Properties

Label 880.1.i.b
Level $880$
Weight $1$
Character orbit 880.i
Analytic conductor $0.439$
Analytic rank $0$
Dimension $2$
Projective image $D_{6}$
CM discriminant -11
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [880,1,Mod(769,880)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(880, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("880.769"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 880.i (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.439177211117\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 220)
Projective image: \(D_{6}\)
Projective field: Galois closure of 6.2.242000.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + ( - \zeta_{6}^{2} - \zeta_{6}) q^{3} - \zeta_{6}^{2} q^{5} + (\zeta_{6}^{2} - \zeta_{6} - 1) q^{9} + q^{11} + ( - \zeta_{6} - 1) q^{15} + (\zeta_{6}^{2} + \zeta_{6}) q^{23} - \zeta_{6} q^{25} + (\zeta_{6}^{2} + \zeta_{6}) q^{27} + \cdots + (\zeta_{6}^{2} - \zeta_{6} - 1) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{5} - 4 q^{9} + 2 q^{11} - 3 q^{15} - q^{25} - 2 q^{31} - 2 q^{45} - 2 q^{49} + q^{55} + 2 q^{59} + 6 q^{69} + 2 q^{71} - 3 q^{75} + 2 q^{81} + 2 q^{89} - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/880\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(321\) \(661\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
769.1
0.500000 + 0.866025i
0.500000 0.866025i
0 1.73205i 0 0.500000 0.866025i 0 0 0 −2.00000 0
769.2 0 1.73205i 0 0.500000 + 0.866025i 0 0 0 −2.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 CM by \(\Q(\sqrt{-11}) \)
5.b even 2 1 inner
55.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 880.1.i.b 2
4.b odd 2 1 220.1.e.a 2
5.b even 2 1 inner 880.1.i.b 2
8.b even 2 1 3520.1.i.c 2
8.d odd 2 1 3520.1.i.d 2
11.b odd 2 1 CM 880.1.i.b 2
12.b even 2 1 1980.1.p.a 2
20.d odd 2 1 220.1.e.a 2
20.e even 4 2 1100.1.f.b 2
40.e odd 2 1 3520.1.i.d 2
40.f even 2 1 3520.1.i.c 2
44.c even 2 1 220.1.e.a 2
44.g even 10 4 2420.1.q.a 8
44.h odd 10 4 2420.1.q.a 8
55.d odd 2 1 inner 880.1.i.b 2
60.h even 2 1 1980.1.p.a 2
88.b odd 2 1 3520.1.i.c 2
88.g even 2 1 3520.1.i.d 2
132.d odd 2 1 1980.1.p.a 2
220.g even 2 1 220.1.e.a 2
220.i odd 4 2 1100.1.f.b 2
220.n odd 10 4 2420.1.q.a 8
220.o even 10 4 2420.1.q.a 8
440.c even 2 1 3520.1.i.d 2
440.o odd 2 1 3520.1.i.c 2
660.g odd 2 1 1980.1.p.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
220.1.e.a 2 4.b odd 2 1
220.1.e.a 2 20.d odd 2 1
220.1.e.a 2 44.c even 2 1
220.1.e.a 2 220.g even 2 1
880.1.i.b 2 1.a even 1 1 trivial
880.1.i.b 2 5.b even 2 1 inner
880.1.i.b 2 11.b odd 2 1 CM
880.1.i.b 2 55.d odd 2 1 inner
1100.1.f.b 2 20.e even 4 2
1100.1.f.b 2 220.i odd 4 2
1980.1.p.a 2 12.b even 2 1
1980.1.p.a 2 60.h even 2 1
1980.1.p.a 2 132.d odd 2 1
1980.1.p.a 2 660.g odd 2 1
2420.1.q.a 8 44.g even 10 4
2420.1.q.a 8 44.h odd 10 4
2420.1.q.a 8 220.n odd 10 4
2420.1.q.a 8 220.o even 10 4
3520.1.i.c 2 8.b even 2 1
3520.1.i.c 2 40.f even 2 1
3520.1.i.c 2 88.b odd 2 1
3520.1.i.c 2 440.o odd 2 1
3520.1.i.d 2 8.d odd 2 1
3520.1.i.d 2 40.e odd 2 1
3520.1.i.d 2 88.g even 2 1
3520.1.i.d 2 440.c even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 3 \) acting on \(S_{1}^{\mathrm{new}}(880, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 3 \) Copy content Toggle raw display
$5$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( (T - 1)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 3 \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( (T + 1)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 3 \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( T^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( (T - 1)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 3 \) Copy content Toggle raw display
$71$ \( (T - 1)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( (T - 1)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 3 \) Copy content Toggle raw display
show more
show less