Properties

Label 220.2.t.a.49.6
Level $220$
Weight $2$
Character 220.49
Analytic conductor $1.757$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [220,2,Mod(9,220)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("220.9"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(220, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 5, 6])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 220.t (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.75670884447\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 49.6
Character \(\chi\) \(=\) 220.49
Dual form 220.2.t.a.9.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.60349 - 2.20702i) q^{3} +(-1.89499 - 1.18702i) q^{5} +(-1.00600 - 1.38464i) q^{7} +(-1.37268 - 4.22469i) q^{9} +(-1.49354 + 2.96131i) q^{11} +(4.52263 - 1.46949i) q^{13} +(-5.65837 + 2.27889i) q^{15} +(0.621741 + 0.202016i) q^{17} +(3.20263 + 2.32684i) q^{19} -4.66902 q^{21} -0.675167i q^{23} +(2.18197 + 4.49878i) q^{25} +(-3.74152 - 1.21569i) q^{27} +(4.55804 - 3.31161i) q^{29} +(-1.98216 - 6.10045i) q^{31} +(4.14077 + 8.04469i) q^{33} +(0.262763 + 3.81801i) q^{35} +(0.653775 + 0.899844i) q^{37} +(4.00881 - 12.3378i) q^{39} +(9.28765 + 6.74788i) q^{41} -5.72146i q^{43} +(-2.41357 + 9.63513i) q^{45} +(-5.42888 + 7.47221i) q^{47} +(1.25793 - 3.87151i) q^{49} +(1.44281 - 1.04826i) q^{51} +(-12.5493 + 4.07753i) q^{53} +(6.34537 - 3.83878i) q^{55} +(10.2708 - 3.33717i) q^{57} +(-4.79516 + 3.48389i) q^{59} +(-4.68840 + 14.4294i) q^{61} +(-4.46874 + 6.15069i) q^{63} +(-10.3147 - 2.58378i) q^{65} +10.6913i q^{67} +(-1.49010 - 1.08262i) q^{69} +(-0.466178 + 1.43475i) q^{71} +(4.90121 + 6.74593i) q^{73} +(13.4276 + 2.39812i) q^{75} +(5.60284 - 0.911054i) q^{77} +(-2.67995 - 8.24805i) q^{79} +(2.09864 - 1.52475i) q^{81} +(-11.6443 - 3.78345i) q^{83} +(-0.938396 - 1.12084i) q^{85} -15.3698i q^{87} +1.80271 q^{89} +(-6.58448 - 4.78390i) q^{91} +(-16.6422 - 5.40736i) q^{93} +(-3.30693 - 8.21092i) q^{95} +(10.1851 - 3.30935i) q^{97} +(14.5607 + 2.24481i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + q^{5} + 14 q^{9} - 2 q^{11} - q^{15} + 8 q^{19} - 28 q^{21} + 27 q^{25} - 16 q^{29} - 26 q^{31} + 17 q^{35} + 12 q^{39} + 10 q^{41} - 40 q^{45} - 46 q^{49} - 12 q^{51} - 33 q^{55} - 48 q^{59} - 10 q^{61}+ \cdots + 156 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.60349 2.20702i 0.925776 1.27422i −0.0357091 0.999362i \(-0.511369\pi\)
0.961485 0.274859i \(-0.0886310\pi\)
\(4\) 0 0
\(5\) −1.89499 1.18702i −0.847465 0.530852i
\(6\) 0 0
\(7\) −1.00600 1.38464i −0.380232 0.523344i 0.575414 0.817862i \(-0.304841\pi\)
−0.955646 + 0.294518i \(0.904841\pi\)
\(8\) 0 0
\(9\) −1.37268 4.22469i −0.457561 1.40823i
\(10\) 0 0
\(11\) −1.49354 + 2.96131i −0.450320 + 0.892867i
\(12\) 0 0
\(13\) 4.52263 1.46949i 1.25435 0.407564i 0.394874 0.918735i \(-0.370788\pi\)
0.859479 + 0.511171i \(0.170788\pi\)
\(14\) 0 0
\(15\) −5.65837 + 2.27889i −1.46098 + 0.588408i
\(16\) 0 0
\(17\) 0.621741 + 0.202016i 0.150794 + 0.0489961i 0.383442 0.923565i \(-0.374739\pi\)
−0.232647 + 0.972561i \(0.574739\pi\)
\(18\) 0 0
\(19\) 3.20263 + 2.32684i 0.734733 + 0.533815i 0.891057 0.453891i \(-0.149965\pi\)
−0.156324 + 0.987706i \(0.549965\pi\)
\(20\) 0 0
\(21\) −4.66902 −1.01886
\(22\) 0 0
\(23\) 0.675167i 0.140782i −0.997519 0.0703910i \(-0.977575\pi\)
0.997519 0.0703910i \(-0.0224247\pi\)
\(24\) 0 0
\(25\) 2.18197 + 4.49878i 0.436393 + 0.899756i
\(26\) 0 0
\(27\) −3.74152 1.21569i −0.720056 0.233961i
\(28\) 0 0
\(29\) 4.55804 3.31161i 0.846408 0.614951i −0.0777456 0.996973i \(-0.524772\pi\)
0.924153 + 0.382022i \(0.124772\pi\)
\(30\) 0 0
\(31\) −1.98216 6.10045i −0.356006 1.09567i −0.955424 0.295237i \(-0.904601\pi\)
0.599418 0.800436i \(-0.295399\pi\)
\(32\) 0 0
\(33\) 4.14077 + 8.04469i 0.720815 + 1.40040i
\(34\) 0 0
\(35\) 0.262763 + 3.81801i 0.0444150 + 0.645362i
\(36\) 0 0
\(37\) 0.653775 + 0.899844i 0.107480 + 0.147933i 0.859369 0.511357i \(-0.170857\pi\)
−0.751889 + 0.659290i \(0.770857\pi\)
\(38\) 0 0
\(39\) 4.00881 12.3378i 0.641923 1.97564i
\(40\) 0 0
\(41\) 9.28765 + 6.74788i 1.45049 + 1.05384i 0.985717 + 0.168410i \(0.0538633\pi\)
0.464771 + 0.885431i \(0.346137\pi\)
\(42\) 0 0
\(43\) 5.72146i 0.872515i −0.899822 0.436257i \(-0.856304\pi\)
0.899822 0.436257i \(-0.143696\pi\)
\(44\) 0 0
\(45\) −2.41357 + 9.63513i −0.359793 + 1.43632i
\(46\) 0 0
\(47\) −5.42888 + 7.47221i −0.791883 + 1.08993i 0.201988 + 0.979388i \(0.435260\pi\)
−0.993871 + 0.110546i \(0.964740\pi\)
\(48\) 0 0
\(49\) 1.25793 3.87151i 0.179704 0.553073i
\(50\) 0 0
\(51\) 1.44281 1.04826i 0.202034 0.146786i
\(52\) 0 0
\(53\) −12.5493 + 4.07753i −1.72379 + 0.560092i −0.992529 0.122011i \(-0.961066\pi\)
−0.731257 + 0.682102i \(0.761066\pi\)
\(54\) 0 0
\(55\) 6.34537 3.83878i 0.855610 0.517621i
\(56\) 0 0
\(57\) 10.2708 3.33717i 1.36040 0.442019i
\(58\) 0 0
\(59\) −4.79516 + 3.48389i −0.624277 + 0.453564i −0.854413 0.519595i \(-0.826083\pi\)
0.230136 + 0.973159i \(0.426083\pi\)
\(60\) 0 0
\(61\) −4.68840 + 14.4294i −0.600288 + 1.84750i −0.0738722 + 0.997268i \(0.523536\pi\)
−0.526415 + 0.850227i \(0.676464\pi\)
\(62\) 0 0
\(63\) −4.46874 + 6.15069i −0.563009 + 0.774915i
\(64\) 0 0
\(65\) −10.3147 2.58378i −1.27938 0.320479i
\(66\) 0 0
\(67\) 10.6913i 1.30615i 0.757293 + 0.653076i \(0.226522\pi\)
−0.757293 + 0.653076i \(0.773478\pi\)
\(68\) 0 0
\(69\) −1.49010 1.08262i −0.179387 0.130333i
\(70\) 0 0
\(71\) −0.466178 + 1.43475i −0.0553251 + 0.170273i −0.974901 0.222640i \(-0.928533\pi\)
0.919576 + 0.392913i \(0.128533\pi\)
\(72\) 0 0
\(73\) 4.90121 + 6.74593i 0.573643 + 0.789552i 0.992980 0.118279i \(-0.0377376\pi\)
−0.419337 + 0.907830i \(0.637738\pi\)
\(74\) 0 0
\(75\) 13.4276 + 2.39812i 1.55049 + 0.276911i
\(76\) 0 0
\(77\) 5.60284 0.911054i 0.638502 0.103824i
\(78\) 0 0
\(79\) −2.67995 8.24805i −0.301518 0.927978i −0.980953 0.194243i \(-0.937775\pi\)
0.679435 0.733736i \(-0.262225\pi\)
\(80\) 0 0
\(81\) 2.09864 1.52475i 0.233183 0.169417i
\(82\) 0 0
\(83\) −11.6443 3.78345i −1.27812 0.415288i −0.410205 0.911993i \(-0.634543\pi\)
−0.867919 + 0.496706i \(0.834543\pi\)
\(84\) 0 0
\(85\) −0.938396 1.12084i −0.101783 0.121572i
\(86\) 0 0
\(87\) 15.3698i 1.64782i
\(88\) 0 0
\(89\) 1.80271 0.191087 0.0955436 0.995425i \(-0.469541\pi\)
0.0955436 + 0.995425i \(0.469541\pi\)
\(90\) 0 0
\(91\) −6.58448 4.78390i −0.690241 0.501489i
\(92\) 0 0
\(93\) −16.6422 5.40736i −1.72571 0.560717i
\(94\) 0 0
\(95\) −3.30693 8.21092i −0.339284 0.842423i
\(96\) 0 0
\(97\) 10.1851 3.30935i 1.03414 0.336013i 0.257716 0.966221i \(-0.417030\pi\)
0.776427 + 0.630207i \(0.217030\pi\)
\(98\) 0 0
\(99\) 14.5607 + 2.24481i 1.46341 + 0.225612i
\(100\) 0 0
\(101\) −2.81593 8.66654i −0.280196 0.862353i −0.987798 0.155742i \(-0.950223\pi\)
0.707602 0.706611i \(-0.249777\pi\)
\(102\) 0 0
\(103\) −4.51151 6.20957i −0.444533 0.611847i 0.526679 0.850064i \(-0.323437\pi\)
−0.971212 + 0.238217i \(0.923437\pi\)
\(104\) 0 0
\(105\) 8.84775 + 5.54223i 0.863452 + 0.540866i
\(106\) 0 0
\(107\) −6.44743 + 8.87413i −0.623297 + 0.857894i −0.997588 0.0694170i \(-0.977886\pi\)
0.374291 + 0.927311i \(0.377886\pi\)
\(108\) 0 0
\(109\) 9.84961 0.943422 0.471711 0.881753i \(-0.343637\pi\)
0.471711 + 0.881753i \(0.343637\pi\)
\(110\) 0 0
\(111\) 3.03429 0.288002
\(112\) 0 0
\(113\) 3.50202 4.82012i 0.329442 0.453439i −0.611878 0.790952i \(-0.709586\pi\)
0.941321 + 0.337513i \(0.109586\pi\)
\(114\) 0 0
\(115\) −0.801436 + 1.27943i −0.0747343 + 0.119308i
\(116\) 0 0
\(117\) −12.4163 17.0896i −1.14789 1.57993i
\(118\) 0 0
\(119\) −0.345752 1.06411i −0.0316950 0.0975472i
\(120\) 0 0
\(121\) −6.53867 8.84567i −0.594424 0.804152i
\(122\) 0 0
\(123\) 29.7853 9.67784i 2.68565 0.872621i
\(124\) 0 0
\(125\) 1.20534 11.1152i 0.107809 0.994172i
\(126\) 0 0
\(127\) 16.5263 + 5.36973i 1.46647 + 0.476486i 0.930041 0.367457i \(-0.119771\pi\)
0.536433 + 0.843943i \(0.319771\pi\)
\(128\) 0 0
\(129\) −12.6274 9.17431i −1.11178 0.807753i
\(130\) 0 0
\(131\) 3.84691 0.336106 0.168053 0.985778i \(-0.446252\pi\)
0.168053 + 0.985778i \(0.446252\pi\)
\(132\) 0 0
\(133\) 6.77528i 0.587491i
\(134\) 0 0
\(135\) 5.64709 + 6.74499i 0.486024 + 0.580516i
\(136\) 0 0
\(137\) −7.70919 2.50487i −0.658641 0.214005i −0.0394205 0.999223i \(-0.512551\pi\)
−0.619220 + 0.785217i \(0.712551\pi\)
\(138\) 0 0
\(139\) −16.1882 + 11.7614i −1.37306 + 0.997589i −0.375572 + 0.926793i \(0.622554\pi\)
−0.997491 + 0.0707957i \(0.977446\pi\)
\(140\) 0 0
\(141\) 7.78613 + 23.9632i 0.655710 + 2.01807i
\(142\) 0 0
\(143\) −2.40312 + 15.5876i −0.200959 + 1.30350i
\(144\) 0 0
\(145\) −12.5684 + 0.864980i −1.04375 + 0.0718327i
\(146\) 0 0
\(147\) −6.52740 8.98420i −0.538371 0.741004i
\(148\) 0 0
\(149\) −1.41102 + 4.34268i −0.115596 + 0.355766i −0.992071 0.125680i \(-0.959889\pi\)
0.876475 + 0.481447i \(0.159889\pi\)
\(150\) 0 0
\(151\) −11.1394 8.09328i −0.906515 0.658621i 0.0336163 0.999435i \(-0.489298\pi\)
−0.940131 + 0.340813i \(0.889298\pi\)
\(152\) 0 0
\(153\) 2.90396i 0.234772i
\(154\) 0 0
\(155\) −3.48519 + 13.9131i −0.279937 + 1.11753i
\(156\) 0 0
\(157\) −2.55560 + 3.51748i −0.203959 + 0.280725i −0.898727 0.438508i \(-0.855507\pi\)
0.694768 + 0.719234i \(0.255507\pi\)
\(158\) 0 0
\(159\) −11.1236 + 34.2349i −0.882158 + 2.71500i
\(160\) 0 0
\(161\) −0.934861 + 0.679216i −0.0736774 + 0.0535297i
\(162\) 0 0
\(163\) 0.529107 0.171917i 0.0414429 0.0134656i −0.288222 0.957564i \(-0.593064\pi\)
0.329665 + 0.944098i \(0.393064\pi\)
\(164\) 0 0
\(165\) 1.70251 20.1598i 0.132540 1.56944i
\(166\) 0 0
\(167\) −4.46642 + 1.45123i −0.345622 + 0.112299i −0.476684 0.879075i \(-0.658161\pi\)
0.131062 + 0.991374i \(0.458161\pi\)
\(168\) 0 0
\(169\) 7.77758 5.65074i 0.598276 0.434673i
\(170\) 0 0
\(171\) 5.43399 16.7241i 0.415548 1.27892i
\(172\) 0 0
\(173\) 7.33369 10.0940i 0.557570 0.767429i −0.433445 0.901180i \(-0.642702\pi\)
0.991015 + 0.133751i \(0.0427022\pi\)
\(174\) 0 0
\(175\) 4.03413 7.54700i 0.304951 0.570499i
\(176\) 0 0
\(177\) 16.1694i 1.21537i
\(178\) 0 0
\(179\) −15.5655 11.3090i −1.16342 0.845277i −0.173217 0.984884i \(-0.555416\pi\)
−0.990207 + 0.139607i \(0.955416\pi\)
\(180\) 0 0
\(181\) −0.193540 + 0.595656i −0.0143857 + 0.0442748i −0.957992 0.286796i \(-0.907410\pi\)
0.943606 + 0.331071i \(0.107410\pi\)
\(182\) 0 0
\(183\) 24.3281 + 33.4848i 1.79839 + 2.47526i
\(184\) 0 0
\(185\) −0.170763 2.48124i −0.0125548 0.182424i
\(186\) 0 0
\(187\) −1.52683 + 1.53945i −0.111653 + 0.112575i
\(188\) 0 0
\(189\) 2.08067 + 6.40364i 0.151346 + 0.465796i
\(190\) 0 0
\(191\) 6.71370 4.87779i 0.485786 0.352944i −0.317775 0.948166i \(-0.602936\pi\)
0.803561 + 0.595222i \(0.202936\pi\)
\(192\) 0 0
\(193\) −0.0179897 0.00584521i −0.00129493 0.000420747i 0.308369 0.951267i \(-0.400217\pi\)
−0.309664 + 0.950846i \(0.600217\pi\)
\(194\) 0 0
\(195\) −22.2419 + 18.6215i −1.59278 + 1.33352i
\(196\) 0 0
\(197\) 2.53495i 0.180608i 0.995914 + 0.0903040i \(0.0287839\pi\)
−0.995914 + 0.0903040i \(0.971216\pi\)
\(198\) 0 0
\(199\) 14.6101 1.03568 0.517841 0.855477i \(-0.326736\pi\)
0.517841 + 0.855477i \(0.326736\pi\)
\(200\) 0 0
\(201\) 23.5959 + 17.1434i 1.66433 + 1.20920i
\(202\) 0 0
\(203\) −9.17077 2.97976i −0.643662 0.209138i
\(204\) 0 0
\(205\) −9.59014 23.8118i −0.669804 1.66309i
\(206\) 0 0
\(207\) −2.85237 + 0.926790i −0.198253 + 0.0644164i
\(208\) 0 0
\(209\) −11.6738 + 6.00872i −0.807490 + 0.415632i
\(210\) 0 0
\(211\) 0.642557 + 1.97759i 0.0442355 + 0.136143i 0.970735 0.240153i \(-0.0771976\pi\)
−0.926500 + 0.376296i \(0.877198\pi\)
\(212\) 0 0
\(213\) 2.41900 + 3.32947i 0.165747 + 0.228131i
\(214\) 0 0
\(215\) −6.79149 + 10.8421i −0.463176 + 0.739425i
\(216\) 0 0
\(217\) −6.45287 + 8.88161i −0.438049 + 0.602923i
\(218\) 0 0
\(219\) 22.7474 1.53713
\(220\) 0 0
\(221\) 3.10877 0.209118
\(222\) 0 0
\(223\) −2.74866 + 3.78320i −0.184064 + 0.253342i −0.891071 0.453865i \(-0.850045\pi\)
0.707007 + 0.707207i \(0.250045\pi\)
\(224\) 0 0
\(225\) 16.0108 15.3935i 1.06739 1.02623i
\(226\) 0 0
\(227\) 8.93440 + 12.2971i 0.592997 + 0.816190i 0.995045 0.0994287i \(-0.0317015\pi\)
−0.402048 + 0.915619i \(0.631702\pi\)
\(228\) 0 0
\(229\) 2.18447 + 6.72309i 0.144354 + 0.444274i 0.996927 0.0783324i \(-0.0249596\pi\)
−0.852574 + 0.522607i \(0.824960\pi\)
\(230\) 0 0
\(231\) 6.97338 13.8264i 0.458815 0.909711i
\(232\) 0 0
\(233\) 21.8099 7.08647i 1.42881 0.464250i 0.510423 0.859923i \(-0.329489\pi\)
0.918391 + 0.395673i \(0.129489\pi\)
\(234\) 0 0
\(235\) 19.1573 7.71557i 1.24969 0.503308i
\(236\) 0 0
\(237\) −22.5009 7.31097i −1.46159 0.474899i
\(238\) 0 0
\(239\) 15.4399 + 11.2177i 0.998722 + 0.725614i 0.961814 0.273705i \(-0.0882491\pi\)
0.0369082 + 0.999319i \(0.488249\pi\)
\(240\) 0 0
\(241\) −11.5798 −0.745917 −0.372959 0.927848i \(-0.621657\pi\)
−0.372959 + 0.927848i \(0.621657\pi\)
\(242\) 0 0
\(243\) 18.8789i 1.21108i
\(244\) 0 0
\(245\) −6.97932 + 5.84328i −0.445893 + 0.373313i
\(246\) 0 0
\(247\) 17.9036 + 5.81723i 1.13918 + 0.370141i
\(248\) 0 0
\(249\) −27.0216 + 19.6323i −1.71242 + 1.24415i
\(250\) 0 0
\(251\) −5.27876 16.2463i −0.333192 1.02546i −0.967606 0.252466i \(-0.918758\pi\)
0.634414 0.772994i \(-0.281242\pi\)
\(252\) 0 0
\(253\) 1.99937 + 1.00839i 0.125700 + 0.0633969i
\(254\) 0 0
\(255\) −3.97841 + 0.273802i −0.249138 + 0.0171461i
\(256\) 0 0
\(257\) 7.96319 + 10.9604i 0.496730 + 0.683690i 0.981611 0.190890i \(-0.0611373\pi\)
−0.484881 + 0.874580i \(0.661137\pi\)
\(258\) 0 0
\(259\) 0.588261 1.81048i 0.0365528 0.112498i
\(260\) 0 0
\(261\) −20.2473 14.7105i −1.25327 0.910557i
\(262\) 0 0
\(263\) 1.28142i 0.0790155i 0.999219 + 0.0395077i \(0.0125790\pi\)
−0.999219 + 0.0395077i \(0.987421\pi\)
\(264\) 0 0
\(265\) 28.6210 + 7.16945i 1.75817 + 0.440416i
\(266\) 0 0
\(267\) 2.89063 3.97862i 0.176904 0.243487i
\(268\) 0 0
\(269\) −4.43132 + 13.6382i −0.270183 + 0.831537i 0.720271 + 0.693692i \(0.244017\pi\)
−0.990454 + 0.137844i \(0.955983\pi\)
\(270\) 0 0
\(271\) −7.64657 + 5.55556i −0.464496 + 0.337476i −0.795292 0.606226i \(-0.792683\pi\)
0.330796 + 0.943702i \(0.392683\pi\)
\(272\) 0 0
\(273\) −21.1163 + 6.86110i −1.27802 + 0.415253i
\(274\) 0 0
\(275\) −16.5811 0.257645i −0.999879 0.0155366i
\(276\) 0 0
\(277\) −11.1368 + 3.61857i −0.669147 + 0.217419i −0.623838 0.781554i \(-0.714427\pi\)
−0.0453094 + 0.998973i \(0.514427\pi\)
\(278\) 0 0
\(279\) −23.0516 + 16.7480i −1.38006 + 1.00267i
\(280\) 0 0
\(281\) −0.871465 + 2.68209i −0.0519873 + 0.160000i −0.973679 0.227922i \(-0.926807\pi\)
0.921692 + 0.387922i \(0.126807\pi\)
\(282\) 0 0
\(283\) −1.08445 + 1.49262i −0.0644639 + 0.0887269i −0.840032 0.542537i \(-0.817464\pi\)
0.775568 + 0.631264i \(0.217464\pi\)
\(284\) 0 0
\(285\) −23.4243 5.86769i −1.38753 0.347572i
\(286\) 0 0
\(287\) 19.6484i 1.15981i
\(288\) 0 0
\(289\) −13.4075 9.74115i −0.788679 0.573009i
\(290\) 0 0
\(291\) 9.02797 27.7852i 0.529229 1.62880i
\(292\) 0 0
\(293\) 2.20510 + 3.03506i 0.128823 + 0.177310i 0.868556 0.495590i \(-0.165048\pi\)
−0.739733 + 0.672901i \(0.765048\pi\)
\(294\) 0 0
\(295\) 13.2222 0.909979i 0.769828 0.0529810i
\(296\) 0 0
\(297\) 9.18816 9.26410i 0.533151 0.537558i
\(298\) 0 0
\(299\) −0.992152 3.05353i −0.0573776 0.176590i
\(300\) 0 0
\(301\) −7.92215 + 5.75578i −0.456625 + 0.331758i
\(302\) 0 0
\(303\) −23.6425 7.68192i −1.35823 0.441315i
\(304\) 0 0
\(305\) 26.0124 21.7783i 1.48947 1.24702i
\(306\) 0 0
\(307\) 7.99801i 0.456470i −0.973606 0.228235i \(-0.926705\pi\)
0.973606 0.228235i \(-0.0732955\pi\)
\(308\) 0 0
\(309\) −20.9388 −1.19117
\(310\) 0 0
\(311\) 10.2107 + 7.41849i 0.578994 + 0.420664i 0.838361 0.545115i \(-0.183514\pi\)
−0.259367 + 0.965779i \(0.583514\pi\)
\(312\) 0 0
\(313\) −11.7949 3.83241i −0.666690 0.216621i −0.0439310 0.999035i \(-0.513988\pi\)
−0.622759 + 0.782414i \(0.713988\pi\)
\(314\) 0 0
\(315\) 15.7692 6.35101i 0.888495 0.357839i
\(316\) 0 0
\(317\) 2.69675 0.876229i 0.151465 0.0492139i −0.232303 0.972643i \(-0.574626\pi\)
0.383768 + 0.923429i \(0.374626\pi\)
\(318\) 0 0
\(319\) 2.99907 + 18.4438i 0.167916 + 1.03265i
\(320\) 0 0
\(321\) 9.24694 + 28.4592i 0.516114 + 1.58844i
\(322\) 0 0
\(323\) 1.52114 + 2.09368i 0.0846387 + 0.116495i
\(324\) 0 0
\(325\) 16.4792 + 17.1399i 0.914099 + 0.950753i
\(326\) 0 0
\(327\) 15.7938 21.7382i 0.873397 1.20213i
\(328\) 0 0
\(329\) 15.8077 0.871509
\(330\) 0 0
\(331\) −14.0009 −0.769562 −0.384781 0.923008i \(-0.625723\pi\)
−0.384781 + 0.923008i \(0.625723\pi\)
\(332\) 0 0
\(333\) 2.90413 3.99719i 0.159145 0.219045i
\(334\) 0 0
\(335\) 12.6908 20.2599i 0.693372 1.10692i
\(336\) 0 0
\(337\) −8.18748 11.2691i −0.446000 0.613867i 0.525532 0.850774i \(-0.323866\pi\)
−0.971532 + 0.236907i \(0.923866\pi\)
\(338\) 0 0
\(339\) −5.02262 15.4580i −0.272791 0.839565i
\(340\) 0 0
\(341\) 21.0257 + 3.24151i 1.13861 + 0.175537i
\(342\) 0 0
\(343\) −18.0203 + 5.85515i −0.973004 + 0.316148i
\(344\) 0 0
\(345\) 1.53863 + 3.82034i 0.0828372 + 0.205680i
\(346\) 0 0
\(347\) 29.8076 + 9.68506i 1.60015 + 0.519921i 0.967145 0.254224i \(-0.0818199\pi\)
0.633008 + 0.774145i \(0.281820\pi\)
\(348\) 0 0
\(349\) 17.1026 + 12.4258i 0.915482 + 0.665137i 0.942395 0.334501i \(-0.108568\pi\)
−0.0269132 + 0.999638i \(0.508568\pi\)
\(350\) 0 0
\(351\) −18.7080 −0.998559
\(352\) 0 0
\(353\) 18.6583i 0.993084i −0.868013 0.496542i \(-0.834603\pi\)
0.868013 0.496542i \(-0.165397\pi\)
\(354\) 0 0
\(355\) 2.58648 2.16547i 0.137276 0.114931i
\(356\) 0 0
\(357\) −2.90292 0.943217i −0.153639 0.0499204i
\(358\) 0 0
\(359\) 9.43404 6.85423i 0.497910 0.361752i −0.310308 0.950636i \(-0.600432\pi\)
0.808218 + 0.588883i \(0.200432\pi\)
\(360\) 0 0
\(361\) −1.02871 3.16605i −0.0541428 0.166634i
\(362\) 0 0
\(363\) −30.0072 + 0.246989i −1.57497 + 0.0129635i
\(364\) 0 0
\(365\) −1.28018 18.6013i −0.0670075 0.973637i
\(366\) 0 0
\(367\) −20.2757 27.9070i −1.05838 1.45674i −0.881311 0.472537i \(-0.843338\pi\)
−0.177070 0.984198i \(-0.556662\pi\)
\(368\) 0 0
\(369\) 15.7586 48.5001i 0.820362 2.52481i
\(370\) 0 0
\(371\) 18.2705 + 13.2743i 0.948558 + 0.689168i
\(372\) 0 0
\(373\) 23.3283i 1.20789i 0.797025 + 0.603947i \(0.206406\pi\)
−0.797025 + 0.603947i \(0.793594\pi\)
\(374\) 0 0
\(375\) −22.5986 20.4833i −1.16699 1.05775i
\(376\) 0 0
\(377\) 15.7480 21.6752i 0.811062 1.11633i
\(378\) 0 0
\(379\) −3.82655 + 11.7769i −0.196557 + 0.604940i 0.803398 + 0.595442i \(0.203023\pi\)
−0.999955 + 0.00949730i \(0.996977\pi\)
\(380\) 0 0
\(381\) 38.3509 27.8635i 1.96477 1.42749i
\(382\) 0 0
\(383\) −10.1594 + 3.30098i −0.519120 + 0.168672i −0.556846 0.830616i \(-0.687989\pi\)
0.0377259 + 0.999288i \(0.487989\pi\)
\(384\) 0 0
\(385\) −11.6988 4.92424i −0.596224 0.250963i
\(386\) 0 0
\(387\) −24.1714 + 7.85375i −1.22870 + 0.399229i
\(388\) 0 0
\(389\) −4.99450 + 3.62872i −0.253231 + 0.183983i −0.707158 0.707056i \(-0.750023\pi\)
0.453926 + 0.891039i \(0.350023\pi\)
\(390\) 0 0
\(391\) 0.136394 0.419779i 0.00689776 0.0212291i
\(392\) 0 0
\(393\) 6.16849 8.49019i 0.311159 0.428274i
\(394\) 0 0
\(395\) −4.71212 + 18.8111i −0.237092 + 0.946491i
\(396\) 0 0
\(397\) 23.6084i 1.18487i 0.805618 + 0.592436i \(0.201834\pi\)
−0.805618 + 0.592436i \(0.798166\pi\)
\(398\) 0 0
\(399\) −14.9531 10.8641i −0.748593 0.543885i
\(400\) 0 0
\(401\) −1.25044 + 3.84845i −0.0624438 + 0.192182i −0.977412 0.211344i \(-0.932216\pi\)
0.914968 + 0.403527i \(0.132216\pi\)
\(402\) 0 0
\(403\) −17.9291 24.6773i −0.893114 1.22927i
\(404\) 0 0
\(405\) −5.78682 + 0.398260i −0.287549 + 0.0197897i
\(406\) 0 0
\(407\) −3.64115 + 0.592073i −0.180485 + 0.0293480i
\(408\) 0 0
\(409\) 1.71104 + 5.26604i 0.0846055 + 0.260389i 0.984406 0.175913i \(-0.0562878\pi\)
−0.899800 + 0.436302i \(0.856288\pi\)
\(410\) 0 0
\(411\) −17.8899 + 12.9978i −0.882444 + 0.641133i
\(412\) 0 0
\(413\) 9.64785 + 3.13478i 0.474740 + 0.154252i
\(414\) 0 0
\(415\) 17.5747 + 20.9916i 0.862709 + 1.03044i
\(416\) 0 0
\(417\) 54.5868i 2.67313i
\(418\) 0 0
\(419\) −6.68772 −0.326716 −0.163358 0.986567i \(-0.552233\pi\)
−0.163358 + 0.986567i \(0.552233\pi\)
\(420\) 0 0
\(421\) −14.0535 10.2105i −0.684925 0.497627i 0.190063 0.981772i \(-0.439131\pi\)
−0.874988 + 0.484145i \(0.839131\pi\)
\(422\) 0 0
\(423\) 39.0199 + 12.6783i 1.89721 + 0.616441i
\(424\) 0 0
\(425\) 0.447793 + 3.23787i 0.0217212 + 0.157060i
\(426\) 0 0
\(427\) 24.6960 8.02422i 1.19512 0.388319i
\(428\) 0 0
\(429\) 30.5488 + 30.2984i 1.47491 + 1.46282i
\(430\) 0 0
\(431\) 0.854246 + 2.62910i 0.0411476 + 0.126639i 0.969520 0.245012i \(-0.0787918\pi\)
−0.928373 + 0.371651i \(0.878792\pi\)
\(432\) 0 0
\(433\) 13.1027 + 18.0344i 0.629677 + 0.866676i 0.998012 0.0630170i \(-0.0200722\pi\)
−0.368335 + 0.929693i \(0.620072\pi\)
\(434\) 0 0
\(435\) −18.2443 + 29.1256i −0.874746 + 1.39647i
\(436\) 0 0
\(437\) 1.57101 2.16231i 0.0751515 0.103437i
\(438\) 0 0
\(439\) 5.68059 0.271120 0.135560 0.990769i \(-0.456717\pi\)
0.135560 + 0.990769i \(0.456717\pi\)
\(440\) 0 0
\(441\) −18.0826 −0.861078
\(442\) 0 0
\(443\) 14.2207 19.5732i 0.675647 0.929949i −0.324224 0.945980i \(-0.605103\pi\)
0.999871 + 0.0160315i \(0.00510320\pi\)
\(444\) 0 0
\(445\) −3.41612 2.13986i −0.161940 0.101439i
\(446\) 0 0
\(447\) 7.32181 + 10.0776i 0.346310 + 0.476654i
\(448\) 0 0
\(449\) −11.2633 34.6648i −0.531548 1.63594i −0.750993 0.660310i \(-0.770425\pi\)
0.219445 0.975625i \(-0.429575\pi\)
\(450\) 0 0
\(451\) −33.8540 + 17.4253i −1.59412 + 0.820528i
\(452\) 0 0
\(453\) −35.7240 + 11.6074i −1.67846 + 0.545364i
\(454\) 0 0
\(455\) 6.79892 + 16.8813i 0.318738 + 0.791410i
\(456\) 0 0
\(457\) −30.4602 9.89713i −1.42487 0.462968i −0.507724 0.861520i \(-0.669513\pi\)
−0.917146 + 0.398552i \(0.869513\pi\)
\(458\) 0 0
\(459\) −2.08067 1.51169i −0.0971173 0.0705599i
\(460\) 0 0
\(461\) −10.4043 −0.484577 −0.242289 0.970204i \(-0.577898\pi\)
−0.242289 + 0.970204i \(0.577898\pi\)
\(462\) 0 0
\(463\) 13.9916i 0.650245i 0.945672 + 0.325123i \(0.105406\pi\)
−0.945672 + 0.325123i \(0.894594\pi\)
\(464\) 0 0
\(465\) 25.1180 + 30.0015i 1.16482 + 1.39128i
\(466\) 0 0
\(467\) −4.92912 1.60157i −0.228092 0.0741117i 0.192741 0.981250i \(-0.438262\pi\)
−0.420833 + 0.907138i \(0.638262\pi\)
\(468\) 0 0
\(469\) 14.8036 10.7554i 0.683566 0.496640i
\(470\) 0 0
\(471\) 3.66525 + 11.2805i 0.168886 + 0.519777i
\(472\) 0 0
\(473\) 16.9430 + 8.54524i 0.779040 + 0.392911i
\(474\) 0 0
\(475\) −3.47994 + 19.4850i −0.159670 + 0.894033i
\(476\) 0 0
\(477\) 34.4526 + 47.4199i 1.57747 + 2.17121i
\(478\) 0 0
\(479\) −1.43170 + 4.40633i −0.0654162 + 0.201330i −0.978422 0.206616i \(-0.933755\pi\)
0.913006 + 0.407946i \(0.133755\pi\)
\(480\) 0 0
\(481\) 4.27910 + 3.10895i 0.195110 + 0.141756i
\(482\) 0 0
\(483\) 3.15237i 0.143438i
\(484\) 0 0
\(485\) −23.2290 5.81877i −1.05477 0.264217i
\(486\) 0 0
\(487\) −17.9264 + 24.6735i −0.812322 + 1.11807i 0.178639 + 0.983915i \(0.442831\pi\)
−0.990961 + 0.134151i \(0.957169\pi\)
\(488\) 0 0
\(489\) 0.468994 1.44341i 0.0212086 0.0652735i
\(490\) 0 0
\(491\) 17.4600 12.6854i 0.787958 0.572485i −0.119399 0.992846i \(-0.538097\pi\)
0.907357 + 0.420362i \(0.138097\pi\)
\(492\) 0 0
\(493\) 3.50292 1.13817i 0.157764 0.0512605i
\(494\) 0 0
\(495\) −24.9278 21.5378i −1.12042 0.968051i
\(496\) 0 0
\(497\) 2.45558 0.797867i 0.110148 0.0357892i
\(498\) 0 0
\(499\) 11.0681 8.04142i 0.495475 0.359983i −0.311811 0.950144i \(-0.600936\pi\)
0.807286 + 0.590161i \(0.200936\pi\)
\(500\) 0 0
\(501\) −3.95898 + 12.1845i −0.176874 + 0.544362i
\(502\) 0 0
\(503\) −4.78142 + 6.58106i −0.213193 + 0.293435i −0.902198 0.431321i \(-0.858048\pi\)
0.689006 + 0.724756i \(0.258048\pi\)
\(504\) 0 0
\(505\) −4.95120 + 19.7656i −0.220326 + 0.879556i
\(506\) 0 0
\(507\) 26.2262i 1.16474i
\(508\) 0 0
\(509\) −25.7114 18.6804i −1.13964 0.827996i −0.152569 0.988293i \(-0.548755\pi\)
−0.987069 + 0.160297i \(0.948755\pi\)
\(510\) 0 0
\(511\) 4.41007 13.5728i 0.195090 0.600425i
\(512\) 0 0
\(513\) −9.15397 12.5994i −0.404158 0.556275i
\(514\) 0 0
\(515\) 1.17839 + 17.1223i 0.0519261 + 0.754500i
\(516\) 0 0
\(517\) −14.0192 27.2366i −0.616566 1.19787i
\(518\) 0 0
\(519\) −10.5180 32.3711i −0.461690 1.42093i
\(520\) 0 0
\(521\) 7.18170 5.21781i 0.314636 0.228596i −0.419247 0.907872i \(-0.637706\pi\)
0.733883 + 0.679276i \(0.237706\pi\)
\(522\) 0 0
\(523\) 28.5567 + 9.27864i 1.24870 + 0.405727i 0.857454 0.514560i \(-0.172045\pi\)
0.391244 + 0.920287i \(0.372045\pi\)
\(524\) 0 0
\(525\) −10.1877 21.0049i −0.444626 0.916730i
\(526\) 0 0
\(527\) 4.19333i 0.182664i
\(528\) 0 0
\(529\) 22.5442 0.980180
\(530\) 0 0
\(531\) 21.3006 + 15.4758i 0.924367 + 0.671592i
\(532\) 0 0
\(533\) 51.9206 + 16.8700i 2.24893 + 0.730722i
\(534\) 0 0
\(535\) 22.7516 9.16314i 0.983636 0.396157i
\(536\) 0 0
\(537\) −49.9184 + 16.2195i −2.15414 + 0.699922i
\(538\) 0 0
\(539\) 9.58595 + 9.50738i 0.412896 + 0.409512i
\(540\) 0 0
\(541\) −8.98551 27.6545i −0.386317 1.18896i −0.935520 0.353273i \(-0.885069\pi\)
0.549203 0.835689i \(-0.314931\pi\)
\(542\) 0 0
\(543\) 1.00428 + 1.38228i 0.0430979 + 0.0593191i
\(544\) 0 0
\(545\) −18.6649 11.6917i −0.799517 0.500817i
\(546\) 0 0
\(547\) 3.71206 5.10921i 0.158716 0.218454i −0.722251 0.691631i \(-0.756893\pi\)
0.880968 + 0.473176i \(0.156893\pi\)
\(548\) 0 0
\(549\) 67.3954 2.87636
\(550\) 0 0
\(551\) 22.3033 0.950153
\(552\) 0 0
\(553\) −8.72454 + 12.0083i −0.371005 + 0.510645i
\(554\) 0 0
\(555\) −5.74995 3.60176i −0.244072 0.152886i
\(556\) 0 0
\(557\) 18.4284 + 25.3645i 0.780836 + 1.07473i 0.995189 + 0.0979718i \(0.0312355\pi\)
−0.214354 + 0.976756i \(0.568765\pi\)
\(558\) 0 0
\(559\) −8.40764 25.8761i −0.355605 1.09444i
\(560\) 0 0
\(561\) 0.949328 + 5.83822i 0.0400807 + 0.246490i
\(562\) 0 0
\(563\) −13.9824 + 4.54315i −0.589287 + 0.191471i −0.588457 0.808529i \(-0.700264\pi\)
−0.000830194 1.00000i \(0.500264\pi\)
\(564\) 0 0
\(565\) −12.3579 + 4.97710i −0.519899 + 0.209388i
\(566\) 0 0
\(567\) −4.22246 1.37196i −0.177327 0.0576170i
\(568\) 0 0
\(569\) −18.9361 13.7578i −0.793841 0.576759i 0.115260 0.993335i \(-0.463230\pi\)
−0.909101 + 0.416576i \(0.863230\pi\)
\(570\) 0 0
\(571\) −9.67155 −0.404742 −0.202371 0.979309i \(-0.564865\pi\)
−0.202371 + 0.979309i \(0.564865\pi\)
\(572\) 0 0
\(573\) 22.6387i 0.945746i
\(574\) 0 0
\(575\) 3.03743 1.47319i 0.126669 0.0614363i
\(576\) 0 0
\(577\) 25.3831 + 8.24747i 1.05671 + 0.343347i 0.785299 0.619116i \(-0.212509\pi\)
0.271413 + 0.962463i \(0.412509\pi\)
\(578\) 0 0
\(579\) −0.0417468 + 0.0303308i −0.00173494 + 0.00126051i
\(580\) 0 0
\(581\) 6.47540 + 19.9292i 0.268645 + 0.826804i
\(582\) 0 0
\(583\) 6.66816 43.2524i 0.276167 1.79133i
\(584\) 0 0
\(585\) 3.24309 + 47.1229i 0.134085 + 1.94829i
\(586\) 0 0
\(587\) −19.9125 27.4073i −0.821878 1.13122i −0.989381 0.145347i \(-0.953570\pi\)
0.167502 0.985872i \(-0.446430\pi\)
\(588\) 0 0
\(589\) 7.84669 24.1496i 0.323317 0.995068i
\(590\) 0 0
\(591\) 5.59468 + 4.06477i 0.230134 + 0.167202i
\(592\) 0 0
\(593\) 7.43914i 0.305489i −0.988266 0.152745i \(-0.951189\pi\)
0.988266 0.152745i \(-0.0488112\pi\)
\(594\) 0 0
\(595\) −0.607929 + 2.42690i −0.0249227 + 0.0994931i
\(596\) 0 0
\(597\) 23.4271 32.2447i 0.958809 1.31969i
\(598\) 0 0
\(599\) 6.30588 19.4075i 0.257651 0.792969i −0.735644 0.677368i \(-0.763121\pi\)
0.993296 0.115601i \(-0.0368794\pi\)
\(600\) 0 0
\(601\) −34.7579 + 25.2531i −1.41780 + 1.03009i −0.425673 + 0.904877i \(0.639963\pi\)
−0.992129 + 0.125217i \(0.960037\pi\)
\(602\) 0 0
\(603\) 45.1674 14.6758i 1.83936 0.597644i
\(604\) 0 0
\(605\) 1.89071 + 24.5240i 0.0768684 + 0.997041i
\(606\) 0 0
\(607\) −42.1420 + 13.6928i −1.71049 + 0.555772i −0.990415 0.138122i \(-0.955893\pi\)
−0.720076 + 0.693895i \(0.755893\pi\)
\(608\) 0 0
\(609\) −21.2816 + 15.4620i −0.862375 + 0.626552i
\(610\) 0 0
\(611\) −13.5725 + 41.7718i −0.549083 + 1.68990i
\(612\) 0 0
\(613\) 14.2472 19.6096i 0.575439 0.792025i −0.417747 0.908564i \(-0.637180\pi\)
0.993186 + 0.116539i \(0.0371800\pi\)
\(614\) 0 0
\(615\) −67.9307 17.0164i −2.73923 0.686167i
\(616\) 0 0
\(617\) 39.5457i 1.59205i −0.605264 0.796025i \(-0.706932\pi\)
0.605264 0.796025i \(-0.293068\pi\)
\(618\) 0 0
\(619\) 2.98508 + 2.16879i 0.119981 + 0.0871710i 0.646157 0.763204i \(-0.276375\pi\)
−0.526177 + 0.850375i \(0.676375\pi\)
\(620\) 0 0
\(621\) −0.820796 + 2.52615i −0.0329374 + 0.101371i
\(622\) 0 0
\(623\) −1.81353 2.49610i −0.0726574 0.100004i
\(624\) 0 0
\(625\) −15.4780 + 19.6324i −0.619122 + 0.785295i
\(626\) 0 0
\(627\) −5.45742 + 35.3991i −0.217948 + 1.41370i
\(628\) 0 0
\(629\) 0.224696 + 0.691543i 0.00895921 + 0.0275736i
\(630\) 0 0
\(631\) 21.8127 15.8478i 0.868349 0.630893i −0.0617944 0.998089i \(-0.519682\pi\)
0.930143 + 0.367196i \(0.119682\pi\)
\(632\) 0 0
\(633\) 5.39490 + 1.75291i 0.214428 + 0.0696719i
\(634\) 0 0
\(635\) −24.9432 29.7926i −0.989842 1.18229i
\(636\) 0 0
\(637\) 19.3579i 0.766989i
\(638\) 0 0
\(639\) 6.70127 0.265098
\(640\) 0 0
\(641\) −8.59512 6.24472i −0.339487 0.246652i 0.404958 0.914335i \(-0.367286\pi\)
−0.744445 + 0.667683i \(0.767286\pi\)
\(642\) 0 0
\(643\) 7.53543 + 2.44841i 0.297169 + 0.0965559i 0.453807 0.891100i \(-0.350066\pi\)
−0.156638 + 0.987656i \(0.550066\pi\)
\(644\) 0 0
\(645\) 13.0386 + 32.3741i 0.513395 + 1.27473i
\(646\) 0 0
\(647\) −1.05242 + 0.341951i −0.0413748 + 0.0134435i −0.329631 0.944110i \(-0.606924\pi\)
0.288257 + 0.957553i \(0.406924\pi\)
\(648\) 0 0
\(649\) −3.15509 19.4033i −0.123848 0.761646i
\(650\) 0 0
\(651\) 9.25474 + 28.4831i 0.362722 + 1.11634i
\(652\) 0 0
\(653\) 3.29765 + 4.53883i 0.129047 + 0.177618i 0.868651 0.495424i \(-0.164987\pi\)
−0.739604 + 0.673042i \(0.764987\pi\)
\(654\) 0 0
\(655\) −7.28986 4.56636i −0.284838 0.178422i
\(656\) 0 0
\(657\) 21.7716 29.9661i 0.849393 1.16909i
\(658\) 0 0
\(659\) 12.6847 0.494124 0.247062 0.969000i \(-0.420535\pi\)
0.247062 + 0.969000i \(0.420535\pi\)
\(660\) 0 0
\(661\) −35.1508 −1.36721 −0.683604 0.729853i \(-0.739589\pi\)
−0.683604 + 0.729853i \(0.739589\pi\)
\(662\) 0 0
\(663\) 4.98488 6.86110i 0.193597 0.266463i
\(664\) 0 0
\(665\) −8.04239 + 12.8391i −0.311871 + 0.497878i
\(666\) 0 0
\(667\) −2.23589 3.07744i −0.0865740 0.119159i
\(668\) 0 0
\(669\) 3.94214 + 12.1326i 0.152412 + 0.469075i
\(670\) 0 0
\(671\) −35.7275 35.4347i −1.37925 1.36794i
\(672\) 0 0
\(673\) −34.9096 + 11.3428i −1.34567 + 0.437234i −0.891233 0.453546i \(-0.850159\pi\)
−0.454435 + 0.890780i \(0.650159\pi\)
\(674\) 0 0
\(675\) −2.69474 19.4849i −0.103720 0.749974i
\(676\) 0 0
\(677\) −14.8944 4.83948i −0.572438 0.185996i 0.00847232 0.999964i \(-0.497303\pi\)
−0.580910 + 0.813968i \(0.697303\pi\)
\(678\) 0 0
\(679\) −14.8285 10.7735i −0.569064 0.413449i
\(680\) 0 0
\(681\) 41.4662 1.58899
\(682\) 0 0
\(683\) 14.0291i 0.536808i 0.963306 + 0.268404i \(0.0864962\pi\)
−0.963306 + 0.268404i \(0.913504\pi\)
\(684\) 0 0
\(685\) 11.6355 + 13.8977i 0.444570 + 0.531002i
\(686\) 0 0
\(687\) 18.3407 + 5.95927i 0.699743 + 0.227360i
\(688\) 0 0
\(689\) −50.7642 + 36.8823i −1.93396 + 1.40511i
\(690\) 0 0
\(691\) −3.31456 10.2012i −0.126092 0.388071i 0.868007 0.496553i \(-0.165401\pi\)
−0.994098 + 0.108482i \(0.965401\pi\)
\(692\) 0 0
\(693\) −11.5398 22.4196i −0.438362 0.851651i
\(694\) 0 0
\(695\) 44.6374 3.07203i 1.69319 0.116529i
\(696\) 0 0
\(697\) 4.41134 + 6.07169i 0.167091 + 0.229981i
\(698\) 0 0
\(699\) 19.3320 59.4979i 0.731205 2.25042i
\(700\) 0 0
\(701\) 0.940147 + 0.683057i 0.0355088 + 0.0257987i 0.605398 0.795923i \(-0.293014\pi\)
−0.569889 + 0.821721i \(0.693014\pi\)
\(702\) 0 0
\(703\) 4.40309i 0.166066i
\(704\) 0 0
\(705\) 13.6902 54.6524i 0.515603 2.05833i
\(706\) 0 0
\(707\) −9.16720 + 12.6176i −0.344768 + 0.474533i
\(708\) 0 0
\(709\) −11.3880 + 35.0488i −0.427687 + 1.31628i 0.472711 + 0.881217i \(0.343275\pi\)
−0.900398 + 0.435067i \(0.856725\pi\)
\(710\) 0 0
\(711\) −31.1667 + 22.6439i −1.16884 + 0.849214i
\(712\) 0 0
\(713\) −4.11882 + 1.33829i −0.154251 + 0.0501192i
\(714\) 0 0
\(715\) 23.0567 26.6859i 0.862273 0.997995i
\(716\) 0 0
\(717\) 49.5154 16.0885i 1.84918 0.600837i
\(718\) 0 0
\(719\) 33.8568 24.5984i 1.26265 0.917366i 0.263761 0.964588i \(-0.415037\pi\)
0.998884 + 0.0472225i \(0.0150370\pi\)
\(720\) 0 0
\(721\) −4.05943 + 12.4936i −0.151181 + 0.465287i
\(722\) 0 0
\(723\) −18.5680 + 25.5567i −0.690552 + 0.950463i
\(724\) 0 0
\(725\) 24.8437 + 13.2798i 0.922672 + 0.493200i
\(726\) 0 0
\(727\) 25.1900i 0.934245i −0.884193 0.467122i \(-0.845291\pi\)
0.884193 0.467122i \(-0.154709\pi\)
\(728\) 0 0
\(729\) −35.3700 25.6978i −1.31000 0.951772i
\(730\) 0 0
\(731\) 1.15583 3.55727i 0.0427498 0.131570i
\(732\) 0 0
\(733\) −23.3513 32.1404i −0.862501 1.18713i −0.980967 0.194173i \(-0.937798\pi\)
0.118466 0.992958i \(-0.462202\pi\)
\(734\) 0 0
\(735\) 1.70493 + 24.7731i 0.0628873 + 0.913770i
\(736\) 0 0
\(737\) −31.6602 15.9679i −1.16622 0.588186i
\(738\) 0 0
\(739\) 7.89240 + 24.2903i 0.290327 + 0.893534i 0.984751 + 0.173968i \(0.0556590\pi\)
−0.694425 + 0.719566i \(0.744341\pi\)
\(740\) 0 0
\(741\) 41.5469 30.1856i 1.52626 1.10890i
\(742\) 0 0
\(743\) −15.2722 4.96223i −0.560281 0.182046i 0.0151663 0.999885i \(-0.495172\pi\)
−0.575448 + 0.817838i \(0.695172\pi\)
\(744\) 0 0
\(745\) 7.82873 6.55442i 0.286822 0.240136i
\(746\) 0 0
\(747\) 54.3868i 1.98991i
\(748\) 0 0
\(749\) 18.7736 0.685971
\(750\) 0 0
\(751\) 1.58907 + 1.15452i 0.0579859 + 0.0421292i 0.616401 0.787433i \(-0.288590\pi\)
−0.558415 + 0.829562i \(0.688590\pi\)
\(752\) 0 0
\(753\) −44.3204 14.4006i −1.61512 0.524786i
\(754\) 0 0
\(755\) 11.5022 + 28.5594i 0.418609 + 1.03938i
\(756\) 0 0
\(757\) 30.8321 10.0180i 1.12061 0.364109i 0.310612 0.950537i \(-0.399466\pi\)
0.810002 + 0.586428i \(0.199466\pi\)
\(758\) 0 0
\(759\) 5.43151 2.79571i 0.197151 0.101478i
\(760\) 0 0
\(761\) −14.6289 45.0230i −0.530296 1.63208i −0.753599 0.657334i \(-0.771684\pi\)
0.223303 0.974749i \(-0.428316\pi\)
\(762\) 0 0
\(763\) −9.90869 13.6381i −0.358719 0.493734i
\(764\) 0 0
\(765\) −3.44706 + 5.50298i −0.124629 + 0.198961i
\(766\) 0 0
\(767\) −16.5672 + 22.8028i −0.598208 + 0.823362i
\(768\) 0 0
\(769\) 17.6637 0.636969 0.318485 0.947928i \(-0.396826\pi\)
0.318485 + 0.947928i \(0.396826\pi\)
\(770\) 0 0
\(771\) 36.9586 1.33103
\(772\) 0 0
\(773\) −17.8124 + 24.5166i −0.640666 + 0.881801i −0.998651 0.0519265i \(-0.983464\pi\)
0.357985 + 0.933727i \(0.383464\pi\)
\(774\) 0 0
\(775\) 23.1196 22.2283i 0.830480 0.798463i
\(776\) 0 0
\(777\) −3.05249 4.20139i −0.109507 0.150724i
\(778\) 0 0
\(779\) 14.0436 + 43.2218i 0.503165 + 1.54858i
\(780\) 0 0
\(781\) −3.55247 3.52335i −0.127117 0.126075i
\(782\) 0 0
\(783\) −21.0799 + 6.84929i −0.753335 + 0.244774i
\(784\) 0 0
\(785\) 9.01814 3.63204i 0.321871 0.129633i
\(786\) 0 0
\(787\) 40.1295 + 13.0389i 1.43046 + 0.464785i 0.918910 0.394467i \(-0.129071\pi\)
0.511552 + 0.859252i \(0.329071\pi\)
\(788\) 0 0
\(789\) 2.82810 + 2.05474i 0.100683 + 0.0731506i
\(790\) 0 0
\(791\) −10.1971 −0.362569
\(792\) 0 0
\(793\) 72.1484i 2.56207i
\(794\) 0 0
\(795\) 61.7166 51.6708i 2.18886 1.83257i
\(796\) 0 0
\(797\) −20.3023 6.59662i −0.719145 0.233664i −0.0734924 0.997296i \(-0.523414\pi\)
−0.645652 + 0.763632i \(0.723414\pi\)
\(798\) 0 0
\(799\) −4.88486 + 3.54906i −0.172814 + 0.125557i
\(800\) 0 0
\(801\) −2.47455 7.61590i −0.0874341 0.269094i
\(802\) 0 0
\(803\) −27.2969 + 4.43864i −0.963288 + 0.156636i
\(804\) 0 0
\(805\) 2.57780 0.177409i 0.0908553 0.00625283i
\(806\) 0 0
\(807\) 22.9942 + 31.6487i 0.809433 + 1.11409i
\(808\) 0 0
\(809\) 6.33703 19.5034i 0.222798 0.685702i −0.775710 0.631090i \(-0.782608\pi\)
0.998508 0.0546119i \(-0.0173922\pi\)
\(810\) 0 0
\(811\) −2.20327 1.60077i −0.0773674 0.0562107i 0.548429 0.836197i \(-0.315226\pi\)
−0.625797 + 0.779986i \(0.715226\pi\)
\(812\) 0 0
\(813\) 25.7844i 0.904298i
\(814\) 0 0
\(815\) −1.20672 0.302279i −0.0422696 0.0105884i
\(816\) 0 0
\(817\) 13.3129 18.3237i 0.465761 0.641065i
\(818\) 0 0
\(819\) −11.1721 + 34.3841i −0.390384 + 1.20148i
\(820\) 0 0
\(821\) 9.22131 6.69968i 0.321826 0.233820i −0.415128 0.909763i \(-0.636263\pi\)
0.736954 + 0.675943i \(0.236263\pi\)
\(822\) 0 0
\(823\) 45.1364 14.6657i 1.57336 0.511215i 0.613023 0.790065i \(-0.289953\pi\)
0.960335 + 0.278850i \(0.0899533\pi\)
\(824\) 0 0
\(825\) −27.1563 + 36.1817i −0.945461 + 1.25968i
\(826\) 0 0
\(827\) 19.1572 6.22456i 0.666162 0.216449i 0.0436349 0.999048i \(-0.486106\pi\)
0.622527 + 0.782598i \(0.286106\pi\)
\(828\) 0 0
\(829\) −5.35298 + 3.88917i −0.185917 + 0.135076i −0.676851 0.736120i \(-0.736656\pi\)
0.490934 + 0.871197i \(0.336656\pi\)
\(830\) 0 0
\(831\) −9.87154 + 30.3815i −0.342440 + 1.05392i
\(832\) 0 0
\(833\) 1.56421 2.15295i 0.0541968 0.0745955i
\(834\) 0 0
\(835\) 10.1864 + 2.55167i 0.352517 + 0.0883041i
\(836\) 0 0
\(837\) 25.2347i 0.872238i
\(838\) 0 0
\(839\) 8.05951 + 5.85558i 0.278245 + 0.202157i 0.718152 0.695887i \(-0.244988\pi\)
−0.439906 + 0.898044i \(0.644988\pi\)
\(840\) 0 0
\(841\) 0.847493 2.60831i 0.0292239 0.0899419i
\(842\) 0 0
\(843\) 4.52204 + 6.22405i 0.155747 + 0.214368i
\(844\) 0 0
\(845\) −21.4460 + 1.47595i −0.737764 + 0.0507743i
\(846\) 0 0
\(847\) −5.67016 + 17.9524i −0.194829 + 0.616852i
\(848\) 0 0
\(849\) 1.55532 + 4.78679i 0.0533786 + 0.164282i
\(850\) 0 0
\(851\) 0.607544 0.441407i 0.0208264 0.0151312i
\(852\) 0 0
\(853\) 24.1549 + 7.84842i 0.827049 + 0.268725i 0.691802 0.722087i \(-0.256817\pi\)
0.135247 + 0.990812i \(0.456817\pi\)
\(854\) 0 0
\(855\) −30.1492 + 25.2417i −1.03108 + 0.863249i
\(856\) 0 0
\(857\) 43.5351i 1.48713i −0.668663 0.743566i \(-0.733133\pi\)
0.668663 0.743566i \(-0.266867\pi\)
\(858\) 0 0
\(859\) −41.3539 −1.41098 −0.705489 0.708721i \(-0.749272\pi\)
−0.705489 + 0.708721i \(0.749272\pi\)
\(860\) 0 0
\(861\) −43.3643 31.5060i −1.47785 1.07372i
\(862\) 0 0
\(863\) −15.3460 4.98621i −0.522383 0.169733i 0.0359435 0.999354i \(-0.488556\pi\)
−0.558327 + 0.829621i \(0.688556\pi\)
\(864\) 0 0
\(865\) −25.8790 + 10.4227i −0.879912 + 0.354382i
\(866\) 0 0
\(867\) −42.9977 + 13.9708i −1.46028 + 0.474473i
\(868\) 0 0
\(869\) 28.4276 + 4.38265i 0.964341 + 0.148671i
\(870\) 0 0
\(871\) 15.7108 + 48.3529i 0.532340 + 1.63837i
\(872\) 0 0
\(873\) −27.9619 38.4863i −0.946367 1.30256i
\(874\) 0 0
\(875\) −16.6031 + 9.51289i −0.561286 + 0.321594i
\(876\) 0 0
\(877\) −25.6803 + 35.3458i −0.867161 + 1.19354i 0.112654 + 0.993634i \(0.464065\pi\)
−0.979814 + 0.199910i \(0.935935\pi\)
\(878\) 0 0
\(879\) 10.2343 0.345194
\(880\) 0 0
\(881\) 51.4721 1.73414 0.867069 0.498187i \(-0.166001\pi\)
0.867069 + 0.498187i \(0.166001\pi\)
\(882\) 0 0
\(883\) −24.7534 + 34.0702i −0.833019 + 1.14655i 0.154334 + 0.988019i \(0.450677\pi\)
−0.987354 + 0.158534i \(0.949323\pi\)
\(884\) 0 0
\(885\) 19.1934 30.6408i 0.645179 1.02998i
\(886\) 0 0
\(887\) 23.2383 + 31.9847i 0.780265 + 1.07394i 0.995253 + 0.0973254i \(0.0310288\pi\)
−0.214988 + 0.976617i \(0.568971\pi\)
\(888\) 0 0
\(889\) −9.19032 28.2849i −0.308233 0.948645i
\(890\) 0 0
\(891\) 1.38085 + 8.49201i 0.0462602 + 0.284493i
\(892\) 0 0
\(893\) −34.7733 + 11.2985i −1.16365 + 0.378091i
\(894\) 0 0
\(895\) 16.0725 + 39.9071i 0.537244 + 1.33395i
\(896\) 0 0
\(897\) −8.33010 2.70661i −0.278134 0.0903711i
\(898\) 0 0
\(899\) −29.2371 21.2420i −0.975111 0.708460i
\(900\) 0 0
\(901\) −8.62617 −0.287379
\(902\) 0 0
\(903\) 26.7136i 0.888974i
\(904\) 0 0
\(905\) 1.07381 0.899026i 0.0356948 0.0298846i
\(906\) 0 0
\(907\) −0.0864398 0.0280860i −0.00287018 0.000932580i 0.307582 0.951522i \(-0.400480\pi\)
−0.310452 + 0.950589i \(0.600480\pi\)
\(908\) 0 0
\(909\) −32.7480 + 23.7928i −1.08618 + 0.789159i
\(910\) 0 0
\(911\) 14.4946 + 44.6097i 0.480227 + 1.47799i 0.838777 + 0.544476i \(0.183271\pi\)
−0.358550 + 0.933511i \(0.616729\pi\)
\(912\) 0 0
\(913\) 28.5951 28.8315i 0.946361 0.954183i
\(914\) 0 0
\(915\) −6.35440 92.3312i −0.210070 3.05238i
\(916\) 0 0
\(917\) −3.86999 5.32658i −0.127798 0.175899i
\(918\) 0 0
\(919\) −7.67481 + 23.6206i −0.253169 + 0.779173i 0.741016 + 0.671487i \(0.234344\pi\)
−0.994185 + 0.107686i \(0.965656\pi\)
\(920\) 0 0
\(921\) −17.6517 12.8247i −0.581644 0.422589i
\(922\) 0 0
\(923\) 7.17388i 0.236131i
\(924\) 0 0
\(925\) −2.62168 + 4.90462i −0.0862004 + 0.161263i
\(926\) 0 0
\(927\) −20.0406 + 27.5835i −0.658219 + 0.905961i
\(928\) 0 0
\(929\) −14.7623 + 45.4336i −0.484334 + 1.49063i 0.348608 + 0.937268i \(0.386654\pi\)
−0.832943 + 0.553359i \(0.813346\pi\)
\(930\) 0 0
\(931\) 13.0371 9.47199i 0.427273 0.310432i
\(932\) 0 0
\(933\) 32.7454 10.6396i 1.07204 0.348326i
\(934\) 0 0
\(935\) 4.72067 1.10486i 0.154383 0.0361328i
\(936\) 0 0
\(937\) 12.2414 3.97746i 0.399908 0.129938i −0.102156 0.994768i \(-0.532574\pi\)
0.502064 + 0.864830i \(0.332574\pi\)
\(938\) 0 0
\(939\) −27.3713 + 19.8864i −0.893227 + 0.648968i
\(940\) 0 0
\(941\) 5.45583 16.7913i 0.177855 0.547381i −0.821898 0.569635i \(-0.807084\pi\)
0.999752 + 0.0222545i \(0.00708442\pi\)
\(942\) 0 0
\(943\) 4.55594 6.27071i 0.148362 0.204203i
\(944\) 0 0
\(945\) 3.65841 14.6046i 0.119008 0.475088i
\(946\) 0 0
\(947\) 31.2112i 1.01423i −0.861879 0.507114i \(-0.830712\pi\)
0.861879 0.507114i \(-0.169288\pi\)
\(948\) 0 0
\(949\) 32.0795 + 23.3071i 1.04134 + 0.756580i
\(950\) 0 0
\(951\) 2.39037 7.35680i 0.0775131 0.238561i
\(952\) 0 0
\(953\) −16.2877 22.4181i −0.527609 0.726192i 0.459154 0.888357i \(-0.348152\pi\)
−0.986764 + 0.162164i \(0.948152\pi\)
\(954\) 0 0
\(955\) −18.5124 + 1.27406i −0.599048 + 0.0412276i
\(956\) 0 0
\(957\) 45.5147 + 22.9555i 1.47128 + 0.742045i
\(958\) 0 0
\(959\) 4.28710 + 13.1943i 0.138438 + 0.426067i
\(960\) 0 0
\(961\) −8.20701 + 5.96274i −0.264742 + 0.192346i
\(962\) 0 0
\(963\) 46.3407 + 15.0570i 1.49331 + 0.485205i
\(964\) 0 0
\(965\) 0.0271519 + 0.0324307i 0.000874051 + 0.00104398i
\(966\) 0 0
\(967\) 30.3110i 0.974736i −0.873197 0.487368i \(-0.837957\pi\)
0.873197 0.487368i \(-0.162043\pi\)
\(968\) 0 0
\(969\) 7.05991 0.226797
\(970\) 0 0
\(971\) 30.0208 + 21.8114i 0.963413 + 0.699961i 0.953941 0.299995i \(-0.0969849\pi\)
0.00947210 + 0.999955i \(0.496985\pi\)
\(972\) 0 0
\(973\) 32.5706 + 10.5828i 1.04416 + 0.339269i
\(974\) 0 0
\(975\) 64.2523 8.88601i 2.05772 0.284580i
\(976\) 0 0
\(977\) −11.5190 + 3.74276i −0.368527 + 0.119742i −0.487425 0.873165i \(-0.662064\pi\)
0.118898 + 0.992906i \(0.462064\pi\)
\(978\) 0 0
\(979\) −2.69243 + 5.33839i −0.0860504 + 0.170616i
\(980\) 0 0
\(981\) −13.5204 41.6115i −0.431673 1.32855i
\(982\) 0 0
\(983\) 7.44647 + 10.2492i 0.237506 + 0.326898i 0.911087 0.412215i \(-0.135245\pi\)
−0.673581 + 0.739113i \(0.735245\pi\)
\(984\) 0 0
\(985\) 3.00904 4.80371i 0.0958760 0.153059i
\(986\) 0 0
\(987\) 25.3476 34.8879i 0.806822 1.11050i
\(988\) 0 0
\(989\) −3.86294 −0.122834
\(990\) 0 0
\(991\) 8.30199 0.263721 0.131861 0.991268i \(-0.457905\pi\)
0.131861 + 0.991268i \(0.457905\pi\)
\(992\) 0 0
\(993\) −22.4504 + 30.9003i −0.712442 + 0.980592i
\(994\) 0 0
\(995\) −27.6859 17.3425i −0.877704 0.549793i
\(996\) 0 0
\(997\) −22.2050 30.5626i −0.703241 0.967928i −0.999916 0.0129494i \(-0.995878\pi\)
0.296676 0.954978i \(-0.404122\pi\)
\(998\) 0 0
\(999\) −1.35218 4.16158i −0.0427810 0.131666i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 220.2.t.a.49.6 yes 24
4.3 odd 2 880.2.cd.d.49.1 24
5.2 odd 4 1100.2.n.f.401.1 24
5.3 odd 4 1100.2.n.f.401.6 24
5.4 even 2 inner 220.2.t.a.49.1 yes 24
11.3 even 5 2420.2.b.i.969.11 12
11.8 odd 10 2420.2.b.h.969.11 12
11.9 even 5 inner 220.2.t.a.9.1 24
20.19 odd 2 880.2.cd.d.49.6 24
44.31 odd 10 880.2.cd.d.449.6 24
55.9 even 10 inner 220.2.t.a.9.6 yes 24
55.14 even 10 2420.2.b.i.969.2 12
55.19 odd 10 2420.2.b.h.969.2 12
55.42 odd 20 1100.2.n.f.801.1 24
55.53 odd 20 1100.2.n.f.801.6 24
220.119 odd 10 880.2.cd.d.449.1 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.2.t.a.9.1 24 11.9 even 5 inner
220.2.t.a.9.6 yes 24 55.9 even 10 inner
220.2.t.a.49.1 yes 24 5.4 even 2 inner
220.2.t.a.49.6 yes 24 1.1 even 1 trivial
880.2.cd.d.49.1 24 4.3 odd 2
880.2.cd.d.49.6 24 20.19 odd 2
880.2.cd.d.449.1 24 220.119 odd 10
880.2.cd.d.449.6 24 44.31 odd 10
1100.2.n.f.401.1 24 5.2 odd 4
1100.2.n.f.401.6 24 5.3 odd 4
1100.2.n.f.801.1 24 55.42 odd 20
1100.2.n.f.801.6 24 55.53 odd 20
2420.2.b.h.969.2 12 55.19 odd 10
2420.2.b.h.969.11 12 11.8 odd 10
2420.2.b.i.969.2 12 55.14 even 10
2420.2.b.i.969.11 12 11.3 even 5