Properties

Label 220.1.e.a
Level $220$
Weight $1$
Character orbit 220.e
Analytic conductor $0.110$
Analytic rank $0$
Dimension $2$
Projective image $D_{6}$
CM discriminant -11
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,1,Mod(109,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.109");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 220.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.109794302779\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{6}\)
Projective field: Galois closure of 6.2.242000.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + (\zeta_{6}^{2} + \zeta_{6}) q^{3} - \zeta_{6}^{2} q^{5} + (\zeta_{6}^{2} - \zeta_{6} - 1) q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + (\zeta_{6}^{2} + \zeta_{6}) q^{3} - \zeta_{6}^{2} q^{5} + (\zeta_{6}^{2} - \zeta_{6} - 1) q^{9} - q^{11} + (\zeta_{6} + 1) q^{15} + ( - \zeta_{6}^{2} - \zeta_{6}) q^{23} - \zeta_{6} q^{25} + ( - \zeta_{6}^{2} - \zeta_{6}) q^{27} + q^{31} + ( - \zeta_{6}^{2} - \zeta_{6}) q^{33} + (\zeta_{6}^{2} + \zeta_{6}) q^{37} + (\zeta_{6}^{2} + \zeta_{6} - 1) q^{45} - q^{49} + \zeta_{6}^{2} q^{55} - q^{59} + (\zeta_{6}^{2} + \zeta_{6}) q^{67} + ( - \zeta_{6}^{2} + \zeta_{6} + 2) q^{69} - q^{71} + ( - \zeta_{6}^{2} + 1) q^{75} + q^{81} + q^{89} + (\zeta_{6}^{2} + \zeta_{6}) q^{93} + ( - \zeta_{6}^{2} - \zeta_{6}) q^{97} + ( - \zeta_{6}^{2} + \zeta_{6} + 1) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{5} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + q^{5} - 4 q^{9} - 2 q^{11} + 3 q^{15} - q^{25} + 2 q^{31} - 2 q^{45} - 2 q^{49} - q^{55} - 2 q^{59} + 6 q^{69} - 2 q^{71} + 3 q^{75} + 2 q^{81} + 2 q^{89} + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
109.1
0.500000 0.866025i
0.500000 + 0.866025i
0 1.73205i 0 0.500000 + 0.866025i 0 0 0 −2.00000 0
109.2 0 1.73205i 0 0.500000 0.866025i 0 0 0 −2.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 CM by \(\Q(\sqrt{-11}) \)
5.b even 2 1 inner
55.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 220.1.e.a 2
3.b odd 2 1 1980.1.p.a 2
4.b odd 2 1 880.1.i.b 2
5.b even 2 1 inner 220.1.e.a 2
5.c odd 4 2 1100.1.f.b 2
8.b even 2 1 3520.1.i.d 2
8.d odd 2 1 3520.1.i.c 2
11.b odd 2 1 CM 220.1.e.a 2
11.c even 5 4 2420.1.q.a 8
11.d odd 10 4 2420.1.q.a 8
15.d odd 2 1 1980.1.p.a 2
20.d odd 2 1 880.1.i.b 2
33.d even 2 1 1980.1.p.a 2
40.e odd 2 1 3520.1.i.c 2
40.f even 2 1 3520.1.i.d 2
44.c even 2 1 880.1.i.b 2
55.d odd 2 1 inner 220.1.e.a 2
55.e even 4 2 1100.1.f.b 2
55.h odd 10 4 2420.1.q.a 8
55.j even 10 4 2420.1.q.a 8
88.b odd 2 1 3520.1.i.d 2
88.g even 2 1 3520.1.i.c 2
165.d even 2 1 1980.1.p.a 2
220.g even 2 1 880.1.i.b 2
440.c even 2 1 3520.1.i.c 2
440.o odd 2 1 3520.1.i.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
220.1.e.a 2 1.a even 1 1 trivial
220.1.e.a 2 5.b even 2 1 inner
220.1.e.a 2 11.b odd 2 1 CM
220.1.e.a 2 55.d odd 2 1 inner
880.1.i.b 2 4.b odd 2 1
880.1.i.b 2 20.d odd 2 1
880.1.i.b 2 44.c even 2 1
880.1.i.b 2 220.g even 2 1
1100.1.f.b 2 5.c odd 4 2
1100.1.f.b 2 55.e even 4 2
1980.1.p.a 2 3.b odd 2 1
1980.1.p.a 2 15.d odd 2 1
1980.1.p.a 2 33.d even 2 1
1980.1.p.a 2 165.d even 2 1
2420.1.q.a 8 11.c even 5 4
2420.1.q.a 8 11.d odd 10 4
2420.1.q.a 8 55.h odd 10 4
2420.1.q.a 8 55.j even 10 4
3520.1.i.c 2 8.d odd 2 1
3520.1.i.c 2 40.e odd 2 1
3520.1.i.c 2 88.g even 2 1
3520.1.i.c 2 440.c even 2 1
3520.1.i.d 2 8.b even 2 1
3520.1.i.d 2 40.f even 2 1
3520.1.i.d 2 88.b odd 2 1
3520.1.i.d 2 440.o odd 2 1

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(220, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 3 \) Copy content Toggle raw display
$5$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( (T + 1)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 3 \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( (T - 1)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 3 \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( T^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( (T + 1)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 3 \) Copy content Toggle raw display
$71$ \( (T + 1)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( (T - 1)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 3 \) Copy content Toggle raw display
show more
show less