0.237092 + 0.946491i
\(396\) 0 0
\(397\) 23.6084i 1.18487i −0.805618 0.592436i \(-0.798166\pi\)
0.805618 0.592436i \(-0.201834\pi\)
\(398\) 0 0
\(399\) 14.9531 10.8641i 0.748593 0.543885i
\(400\) 0 0
\(401\) −1.25044 3.84845i −0.0624438 0.192182i 0.914968 0.403527i \(-0.132216\pi\)
−0.977412 + 0.211344i \(0.932216\pi\)
\(402\) 0 0
\(403\) 17.9291 24.6773i 0.893114 1.22927i
\(404\) 0 0
\(405\) −5.78682 0.398260i −0.287549 0.0197897i
\(406\) 0 0
\(407\) 3.64115 + 0.592073i 0.180485 + 0.0293480i
\(408\) 0 0
\(409\) 1.71104 5.26604i 0.0846055 0.260389i −0.899800 0.436302i \(-0.856288\pi\)
0.984406 + 0.175913i \(0.0562878\pi\)
\(410\) 0 0
\(411\) 17.8899 + 12.9978i 0.882444 + 0.641133i
\(412\) 0 0
\(413\) 9.64785 3.13478i 0.474740 0.154252i
\(414\) 0 0
\(415\) −17.5747 + 20.9916i −0.862709 + 1.03044i
\(416\) 0 0
\(417\) 54.5868i 2.67313i
\(418\) 0 0
\(419\) 6.68772 0.326716 0.163358 0.986567i \(-0.447767\pi\)
0.163358 + 0.986567i \(0.447767\pi\)
\(420\) 0 0
\(421\) −14.0535 + 10.2105i −0.684925 + 0.497627i −0.874988 0.484145i \(-0.839131\pi\)
0.190063 + 0.981772i \(0.439131\pi\)
\(422\) 0 0
\(423\) −39.0199 + 12.6783i −1.89721 + 0.616441i
\(424\) 0 0
\(425\) 0.447793 3.23787i 0.0217212 0.157060i
\(426\) 0 0
\(427\) −24.6960 8.02422i −1.19512 0.388319i
\(428\) 0 0
\(429\) 30.5488 30.2984i 1.47491 1.46282i
\(430\) 0 0
\(431\) −0.854246 + 2.62910i −0.0411476 + 0.126639i −0.969520 0.245012i \(-0.921208\pi\)
0.928373 + 0.371651i \(0.121208\pi\)
\(432\) 0 0
\(433\) 13.1027 18.0344i 0.629677 0.866676i −0.368335 0.929693i \(-0.620072\pi\)
0.998012 + 0.0630170i \(0.0200722\pi\)
\(434\) 0 0
\(435\) 18.2443 + 29.1256i 0.874746 + 1.39647i
\(436\) 0 0
\(437\) 1.57101 + 2.16231i 0.0751515 + 0.103437i
\(438\) 0 0
\(439\) −5.68059 −0.271120 −0.135560 0.990769i \(-0.543283\pi\)
−0.135560 + 0.990769i \(0.543283\pi\)
\(440\) 0 0
\(441\) −18.0826 −0.861078
\(442\) 0 0
\(443\) −14.2207 19.5732i −0.675647 0.929949i 0.324224 0.945980i \(-0.394897\pi\)
−0.999871 + 0.0160315i \(0.994897\pi\)
\(444\) 0 0
\(445\) −3.41612 + 2.13986i −0.161940 + 0.101439i
\(446\) 0 0
\(447\) −7.32181 + 10.0776i −0.346310 + 0.476654i
\(448\) 0 0
\(449\) −11.2633 + 34.6648i −0.531548 + 1.63594i 0.219445 + 0.975625i \(0.429575\pi\)
−0.750993 + 0.660310i \(0.770425\pi\)
\(450\) 0 0
\(451\) 33.8540 + 17.4253i 1.59412 + 0.820528i
\(452\) 0 0
\(453\) −35.7240 11.6074i −1.67846 0.545364i
\(454\) 0 0
\(455\) −6.79892 + 16.8813i −0.318738 + 0.791410i
\(456\) 0 0
\(457\) −30.4602 + 9.89713i −1.42487 + 0.462968i −0.917146 0.398552i \(-0.869513\pi\)
−0.507724 + 0.861520i \(0.669513\pi\)
\(458\) 0 0
\(459\) 2.08067 1.51169i 0.0971173 0.0705599i
\(460\) 0 0
\(461\) −10.4043 −0.484577 −0.242289 0.970204i \(-0.577898\pi\)
−0.242289 + 0.970204i \(0.577898\pi\)
\(462\) 0 0
\(463\) 13.9916i 0.650245i 0.945672 + 0.325123i \(0.105406\pi\)
−0.945672 + 0.325123i \(0.894594\pi\)
\(464\) 0 0
\(465\) 25.1180 30.0015i 1.16482 1.39128i
\(466\) 0 0
\(467\) 4.92912 1.60157i 0.228092 0.0741117i −0.192741 0.981250i \(-0.561738\pi\)
0.420833 + 0.907138i \(0.361738\pi\)
\(468\) 0 0
\(469\) 14.8036 + 10.7554i 0.683566 + 0.496640i
\(470\) 0 0
\(471\) −3.66525 + 11.2805i −0.168886 + 0.519777i
\(472\) 0 0
\(473\) 16.9430 8.54524i 0.779040 0.392911i
\(474\) 0 0
\(475\) 3.47994 + 19.4850i 0.159670 + 0.894033i
\(476\) 0 0
\(477\) 34.4526 47.4199i 1.57747 2.17121i
\(478\) 0 0
\(479\) 1.43170 + 4.40633i 0.0654162 + 0.201330i 0.978422 0.206616i \(-0.0662450\pi\)
−0.913006 + 0.407946i \(0.866245\pi\)
\(480\) 0 0
\(481\) 4.27910 3.10895i 0.195110 0.141756i
\(482\) 0 0
\(483\) 3.15237i 0.143438i
\(484\) 0 0
\(485\) −23.2290 + 5.81877i −1.05477 + 0.264217i
\(486\) 0 0
\(487\) 17.9264 + 24.6735i 0.812322 + 1.11807i 0.990961 + 0.134151i \(0.0428306\pi\)
−0.178639 + 0.983915i \(0.557169\pi\)
\(488\) 0 0
\(489\) 0.468994 + 1.44341i 0.0212086 + 0.0652735i
\(490\) 0 0
\(491\) −17.4600 12.6854i −0.787958 0.572485i 0.119399 0.992846i \(-0.461903\pi\)
−0.907357 + 0.420362i \(0.861903\pi\)
\(492\) 0 0
\(493\) 3.50292 + 1.13817i 0.157764 + 0.0512605i
\(494\) 0 0
\(495\) 24.9278 21.5378i 1.12042 0.968051i
\(496\) 0 0
\(497\) 2.45558 + 0.797867i 0.110148 + 0.0357892i
\(498\) 0 0
\(499\) −11.0681 8.04142i −0.495475 0.359983i 0.311811 0.950144i \(-0.399064\pi\)
−0.807286 + 0.590161i \(0.799064\pi\)
\(500\) 0 0
\(501\) −3.95898 12.1845i −0.176874 0.544362i
\(502\) 0 0
\(503\) 4.78142 + 6.58106i 0.213193 + 0.293435i 0.902198 0.431321i \(-0.141952\pi\)
−0.689006 + 0.724756i \(0.741952\pi\)
\(504\) 0 0
\(505\) −4.95120 19.7656i −0.220326 0.879556i
\(506\) 0 0
\(507\) 26.2262i 1.16474i
\(508\) 0 0
\(509\) −25.7114 + 18.6804i −1.13964 + 0.827996i −0.987069 0.160297i \(-0.948755\pi\)
−0.152569 + 0.988293i \(0.548755\pi\)
\(510\) 0 0
\(511\) −4.41007 13.5728i −0.195090 0.600425i
\(512\) 0 0
\(513\) −9.15397 + 12.5994i −0.404158 + 0.556275i
\(514\) 0 0
\(515\) −1.17839 + 17.1223i −0.0519261 + 0.754500i
\(516\) 0 0
\(517\) −14.0192 + 27.2366i −0.616566 + 1.19787i
\(518\) 0 0
\(519\) 10.5180 32.3711i 0.461690 1.42093i
\(520\) 0 0
\(521\) 7.18170 + 5.21781i 0.314636 + 0.228596i 0.733883 0.679276i \(-0.237706\pi\)
−0.419247 + 0.907872i \(0.637706\pi\)
\(522\) 0 0
\(523\) −28.5567 + 9.27864i −1.24870 + 0.405727i −0.857454 0.514560i \(-0.827955\pi\)
−0.391244 + 0.920287i \(0.627955\pi\)
\(524\) 0 0
\(525\) −10.1877 + 21.0049i −0.444626 + 0.916730i
\(526\) 0 0
\(527\) 4.19333i 0.182664i
\(528\) 0 0
\(529\) 22.5442 0.980180
\(530\) 0 0
\(531\) −21.3006 + 15.4758i −0.924367 + 0.671592i
\(532\) 0 0
\(533\) 51.9206 16.8700i 2.24893 0.730722i
\(534\) 0 0
\(535\) −22.7516 9.16314i −0.983636 0.396157i
\(536\) 0 0
\(537\) −49.9184 16.2195i −2.15414 0.699922i
\(538\) 0 0
\(539\) −9.58595 + 9.50738i −0.412896 + 0.409512i
\(540\) 0 0
\(541\) −8.98551 + 27.6545i −0.386317 + 1.18896i 0.549203 + 0.835689i \(0.314931\pi\)
−0.935520 + 0.353273i \(0.885069\pi\)
\(542\) 0 0
\(543\) −1.00428 + 1.38228i −0.0430979 + 0.0593191i
\(544\) 0 0
\(545\) −18.6649 + 11.6917i −0.799517 + 0.500817i
\(546\) 0 0
\(547\) −3.71206 5.10921i −0.158716 0.218454i 0.722251 0.691631i \(-0.243107\pi\)
−0.880968 + 0.473176i \(0.843107\pi\)
\(548\) 0 0
\(549\) 67.3954 2.87636
\(550\) 0 0
\(551\) −22.3033 −0.950153
\(552\) 0 0
\(553\) −8.72454 12.0083i −0.371005 0.510645i
\(554\) 0 0
\(555\) 5.74995 3.60176i 0.244072 0.152886i
\(556\) 0 0
\(557\) 18.4284 25.3645i 0.780836 1.07473i −0.214354 0.976756i \(-0.568765\pi\)
0.995189 0.0979718i \(-0.0312355\pi\)
\(558\) 0 0
\(559\) 8.40764 25.8761i 0.355605 1.09444i
\(560\) 0 0
\(561\) 0.949328 5.83822i 0.0400807 0.246490i
\(562\) 0 0
\(563\) 13.9824 + 4.54315i 0.589287 + 0.191471i 0.588457 0.808529i \(-0.299736\pi\)
0.000830194 1.00000i \(0.499736\pi\)
\(564\) 0 0
\(565\) −12.3579 4.97710i −0.519899 0.209388i
\(566\) 0 0
\(567\) 4.22246 1.37196i 0.177327 0.0576170i
\(568\) 0 0
\(569\) −18.9361 + 13.7578i −0.793841 + 0.576759i −0.909101 0.416576i \(-0.863230\pi\)
0.115260 + 0.993335i \(0.463230\pi\)
\(570\) 0 0
\(571\) 9.67155 0.404742 0.202371 0.979309i \(-0.435135\pi\)
0.202371 + 0.979309i \(0.435135\pi\)
\(572\) 0 0
\(573\) 22.6387i 0.945746i
\(574\) 0 0
\(575\) −3.03743 1.47319i −0.126669 0.0614363i
\(576\) 0 0
\(577\) 25.3831 8.24747i 1.05671 0.343347i 0.271413 0.962463i \(-0.412509\pi\)
0.785299 + 0.619116i \(0.212509\pi\)
\(578\) 0 0
\(579\) 0.0417468 + 0.0303308i 0.00173494 + 0.00126051i
\(580\) 0 0
\(581\) 6.47540 19.9292i 0.268645 0.826804i
\(582\) 0 0
\(583\) −6.66816 43.2524i −0.276167 1.79133i
\(584\) 0 0
\(585\) 3.24309 47.1229i 0.134085 1.94829i
\(586\) 0 0
\(587\) 19.9125 27.4073i 0.821878 1.13122i −0.167502 0.985872i \(-0.553570\pi\)
0.989381 0.145347i \(-0.0464298\pi\)
\(588\) 0 0
\(589\) 7.84669 + 24.1496i 0.323317 + 0.995068i
\(590\) 0 0
\(591\) −5.59468 + 4.06477i −0.230134 + 0.167202i
\(592\) 0 0
\(593\) 7.43914i 0.305489i 0.988266 + 0.152745i \(0.0488112\pi\)
−0.988266 + 0.152745i \(0.951189\pi\)
\(594\) 0 0
\(595\) 0.607929 + 2.42690i 0.0249227 + 0.0994931i
\(596\) 0 0
\(597\) 23.4271 + 32.2447i 0.958809 + 1.31969i
\(598\) 0 0
\(599\) −6.30588 19.4075i −0.257651 0.792969i −0.993296 0.115601i \(-0.963121\pi\)
0.735644 0.677368i \(-0.236879\pi\)
\(600\) 0 0
\(601\) −34.7579 25.2531i −1.41780 1.03009i −0.992129 0.125217i \(-0.960037\pi\)
−0.425673 0.904877i \(-0.639963\pi\)
\(602\) 0 0
\(603\) −45.1674 14.6758i −1.83936 0.597644i
\(604\) 0 0
\(605\) 1.89071 24.5240i 0.0768684 0.997041i
\(606\) 0 0
\(607\) 42.1420 + 13.6928i 1.71049 + 0.555772i 0.990415 0.138122i \(-0.0441067\pi\)
0.720076 + 0.693895i \(0.244107\pi\)
\(608\) 0 0
\(609\) −21.2816 15.4620i −0.862375 0.626552i
\(610\) 0 0
\(611\) 13.5725 + 41.7718i 0.549083 + 1.68990i
\(612\) 0 0
\(613\) 14.2472 + 19.6096i 0.575439 + 0.792025i 0.993186 0.116539i \(-0.0371800\pi\)
−0.417747 + 0.908564i \(0.637180\pi\)
\(614\) 0 0
\(615\) 67.9307 17.0164i 2.73923 0.686167i
\(616\) 0 0
\(617\) 39.5457i 1.59205i 0.605264 + 0.796025i \(0.293068\pi\)
−0.605264 + 0.796025i \(0.706932\pi\)
\(618\) 0 0
\(619\) −2.98508 + 2.16879i −0.119981 + 0.0871710i −0.646157 0.763204i \(-0.723625\pi\)
0.526177 + 0.850375i \(0.323625\pi\)
\(620\) 0 0
\(621\) −0.820796 2.52615i −0.0329374 0.101371i
\(622\) 0 0
\(623\) 1.81353 2.49610i 0.0726574 0.100004i
\(624\) 0 0
\(625\) −15.4780 19.6324i −0.619122 0.785295i
\(626\) 0 0
\(627\) 5.45742 + 35.3991i 0.217948 + 1.41370i
\(628\) 0 0
\(629\) 0.224696 0.691543i 0.00895921 0.0275736i
\(630\) 0 0
\(631\) −21.8127 15.8478i −0.868349 0.630893i 0.0617944 0.998089i \(-0.480318\pi\)
−0.930143 + 0.367196i \(0.880318\pi\)
\(632\) 0 0
\(633\) 5.39490 1.75291i 0.214428 0.0696719i
\(634\) 0 0
\(635\) 24.9432 29.7926i 0.989842 1.18229i
\(636\) 0 0
\(637\) 19.3579i 0.766989i
\(638\) 0 0
\(639\) −6.70127 −0.265098
\(640\) 0 0
\(641\) −8.59512 + 6.24472i −0.339487 + 0.246652i −0.744445 0.667683i \(-0.767286\pi\)
0.404958 + 0.914335i \(0.367286\pi\)
\(642\) 0 0
\(643\) −7.53543 + 2.44841i −0.297169 + 0.0965559i −0.453807 0.891100i \(-0.649934\pi\)
0.156638 + 0.987656i \(0.449934\pi\)
\(644\) 0 0
\(645\) 13.0386 32.3741i 0.513395 1.27473i
\(646\) 0 0
\(647\) 1.05242 + 0.341951i 0.0413748 + 0.0134435i 0.329631 0.944110i \(-0.393076\pi\)
−0.288257 + 0.957553i \(0.593076\pi\)
\(648\) 0 0
\(649\) −3.15509 + 19.4033i −0.123848 + 0.761646i
\(650\) 0 0
\(651\) −9.25474 + 28.4831i −0.362722 + 1.11634i
\(652\) 0 0
\(653\) 3.29765 4.53883i 0.129047 0.177618i −0.739604 0.673042i \(-0.764987\pi\)
0.868651 + 0.495424i \(0.164987\pi\)
\(654\) 0 0
\(655\) 7.28986 4.56636i 0.284838 0.178422i
\(656\) 0 0
\(657\) 21.7716 + 29.9661i 0.849393 + 1.16909i
\(658\) 0 0
\(659\) −12.6847 −0.494124 −0.247062 0.969000i \(-0.579465\pi\)
−0.247062 + 0.969000i \(0.579465\pi\)
\(660\) 0 0
\(661\) −35.1508 −1.36721 −0.683604 0.729853i \(-0.739589\pi\)
−0.683604 + 0.729853i \(0.739589\pi\)
\(662\) 0 0
\(663\) −4.98488 6.86110i −0.193597 0.266463i
\(664\) 0 0
\(665\) −8.04239 12.8391i −0.311871 0.497878i
\(666\) 0 0
\(667\) 2.23589 3.07744i 0.0865740 0.119159i
\(668\) 0 0
\(669\) 3.94214 12.1326i 0.152412 0.469075i
\(670\) 0 0
\(671\) 35.7275 35.4347i 1.37925 1.36794i
\(672\) 0 0
\(673\) −34.9096 11.3428i −1.34567 0.437234i −0.454435 0.890780i \(-0.650159\pi\)
−0.891233 + 0.453546i \(0.850159\pi\)
\(674\) 0 0
\(675\) 2.69474 19.4849i 0.103720 0.749974i
\(676\) 0 0
\(677\) −14.8944 + 4.83948i −0.572438 + 0.185996i −0.580910 0.813968i \(-0.697303\pi\)
0.00847232 + 0.999964i \(0.497303\pi\)
\(678\) 0 0
\(679\) 14.8285 10.7735i 0.569064 0.413449i
\(680\) 0 0
\(681\) 41.4662 1.58899
\(682\) 0 0
\(683\) 14.0291i 0.536808i 0.963306 + 0.268404i \(0.0864962\pi\)
−0.963306 + 0.268404i \(0.913504\pi\)
\(684\) 0 0
\(685\) 11.6355 13.8977i 0.444570 0.531002i
\(686\) 0 0
\(687\) −18.3407 + 5.95927i −0.699743 + 0.227360i
\(688\) 0 0
\(689\) −50.7642 36.8823i −1.93396 1.40511i
\(690\) 0 0
\(691\) 3.31456 10.2012i 0.126092 0.388071i −0.868007 0.496553i \(-0.834599\pi\)
0.994098 + 0.108482i \(0.0345989\pi\)
\(692\) 0 0
\(693\) −11.5398 + 22.4196i −0.438362 + 0.851651i
\(694\) 0 0
\(695\) −44.6374 3.07203i −1.69319 0.116529i
\(696\) 0 0
\(697\) 4.41134 6.07169i 0.167091 0.229981i
\(698\) 0 0
\(699\) −19.3320 59.4979i −0.731205 2.25042i
\(700\) 0 0
\(701\) 0.940147 0.683057i 0.0355088 0.0257987i −0.569889 0.821721i \(-0.693014\pi\)
0.605398 + 0.795923i \(0.293014\pi\)
\(702\) 0 0
\(703\) 4.40309i 0.166066i
\(704\) 0 0
\(705\) 13.6902 + 54.6524i 0.515603 + 2.05833i
\(706\) 0 0
\(707\) 9.16720 + 12.6176i 0.344768 + 0.474533i
\(708\) 0 0
\(709\) −11.3880 35.0488i −0.427687 1.31628i −0.900398 0.435067i \(-0.856725\pi\)
0.472711 0.881217i \(-0.343275\pi\)
\(710\) 0 0
\(711\) 31.1667 + 22.6439i 1.16884 + 0.849214i
\(712\) 0 0
\(713\) −4.11882 1.33829i −0.154251 0.0501192i
\(714\) 0 0
\(715\) −23.0567 26.6859i −0.862273 0.997995i
\(716\) 0 0
\(717\) 49.5154 + 16.0885i 1.84918 + 0.600837i
\(718\) 0 0
\(719\) −33.8568 24.5984i −1.26265 0.917366i −0.263761 0.964588i \(-0.584963\pi\)
−0.998884 + 0.0472225i \(0.984963\pi\)
\(720\) 0 0
\(721\) −4.05943 12.4936i −0.151181 0.465287i
\(722\) 0 0
\(723\) 18.5680 + 25.5567i 0.690552 + 0.950463i
\(724\) 0 0
\(725\) 24.8437 13.2798i 0.922672 0.493200i
\(726\) 0 0
\(727\) 25.1900i 0.934245i −0.884193 0.467122i \(-0.845291\pi\)
0.884193 0.467122i \(-0.154709\pi\)
\(728\) 0 0
\(729\) −35.3700 + 25.6978i −1.31000 + 0.951772i
\(730\) 0 0
\(731\) −1.15583 3.55727i −0.0427498 0.131570i
\(732\) 0 0
\(733\) −23.3513 + 32.1404i −0.862501 + 1.18713i 0.118466 + 0.992958i \(0.462202\pi\)
−0.980967 + 0.194173i \(0.937798\pi\)
\(734\) 0 0
\(735\) −1.70493 + 24.7731i −0.0628873 + 0.913770i
\(736\) 0 0
\(737\) −31.6602 + 15.9679i −1.16622 + 0.588186i
\(738\) 0 0
\(739\) −7.89240 + 24.2903i −0.290327 + 0.893534i 0.694425 + 0.719566i \(0.255659\pi\)
−0.984751 + 0.173968i \(0.944341\pi\)
\(740\) 0 0
\(741\) 41.5469 + 30.1856i 1.52626 + 1.10890i
\(742\) 0 0
\(743\) 15.2722 4.96223i 0.560281 0.182046i −0.0151663 0.999885i \(-0.504828\pi\)
0.575448 + 0.817838i \(0.304828\pi\)
\(744\) 0 0
\(745\) 7.82873 + 6.55442i 0.286822 + 0.240136i
\(746\) 0 0
\(747\) 54.3868i 1.98991i
\(748\) 0 0
\(749\) 18.7736 0.685971
\(750\) 0 0
\(751\) −1.58907 + 1.15452i −0.0579859 + 0.0421292i −0.616401 0.787433i \(-0.711410\pi\)
0.558415 + 0.829562i \(0.311410\pi\)
\(752\) 0 0
\(753\) −44.3204 + 14.4006i −1.61512 + 0.524786i
\(754\) 0 0
\(755\) −11.5022 + 28.5594i −0.418609 + 1.03938i
\(756\) 0 0
\(757\) 30.8321 + 10.0180i 1.12061 + 0.364109i 0.810002 0.586428i \(-0.199466\pi\)
0.310612 + 0.950537i \(0.399466\pi\)
\(758\) 0 0
\(759\) −5.43151 2.79571i −0.197151 0.101478i
\(760\) 0 0
\(761\) −14.6289 + 45.0230i −0.530296 + 1.63208i 0.223303 + 0.974749i \(0.428316\pi\)
−0.753599 + 0.657334i \(0.771684\pi\)
\(762\) 0 0
\(763\) 9.90869 13.6381i 0.358719 0.493734i
\(764\) 0 0
\(765\) −3.44706 5.50298i −0.124629 0.198961i
\(766\) 0 0
\(767\) 16.5672 + 22.8028i 0.598208 + 0.823362i
\(768\) 0 0
\(769\) 17.6637 0.636969 0.318485 0.947928i \(-0.396826\pi\)
0.318485 + 0.947928i \(0.396826\pi\)
\(770\) 0 0
\(771\) −36.9586 −1.33103
\(772\) 0 0
\(773\) −17.8124 24.5166i −0.640666 0.881801i 0.357985 0.933727i \(-0.383464\pi\)
−0.998651 + 0.0519265i \(0.983464\pi\)
\(774\) 0 0
\(775\) −23.1196 22.2283i −0.830480 0.798463i
\(776\) 0 0
\(777\) −3.05249 + 4.20139i −0.109507 + 0.150724i
\(778\) 0 0
\(779\) −14.0436 + 43.2218i −0.503165 + 1.54858i
\(780\) 0 0
\(781\) −3.55247 + 3.52335i −0.127117 + 0.126075i
\(782\) 0 0
\(783\) 21.0799 + 6.84929i 0.753335 + 0.244774i
\(784\) 0 0
\(785\) 9.01814 + 3.63204i 0.321871 + 0.129633i
\(786\) 0 0
\(787\) −40.1295 + 13.0389i −1.43046 + 0.464785i −0.918910 0.394467i \(-0.870929\pi\)
−0.511552 + 0.859252i \(0.670929\pi\)
\(788\) 0 0
\(789\) 2.82810 2.05474i 0.100683 0.0731506i
\(790\) 0 0
\(791\) 10.1971 0.362569
\(792\) 0 0
\(793\) 72.1484i 2.56207i
\(794\) 0 0
\(795\) −61.7166 51.6708i −2.18886 1.83257i
\(796\) 0 0
\(797\) −20.3023 + 6.59662i −0.719145 + 0.233664i −0.645652 0.763632i \(-0.723414\pi\)
−0.0734924 + 0.997296i \(0.523414\pi\)
\(798\) 0 0
\(799\) 4.88486 + 3.54906i 0.172814 + 0.125557i
\(800\) 0 0
\(801\) −2.47455 + 7.61590i −0.0874341 + 0.269094i
\(802\) 0 0
\(803\) 27.2969 + 4.43864i 0.963288 + 0.156636i
\(804\) 0 0
\(805\) 2.57780 + 0.177409i 0.0908553 + 0.00625283i
\(806\) 0 0
\(807\) −22.9942 + 31.6487i −0.809433 + 1.11409i
\(808\) 0 0
\(809\) 6.33703 + 19.5034i 0.222798 + 0.685702i 0.998508 + 0.0546119i \(0.0173922\pi\)
−0.775710 + 0.631090i \(0.782608\pi\)
\(810\) 0 0
\(811\) 2.20327 1.60077i 0.0773674 0.0562107i −0.548429 0.836197i \(-0.684774\pi\)
0.625797 + 0.779986i \(0.284774\pi\)
\(812\) 0 0
\(813\) 25.7844i 0.904298i
\(814\) 0 0
\(815\) 1.20672 0.302279i 0.0422696 0.0105884i
\(816\) 0 0
\(817\) 13.3129 + 18.3237i 0.465761 + 0.641065i
\(818\) 0 0
\(819\) 11.1721 + 34.3841i 0.390384 + 1.20148i
\(820\) 0 0
\(821\) 9.22131 + 6.69968i 0.321826 + 0.233820i 0.736954 0.675943i \(-0.236263\pi\)
−0.415128 + 0.909763i \(0.636263\pi\)
\(822\) 0 0
\(823\) −45.1364 14.6657i −1.57336 0.511215i −0.613023 0.790065i \(-0.710047\pi\)
−0.960335 + 0.278850i \(0.910047\pi\)
\(824\) 0 0
\(825\) −27.1563 36.1817i −0.945461 1.25968i
\(826\) 0 0
\(827\) −19.1572 6.22456i −0.666162 0.216449i −0.0436349 0.999048i \(-0.513894\pi\)
−0.622527 + 0.782598i \(0.713894\pi\)
\(828\) 0 0
\(829\) −5.35298 3.88917i −0.185917 0.135076i 0.490934 0.871197i \(-0.336656\pi\)
−0.676851 + 0.736120i \(0.736656\pi\)
\(830\) 0 0
\(831\) 9.87154 + 30.3815i 0.342440 + 1.05392i
\(832\) 0 0
\(833\) 1.56421 + 2.15295i 0.0541968 + 0.0745955i
\(834\) 0 0
\(835\) −10.1864 + 2.55167i −0.352517 + 0.0883041i
\(836\) 0 0
\(837\) 25.2347i 0.872238i
\(838\) 0 0
\(839\) −8.05951 + 5.85558i −0.278245 + 0.202157i −0.718152 0.695887i \(-0.755012\pi\)
0.439906 + 0.898044i \(0.355012\pi\)
\(840\) 0 0
\(841\) 0.847493 + 2.60831i 0.0292239 + 0.0899419i
\(842\) 0 0
\(843\) −4.52204 + 6.22405i −0.155747 + 0.214368i
\(844\) 0 0
\(845\) −21.4460 1.47595i −0.737764 0.0507743i
\(846\) 0 0
\(847\) 5.67016 + 17.9524i 0.194829 + 0.616852i
\(848\) 0 0
\(849\) 1.55532 4.78679i 0.0533786 0.164282i
\(850\) 0 0
\(851\) −0.607544 0.441407i −0.0208264 0.0151312i
\(852\) 0 0
\(853\) 24.1549 7.84842i 0.827049 0.268725i 0.135247 0.990812i \(-0.456817\pi\)
0.691802 + 0.722087i \(0.256817\pi\)
\(854\) 0 0
\(855\) 30.1492 + 25.2417i 1.03108 + 0.863249i
\(856\) 0 0
\(857\) 43.5351i 1.48713i 0.668663 + 0.743566i \(0.266867\pi\)
−0.668663 + 0.743566i \(0.733133\pi\)
\(858\) 0 0
\(859\) 41.3539 1.41098 0.705489 0.708721i \(-0.250728\pi\)
0.705489 + 0.708721i \(0.250728\pi\)
\(860\) 0 0
\(861\) −43.3643 + 31.5060i −1.47785 + 1.07372i
\(862\) 0 0
\(863\) 15.3460 4.98621i 0.522383 0.169733i −0.0359435 0.999354i \(-0.511444\pi\)
0.558327 + 0.829621i \(0.311444\pi\)
\(864\) 0 0
\(865\) −25.8790 10.4227i −0.879912 0.354382i
\(866\) 0 0
\(867\) 42.9977 + 13.9708i 1.46028 + 0.474473i
\(868\) 0 0
\(869\) 28.4276 4.38265i 0.964341 0.148671i
\(870\) 0 0
\(871\) −15.7108 + 48.3529i −0.532340 + 1.63837i
\(872\) 0 0
\(873\) −27.9619 + 38.4863i −0.946367 + 1.30256i
\(874\) 0 0
\(875\) 16.6031 + 9.51289i 0.561286 + 0.321594i
\(876\) 0 0
\(877\) −25.6803 35.3458i −0.867161 1.19354i −0.979814 0.199910i \(-0.935935\pi\)
0.112654 0.993634i \(-0.464065\pi\)
\(878\) 0 0
\(879\) −10.2343 −0.345194
\(880\) 0 0
\(881\) 51.4721 1.73414 0.867069 0.498187i \(-0.166001\pi\)
0.867069 + 0.498187i \(0.166001\pi\)
\(882\) 0 0
\(883\) 24.7534 + 34.0702i 0.833019 + 1.14655i 0.987354 + 0.158534i \(0.0506767\pi\)
−0.154334 + 0.988019i \(0.549323\pi\)
\(884\) 0 0
\(885\) 19.1934 + 30.6408i 0.645179 + 1.02998i
\(886\) 0 0
\(887\) −23.2383 + 31.9847i −0.780265 + 1.07394i 0.214988 + 0.976617i \(0.431029\pi\)
−0.995253 + 0.0973254i \(0.968971\pi\)
\(888\) 0 0
\(889\) −9.19032 + 28.2849i −0.308233 + 0.948645i
\(890\) 0 0
\(891\) −1.38085 + 8.49201i −0.0462602 + 0.284493i
\(892\) 0 0
\(893\) −34.7733 11.2985i −1.16365 0.378091i
\(894\) 0 0
\(895\) −16.0725 + 39.9071i −0.537244 + 1.33395i
\(896\) 0 0
\(897\) −8.33010 + 2.70661i −0.278134 + 0.0903711i
\(898\) 0 0
\(899\) 29.2371 21.2420i 0.975111 0.708460i
\(900\) 0 0
\(901\) −8.62617 −0.287379
\(902\) 0 0
\(903\) 26.7136i 0.888974i
\(904\) 0 0
\(905\) 1.07381 + 0.899026i 0.0356948 + 0.0298846i
\(906\) 0 0
\(907\) 0.0864398 0.0280860i 0.00287018 0.000932580i −0.307582 0.951522i \(-0.599520\pi\)
0.310452 + 0.950589i \(0.399520\pi\)
\(908\) 0 0
\(909\) −32.7480 23.7928i −1.08618 0.789159i
\(910\) 0 0
\(911\) −14.4946 + 44.6097i −0.480227 + 1.47799i 0.358550 + 0.933511i \(0.383271\pi\)
−0.838777 + 0.544476i \(0.816729\pi\)
\(912\) 0 0
\(913\) 28.5951 + 28.8315i 0.946361 + 0.954183i
\(914\) 0 0
\(915\) 6.35440 92.3312i 0.210070 3.05238i
\(916\) 0 0
\(917\) −3.86999 + 5.32658i −0.127798 + 0.175899i
\(918\) 0 0
\(919\) 7.67481 + 23.6206i 0.253169 + 0.779173i 0.994185 + 0.107686i \(0.0343441\pi\)
−0.741016 + 0.671487i \(0.765656\pi\)
\(920\) 0 0
\(921\) −17.6517 + 12.8247i −0.581644 + 0.422589i
\(922\) 0 0
\(923\) 7.17388i 0.236131i
\(924\) 0 0
\(925\) −2.62168 4.90462i −0.0862004 0.161263i
\(926\) 0 0
\(927\) 20.0406 + 27.5835i 0.658219 + 0.905961i
\(928\) 0 0
\(929\) −14.7623 45.4336i −0.484334 1.49063i −0.832943 0.553359i \(-0.813346\pi\)
0.348608 0.937268i \(-0.386654\pi\)
\(930\) 0 0
\(931\) −13.0371 9.47199i −0.427273 0.310432i
\(932\) 0 0
\(933\) 32.7454 + 10.6396i 1.07204 + 0.348326i
\(934\) 0 0
\(935\) −4.72067 1.10486i −0.154383 0.0361328i
\(936\) 0 0
\(937\) 12.2414 + 3.97746i 0.399908 + 0.129938i 0.502064 0.864830i \(-0.332574\pi\)
−0.102156 + 0.994768i \(0.532574\pi\)
\(938\) 0 0
\(939\) 27.3713 + 19.8864i 0.893227 + 0.648968i
\(940\) 0 0
\(941\) 5.45583 + 16.7913i 0.177855 + 0.547381i 0.999752 0.0222545i \(-0.00708442\pi\)
−0.821898 + 0.569635i \(0.807084\pi\)
\(942\) 0 0
\(943\) −4.55594 6.27071i −0.148362 0.204203i
\(944\) 0 0
\(945\) 3.65841 + 14.6046i 0.119008 + 0.475088i
\(946\) 0 0
\(947\) 31.2112i 1.01423i −0.861879 0.507114i \(-0.830712\pi\)
0.861879 0.507114i \(-0.169288\pi\)
\(948\) 0 0
\(949\) 32.0795 23.3071i 1.04134 0.756580i
\(950\) 0 0
\(951\) −2.39037 7.35680i −0.0775131 0.238561i
\(952\) 0 0
\(953\) −16.2877 + 22.4181i −0.527609 + 0.726192i −0.986764 0.162164i \(-0.948152\pi\)
0.459154 + 0.888357i \(0.348152\pi\)
\(954\) 0 0
\(955\) 18.5124 + 1.27406i 0.599048 + 0.0412276i
\(956\) 0 0
\(957\) 45.5147 22.9555i 1.47128 0.742045i
\(958\) 0 0
\(959\) −4.28710 + 13.1943i −0.138438 + 0.426067i
\(960\) 0 0
\(961\) −8.20701 5.96274i −0.264742 0.192346i
\(962\) 0 0
\(963\) −46.3407 + 15.0570i −1.49331 + 0.485205i
\(964\) 0 0
\(965\) 0.0271519 0.0324307i 0.000874051 0.00104398i
\(966\) 0 0
\(967\) 30.3110i 0.974736i −0.873197 0.487368i \(-0.837957\pi\)
0.873197 0.487368i \(-0.162043\pi\)
\(968\) 0 0
\(969\) 7.05991 0.226797
\(970\) 0 0
\(971\) −30.0208 + 21.8114i −0.963413 + 0.699961i −0.953941 0.299995i \(-0.903015\pi\)
−0.00947210 + 0.999955i \(0.503015\pi\)
\(972\) 0 0
\(973\) 32.5706 10.5828i 1.04416 0.339269i
\(974\) 0 0
\(975\) −64.2523 8.88601i −2.05772 0.284580i
\(976\) 0 0
\(977\) −11.5190 3.74276i −0.368527 0.119742i 0.118898 0.992906i \(-0.462064\pi\)
−0.487425 + 0.873165i \(0.662064\pi\)
\(978\) 0 0
\(979\) 2.69243 + 5.33839i 0.0860504 + 0.170616i
\(980\) 0 0
\(981\) −13.5204 + 41.6115i −0.431673 + 1.32855i
\(982\) 0 0
\(983\) −7.44647 + 10.2492i −0.237506 + 0.326898i −0.911087 0.412215i \(-0.864755\pi\)
0.673581 + 0.739113i \(0.264755\pi\)
\(984\) 0 0
\(985\) 3.00904 + 4.80371i 0.0958760 + 0.153059i
\(986\) 0 0
\(987\) −25.3476 34.8879i −0.806822 1.11050i
\(988\) 0 0
\(989\) −3.86294 −0.122834
\(990\) 0 0
\(991\) −8.30199 −0.263721 −0.131861 0.991268i \(-0.542095\pi\)
−0.131861 + 0.991268i \(0.542095\pi\)
\(992\) 0 0
\(993\) −22.4504 30.9003i −0.712442 0.980592i
\(994\) 0 0
\(995\) 27.6859 17.3425i 0.877704 0.549793i
\(996\) 0 0
\(997\) −22.2050 + 30.5626i −0.703241 + 0.967928i 0.296676 + 0.954978i \(0.404122\pi\)
−0.999916 + 0.0129494i \(0.995878\pi\)
\(998\) 0 0
\(999\) 1.35218 4.16158i 0.0427810 0.131666i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 880.2.cd.d.449.1 24
4.3 odd 2 220.2.t.a.9.6 yes 24
5.4 even 2 inner 880.2.cd.d.449.6 24
11.5 even 5 inner 880.2.cd.d.49.6 24
20.3 even 4 1100.2.n.f.801.1 24
20.7 even 4 1100.2.n.f.801.6 24
20.19 odd 2 220.2.t.a.9.1 24
44.7 even 10 2420.2.b.h.969.2 12
44.15 odd 10 2420.2.b.i.969.2 12
44.27 odd 10 220.2.t.a.49.1 yes 24
55.49 even 10 inner 880.2.cd.d.49.1 24
220.27 even 20 1100.2.n.f.401.6 24
220.59 odd 10 2420.2.b.i.969.11 12
220.139 even 10 2420.2.b.h.969.11 12
220.159 odd 10 220.2.t.a.49.6 yes 24
220.203 even 20 1100.2.n.f.401.1 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.2.t.a.9.1 24 20.19 odd 2
220.2.t.a.9.6 yes 24 4.3 odd 2
220.2.t.a.49.1 yes 24 44.27 odd 10
220.2.t.a.49.6 yes 24 220.159 odd 10
880.2.cd.d.49.1 24 55.49 even 10 inner
880.2.cd.d.49.6 24 11.5 even 5 inner
880.2.cd.d.449.1 24 1.1 even 1 trivial
880.2.cd.d.449.6 24 5.4 even 2 inner
1100.2.n.f.401.1 24 220.203 even 20
1100.2.n.f.401.6 24 220.27 even 20
1100.2.n.f.801.1 24 20.3 even 4
1100.2.n.f.801.6 24 20.7 even 4
2420.2.b.h.969.2 12 44.7 even 10
2420.2.b.h.969.11 12 220.139 even 10
2420.2.b.i.969.2 12 44.15 odd 10
2420.2.b.i.969.11 12 220.59 odd 10