Properties

Label 4-880e2-1.1-c0e2-0-1
Degree $4$
Conductor $774400$
Sign $1$
Analytic cond. $0.192876$
Root an. cond. $0.662704$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 9-s + 2·11-s − 2·31-s − 45-s − 2·49-s + 2·55-s + 2·59-s + 2·71-s + 2·89-s − 2·99-s + 3·121-s − 125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 2·155-s + 157-s + 163-s + 167-s − 2·169-s + 173-s + 179-s + 181-s + ⋯
L(s)  = 1  + 5-s − 9-s + 2·11-s − 2·31-s − 45-s − 2·49-s + 2·55-s + 2·59-s + 2·71-s + 2·89-s − 2·99-s + 3·121-s − 125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 2·155-s + 157-s + 163-s + 167-s − 2·169-s + 173-s + 179-s + 181-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 774400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 774400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(774400\)    =    \(2^{8} \cdot 5^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(0.192876\)
Root analytic conductor: \(0.662704\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 774400,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.142934288\)
\(L(\frac12)\) \(\approx\) \(1.142934288\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_2$ \( 1 - T + T^{2} \)
11$C_1$ \( ( 1 - T )^{2} \)
good3$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
7$C_2$ \( ( 1 + T^{2} )^{2} \)
13$C_2$ \( ( 1 + T^{2} )^{2} \)
17$C_2$ \( ( 1 + T^{2} )^{2} \)
19$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
23$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
29$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
31$C_2$ \( ( 1 + T + T^{2} )^{2} \)
37$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
41$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
43$C_2$ \( ( 1 + T^{2} )^{2} \)
47$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
53$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
59$C_2$ \( ( 1 - T + T^{2} )^{2} \)
61$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
67$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
71$C_2$ \( ( 1 - T + T^{2} )^{2} \)
73$C_2$ \( ( 1 + T^{2} )^{2} \)
79$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
83$C_2$ \( ( 1 + T^{2} )^{2} \)
89$C_2$ \( ( 1 - T + T^{2} )^{2} \)
97$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.64885043816639158555759927902, −9.816064417801211431424999679181, −9.777571143693556337217260708940, −9.241654603129487465488687566121, −9.075804793792927686631635357774, −8.448033777754738876352687834600, −8.275323252312199843062904256573, −7.50702262269627597452826470860, −7.05460101415433733235848336056, −6.61612082254370158783954504007, −6.15893898753683633052192165913, −5.93806298026957659300460429578, −5.29324465123950895712765949971, −4.99592629166217049725002194104, −4.21205817982189336098735354918, −3.52942851288700712550693422582, −3.47037170613842761347265608124, −2.38218283205467525109772655125, −1.96335331163337255569281907212, −1.22620975675728170239341745463, 1.22620975675728170239341745463, 1.96335331163337255569281907212, 2.38218283205467525109772655125, 3.47037170613842761347265608124, 3.52942851288700712550693422582, 4.21205817982189336098735354918, 4.99592629166217049725002194104, 5.29324465123950895712765949971, 5.93806298026957659300460429578, 6.15893898753683633052192165913, 6.61612082254370158783954504007, 7.05460101415433733235848336056, 7.50702262269627597452826470860, 8.275323252312199843062904256573, 8.448033777754738876352687834600, 9.075804793792927686631635357774, 9.241654603129487465488687566121, 9.777571143693556337217260708940, 9.816064417801211431424999679181, 10.64885043816639158555759927902

Graph of the $Z$-function along the critical line