Properties

Label 875.2.f.b.818.6
Level $875$
Weight $2$
Character 875.818
Analytic conductor $6.987$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [875,2,Mod(307,875)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("875.307"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(875, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([1, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 875 = 5^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 875.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,0,0,24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.98691017686\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 36x^{14} + 456x^{12} + 2616x^{10} + 7596x^{8} + 11600x^{6} + 9040x^{4} + 3200x^{2} + 400 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 818.6
Root \(-3.13163i\) of defining polynomial
Character \(\chi\) \(=\) 875.818
Dual form 875.2.f.b.307.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.30038 - 1.30038i) q^{2} +(0.513743 - 0.513743i) q^{3} -1.38197i q^{4} -1.33612i q^{6} +(0.0446190 + 2.64538i) q^{7} +(0.803678 + 0.803678i) q^{8} +2.47214i q^{9} +0.381966 q^{11} +(-0.709976 - 0.709976i) q^{12} +(4.35250 - 4.35250i) q^{13} +(3.49801 + 3.38197i) q^{14} +4.85410 q^{16} +(-1.34500 - 1.34500i) q^{17} +(3.21471 + 3.21471i) q^{18} -1.33612 q^{19} +(1.38197 + 1.33612i) q^{21} +(0.496700 - 0.496700i) q^{22} +(3.90113 + 3.90113i) q^{23} +0.825768 q^{24} -11.3198i q^{26} +(2.81127 + 2.81127i) q^{27} +(3.65582 - 0.0616619i) q^{28} -4.70820i q^{29} -9.15791i q^{31} +(4.70481 - 4.70481i) q^{32} +(0.196232 - 0.196232i) q^{33} -3.49801 q^{34} +3.41641 q^{36} +(-6.31217 + 6.31217i) q^{37} +(-1.73746 + 1.73746i) q^{38} -4.47214i q^{39} +6.99602i q^{41} +(3.53454 - 0.0596164i) q^{42} +(2.10406 + 2.10406i) q^{43} -0.527864i q^{44} +10.1459 q^{46} +(3.32502 + 3.32502i) q^{47} +(2.49376 - 2.49376i) q^{48} +(-6.99602 + 0.236068i) q^{49} -1.38197 q^{51} +(-6.01501 - 6.01501i) q^{52} +(-6.00519 - 6.00519i) q^{53} +7.31143 q^{54} +(-2.09017 + 2.16189i) q^{56} +(-0.686423 + 0.686423i) q^{57} +(-6.12244 - 6.12244i) q^{58} -9.98367 q^{59} -13.4817i q^{61} +(-11.9087 - 11.9087i) q^{62} +(-6.53973 + 0.110304i) q^{63} -2.52786i q^{64} -0.510353i q^{66} +(-3.40443 + 3.40443i) q^{67} +(-1.85874 + 1.85874i) q^{68} +4.00836 q^{69} +6.23607 q^{71} +(-1.98680 + 1.98680i) q^{72} +(-10.1713 + 10.1713i) q^{73} +16.4164i q^{74} +1.84647i q^{76} +(0.0170429 + 1.01044i) q^{77} +(-5.81547 - 5.81547i) q^{78} -9.70820i q^{79} -4.52786 q^{81} +(9.09747 + 9.09747i) q^{82} +(3.83876 - 3.83876i) q^{83} +(1.84647 - 1.90983i) q^{84} +5.47214 q^{86} +(-2.41881 - 2.41881i) q^{87} +(0.306978 + 0.306978i) q^{88} +0.825768 q^{89} +(11.7082 + 11.3198i) q^{91} +(5.39123 - 5.39123i) q^{92} +(-4.70481 - 4.70481i) q^{93} +8.64755 q^{94} -4.83413i q^{96} +(4.35250 + 4.35250i) q^{97} +(-8.79049 + 9.40445i) q^{98} +0.944272i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 24 q^{11} + 24 q^{16} + 40 q^{21} - 160 q^{36} + 216 q^{46} - 40 q^{51} + 56 q^{56} + 64 q^{71} - 144 q^{81} + 16 q^{86} + 80 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/875\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(626\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.30038 1.30038i 0.919506 0.919506i −0.0774872 0.996993i \(-0.524690\pi\)
0.996993 + 0.0774872i \(0.0246897\pi\)
\(3\) 0.513743 0.513743i 0.296610 0.296610i −0.543075 0.839684i \(-0.682740\pi\)
0.839684 + 0.543075i \(0.182740\pi\)
\(4\) 1.38197i 0.690983i
\(5\) 0 0
\(6\) 1.33612i 0.545469i
\(7\) 0.0446190 + 2.64538i 0.0168644 + 0.999858i
\(8\) 0.803678 + 0.803678i 0.284143 + 0.284143i
\(9\) 2.47214i 0.824045i
\(10\) 0 0
\(11\) 0.381966 0.115167 0.0575835 0.998341i \(-0.481660\pi\)
0.0575835 + 0.998341i \(0.481660\pi\)
\(12\) −0.709976 0.709976i −0.204952 0.204952i
\(13\) 4.35250 4.35250i 1.20717 1.20717i 0.235226 0.971941i \(-0.424417\pi\)
0.971941 0.235226i \(-0.0755831\pi\)
\(14\) 3.49801 + 3.38197i 0.934882 + 0.903868i
\(15\) 0 0
\(16\) 4.85410 1.21353
\(17\) −1.34500 1.34500i −0.326210 0.326210i 0.524934 0.851143i \(-0.324090\pi\)
−0.851143 + 0.524934i \(0.824090\pi\)
\(18\) 3.21471 + 3.21471i 0.757715 + 0.757715i
\(19\) −1.33612 −0.306527 −0.153264 0.988185i \(-0.548978\pi\)
−0.153264 + 0.988185i \(0.548978\pi\)
\(20\) 0 0
\(21\) 1.38197 + 1.33612i 0.301570 + 0.291565i
\(22\) 0.496700 0.496700i 0.105897 0.105897i
\(23\) 3.90113 + 3.90113i 0.813443 + 0.813443i 0.985148 0.171706i \(-0.0549278\pi\)
−0.171706 + 0.985148i \(0.554928\pi\)
\(24\) 0.825768 0.168559
\(25\) 0 0
\(26\) 11.3198i 2.21999i
\(27\) 2.81127 + 2.81127i 0.541030 + 0.541030i
\(28\) 3.65582 0.0616619i 0.690885 0.0116530i
\(29\) 4.70820i 0.874292i −0.899391 0.437146i \(-0.855989\pi\)
0.899391 0.437146i \(-0.144011\pi\)
\(30\) 0 0
\(31\) 9.15791i 1.64481i −0.568903 0.822404i \(-0.692632\pi\)
0.568903 0.822404i \(-0.307368\pi\)
\(32\) 4.70481 4.70481i 0.831701 0.831701i
\(33\) 0.196232 0.196232i 0.0341597 0.0341597i
\(34\) −3.49801 −0.599904
\(35\) 0 0
\(36\) 3.41641 0.569401
\(37\) −6.31217 + 6.31217i −1.03771 + 1.03771i −0.0384536 + 0.999260i \(0.512243\pi\)
−0.999260 + 0.0384536i \(0.987757\pi\)
\(38\) −1.73746 + 1.73746i −0.281854 + 0.281854i
\(39\) 4.47214i 0.716115i
\(40\) 0 0
\(41\) 6.99602i 1.09259i 0.837591 + 0.546297i \(0.183963\pi\)
−0.837591 + 0.546297i \(0.816037\pi\)
\(42\) 3.53454 0.0596164i 0.545391 0.00919900i
\(43\) 2.10406 + 2.10406i 0.320866 + 0.320866i 0.849099 0.528234i \(-0.177145\pi\)
−0.528234 + 0.849099i \(0.677145\pi\)
\(44\) 0.527864i 0.0795785i
\(45\) 0 0
\(46\) 10.1459 1.49593
\(47\) 3.32502 + 3.32502i 0.485003 + 0.485003i 0.906725 0.421722i \(-0.138574\pi\)
−0.421722 + 0.906725i \(0.638574\pi\)
\(48\) 2.49376 2.49376i 0.359943 0.359943i
\(49\) −6.99602 + 0.236068i −0.999431 + 0.0337240i
\(50\) 0 0
\(51\) −1.38197 −0.193514
\(52\) −6.01501 6.01501i −0.834132 0.834132i
\(53\) −6.00519 6.00519i −0.824876 0.824876i 0.161927 0.986803i \(-0.448229\pi\)
−0.986803 + 0.161927i \(0.948229\pi\)
\(54\) 7.31143 0.994960
\(55\) 0 0
\(56\) −2.09017 + 2.16189i −0.279311 + 0.288895i
\(57\) −0.686423 + 0.686423i −0.0909189 + 0.0909189i
\(58\) −6.12244 6.12244i −0.803916 0.803916i
\(59\) −9.98367 −1.29976 −0.649882 0.760035i \(-0.725182\pi\)
−0.649882 + 0.760035i \(0.725182\pi\)
\(60\) 0 0
\(61\) 13.4817i 1.72615i −0.505073 0.863076i \(-0.668535\pi\)
0.505073 0.863076i \(-0.331465\pi\)
\(62\) −11.9087 11.9087i −1.51241 1.51241i
\(63\) −6.53973 + 0.110304i −0.823928 + 0.0138970i
\(64\) 2.52786i 0.315983i
\(65\) 0 0
\(66\) 0.510353i 0.0628201i
\(67\) −3.40443 + 3.40443i −0.415918 + 0.415918i −0.883794 0.467876i \(-0.845019\pi\)
0.467876 + 0.883794i \(0.345019\pi\)
\(68\) −1.85874 + 1.85874i −0.225405 + 0.225405i
\(69\) 4.00836 0.482550
\(70\) 0 0
\(71\) 6.23607 0.740085 0.370043 0.929015i \(-0.379343\pi\)
0.370043 + 0.929015i \(0.379343\pi\)
\(72\) −1.98680 + 1.98680i −0.234147 + 0.234147i
\(73\) −10.1713 + 10.1713i −1.19046 + 1.19046i −0.213519 + 0.976939i \(0.568493\pi\)
−0.976939 + 0.213519i \(0.931507\pi\)
\(74\) 16.4164i 1.90837i
\(75\) 0 0
\(76\) 1.84647i 0.211805i
\(77\) 0.0170429 + 1.01044i 0.00194222 + 0.115151i
\(78\) −5.81547 5.81547i −0.658472 0.658472i
\(79\) 9.70820i 1.09226i −0.837701 0.546129i \(-0.816101\pi\)
0.837701 0.546129i \(-0.183899\pi\)
\(80\) 0 0
\(81\) −4.52786 −0.503096
\(82\) 9.09747 + 9.09747i 1.00465 + 1.00465i
\(83\) 3.83876 3.83876i 0.421359 0.421359i −0.464313 0.885671i \(-0.653699\pi\)
0.885671 + 0.464313i \(0.153699\pi\)
\(84\) 1.84647 1.90983i 0.201467 0.208380i
\(85\) 0 0
\(86\) 5.47214 0.590076
\(87\) −2.41881 2.41881i −0.259323 0.259323i
\(88\) 0.306978 + 0.306978i 0.0327239 + 0.0327239i
\(89\) 0.825768 0.0875312 0.0437656 0.999042i \(-0.486065\pi\)
0.0437656 + 0.999042i \(0.486065\pi\)
\(90\) 0 0
\(91\) 11.7082 + 11.3198i 1.22735 + 1.18664i
\(92\) 5.39123 5.39123i 0.562075 0.562075i
\(93\) −4.70481 4.70481i −0.487866 0.487866i
\(94\) 8.64755 0.891927
\(95\) 0 0
\(96\) 4.83413i 0.493381i
\(97\) 4.35250 + 4.35250i 0.441930 + 0.441930i 0.892660 0.450730i \(-0.148836\pi\)
−0.450730 + 0.892660i \(0.648836\pi\)
\(98\) −8.79049 + 9.40445i −0.887974 + 0.949993i
\(99\) 0.944272i 0.0949029i
\(100\) 0 0
\(101\) 1.33612i 0.132949i 0.997788 + 0.0664745i \(0.0211751\pi\)
−0.997788 + 0.0664745i \(0.978825\pi\)
\(102\) −1.79708 + 1.79708i −0.177937 + 0.177937i
\(103\) −1.54123 + 1.54123i −0.151862 + 0.151862i −0.778949 0.627087i \(-0.784247\pi\)
0.627087 + 0.778949i \(0.284247\pi\)
\(104\) 6.99602 0.686016
\(105\) 0 0
\(106\) −15.6180 −1.51696
\(107\) 8.60595 8.60595i 0.831968 0.831968i −0.155818 0.987786i \(-0.549801\pi\)
0.987786 + 0.155818i \(0.0498012\pi\)
\(108\) 3.88508 3.88508i 0.373842 0.373842i
\(109\) 7.00000i 0.670478i 0.942133 + 0.335239i \(0.108817\pi\)
−0.942133 + 0.335239i \(0.891183\pi\)
\(110\) 0 0
\(111\) 6.48567i 0.615592i
\(112\) 0.216585 + 12.8409i 0.0204654 + 1.21335i
\(113\) −4.39783 4.39783i −0.413713 0.413713i 0.469317 0.883030i \(-0.344500\pi\)
−0.883030 + 0.469317i \(0.844500\pi\)
\(114\) 1.78522i 0.167201i
\(115\) 0 0
\(116\) −6.50658 −0.604121
\(117\) 10.7600 + 10.7600i 0.994760 + 0.994760i
\(118\) −12.9826 + 12.9826i −1.19514 + 1.19514i
\(119\) 3.49801 3.61803i 0.320662 0.331665i
\(120\) 0 0
\(121\) −10.8541 −0.986737
\(122\) −17.5313 17.5313i −1.58721 1.58721i
\(123\) 3.59416 + 3.59416i 0.324074 + 0.324074i
\(124\) −12.6559 −1.13653
\(125\) 0 0
\(126\) −8.36068 + 8.64755i −0.744829 + 0.770385i
\(127\) −6.31217 + 6.31217i −0.560114 + 0.560114i −0.929340 0.369226i \(-0.879623\pi\)
0.369226 + 0.929340i \(0.379623\pi\)
\(128\) 6.12244 + 6.12244i 0.541153 + 0.541153i
\(129\) 2.16189 0.190344
\(130\) 0 0
\(131\) 17.4900i 1.52811i −0.645150 0.764056i \(-0.723205\pi\)
0.645150 0.764056i \(-0.276795\pi\)
\(132\) −0.271187 0.271187i −0.0236038 0.0236038i
\(133\) −0.0596164 3.53454i −0.00516939 0.306483i
\(134\) 8.85410i 0.764878i
\(135\) 0 0
\(136\) 2.16189i 0.185380i
\(137\) 5.01179 5.01179i 0.428186 0.428186i −0.459824 0.888010i \(-0.652088\pi\)
0.888010 + 0.459824i \(0.152088\pi\)
\(138\) 5.21239 5.21239i 0.443708 0.443708i
\(139\) −3.49801 −0.296697 −0.148349 0.988935i \(-0.547396\pi\)
−0.148349 + 0.988935i \(0.547396\pi\)
\(140\) 0 0
\(141\) 3.41641 0.287713
\(142\) 8.10925 8.10925i 0.680513 0.680513i
\(143\) 1.66251 1.66251i 0.139026 0.139026i
\(144\) 12.0000i 1.00000i
\(145\) 0 0
\(146\) 26.4530i 2.18927i
\(147\) −3.47288 + 3.71543i −0.286438 + 0.306444i
\(148\) 8.72320 + 8.72320i 0.717043 + 0.717043i
\(149\) 8.32624i 0.682112i −0.940043 0.341056i \(-0.889215\pi\)
0.940043 0.341056i \(-0.110785\pi\)
\(150\) 0 0
\(151\) −1.85410 −0.150885 −0.0754423 0.997150i \(-0.524037\pi\)
−0.0754423 + 0.997150i \(0.524037\pi\)
\(152\) −1.07381 1.07381i −0.0870975 0.0870975i
\(153\) 3.32502 3.32502i 0.268812 0.268812i
\(154\) 1.33612 + 1.29180i 0.107668 + 0.104096i
\(155\) 0 0
\(156\) −6.18034 −0.494823
\(157\) −4.23122 4.23122i −0.337688 0.337688i 0.517808 0.855497i \(-0.326748\pi\)
−0.855497 + 0.517808i \(0.826748\pi\)
\(158\) −12.6243 12.6243i −1.00434 1.00434i
\(159\) −6.17025 −0.489333
\(160\) 0 0
\(161\) −10.1459 + 10.4940i −0.799609 + 0.827045i
\(162\) −5.88793 + 5.88793i −0.462600 + 0.462600i
\(163\) −1.30038 1.30038i −0.101853 0.101853i 0.654344 0.756197i \(-0.272945\pi\)
−0.756197 + 0.654344i \(0.772945\pi\)
\(164\) 9.66826 0.754964
\(165\) 0 0
\(166\) 9.98367i 0.774883i
\(167\) −1.54123 1.54123i −0.119264 0.119264i 0.644956 0.764220i \(-0.276876\pi\)
−0.764220 + 0.644956i \(0.776876\pi\)
\(168\) 0.0368449 + 2.18447i 0.00284265 + 0.168535i
\(169\) 24.8885i 1.91450i
\(170\) 0 0
\(171\) 3.30307i 0.252592i
\(172\) 2.90773 2.90773i 0.221713 0.221713i
\(173\) 1.54123 1.54123i 0.117178 0.117178i −0.646087 0.763264i \(-0.723596\pi\)
0.763264 + 0.646087i \(0.223596\pi\)
\(174\) −6.29073 −0.476899
\(175\) 0 0
\(176\) 1.85410 0.139758
\(177\) −5.12904 + 5.12904i −0.385523 + 0.385523i
\(178\) 1.07381 1.07381i 0.0804855 0.0804855i
\(179\) 16.0344i 1.19847i −0.800573 0.599235i \(-0.795471\pi\)
0.800573 0.599235i \(-0.204529\pi\)
\(180\) 0 0
\(181\) 21.3035i 1.58347i 0.610862 + 0.791737i \(0.290823\pi\)
−0.610862 + 0.791737i \(0.709177\pi\)
\(182\) 29.9451 0.505078i 2.21968 0.0374389i
\(183\) −6.92612 6.92612i −0.511994 0.511994i
\(184\) 6.27051i 0.462268i
\(185\) 0 0
\(186\) −12.2361 −0.897192
\(187\) −0.513743 0.513743i −0.0375686 0.0375686i
\(188\) 4.59506 4.59506i 0.335129 0.335129i
\(189\) −7.31143 + 7.56231i −0.531829 + 0.550077i
\(190\) 0 0
\(191\) −1.29180 −0.0934711 −0.0467355 0.998907i \(-0.514882\pi\)
−0.0467355 + 0.998907i \(0.514882\pi\)
\(192\) −1.29867 1.29867i −0.0937236 0.0937236i
\(193\) 14.4214 + 14.4214i 1.03808 + 1.03808i 0.999246 + 0.0388302i \(0.0123632\pi\)
0.0388302 + 0.999246i \(0.487637\pi\)
\(194\) 11.3198 0.812714
\(195\) 0 0
\(196\) 0.326238 + 9.66826i 0.0233027 + 0.690590i
\(197\) 6.00519 6.00519i 0.427852 0.427852i −0.460044 0.887896i \(-0.652166\pi\)
0.887896 + 0.460044i \(0.152166\pi\)
\(198\) 1.22791 + 1.22791i 0.0872638 + 0.0872638i
\(199\) −15.3282 −1.08658 −0.543292 0.839544i \(-0.682822\pi\)
−0.543292 + 0.839544i \(0.682822\pi\)
\(200\) 0 0
\(201\) 3.49801i 0.246731i
\(202\) 1.73746 + 1.73746i 0.122247 + 0.122247i
\(203\) 12.4550 0.210075i 0.874167 0.0147444i
\(204\) 1.90983i 0.133715i
\(205\) 0 0
\(206\) 4.00836i 0.279276i
\(207\) −9.64413 + 9.64413i −0.670314 + 0.670314i
\(208\) 21.1275 21.1275i 1.46493 1.46493i
\(209\) −0.510353 −0.0353018
\(210\) 0 0
\(211\) −12.4721 −0.858617 −0.429309 0.903158i \(-0.641243\pi\)
−0.429309 + 0.903158i \(0.641243\pi\)
\(212\) −8.29897 + 8.29897i −0.569975 + 0.569975i
\(213\) 3.20374 3.20374i 0.219516 0.219516i
\(214\) 22.3820i 1.53000i
\(215\) 0 0
\(216\) 4.51871i 0.307460i
\(217\) 24.2261 0.408617i 1.64457 0.0277387i
\(218\) 9.10265 + 9.10265i 0.616509 + 0.616509i
\(219\) 10.4508i 0.706203i
\(220\) 0 0
\(221\) −11.7082 −0.787579
\(222\) 8.43382 + 8.43382i 0.566041 + 0.566041i
\(223\) −6.52875 + 6.52875i −0.437198 + 0.437198i −0.891068 0.453870i \(-0.850043\pi\)
0.453870 + 0.891068i \(0.350043\pi\)
\(224\) 12.6559 + 12.2361i 0.845609 + 0.817557i
\(225\) 0 0
\(226\) −11.4377 −0.760824
\(227\) −21.1275 21.1275i −1.40228 1.40228i −0.792804 0.609476i \(-0.791380\pi\)
−0.609476 0.792804i \(-0.708620\pi\)
\(228\) 0.948613 + 0.948613i 0.0628234 + 0.0628234i
\(229\) −10.8094 −0.714308 −0.357154 0.934045i \(-0.616253\pi\)
−0.357154 + 0.934045i \(0.616253\pi\)
\(230\) 0 0
\(231\) 0.527864 + 0.510353i 0.0347309 + 0.0335787i
\(232\) 3.78388 3.78388i 0.248424 0.248424i
\(233\) 10.8273 + 10.8273i 0.709317 + 0.709317i 0.966392 0.257074i \(-0.0827586\pi\)
−0.257074 + 0.966392i \(0.582759\pi\)
\(234\) 27.9841 1.82938
\(235\) 0 0
\(236\) 13.7971i 0.898115i
\(237\) −4.98752 4.98752i −0.323974 0.323974i
\(238\) −0.156078 9.25355i −0.0101170 0.599818i
\(239\) 19.9443i 1.29009i 0.764146 + 0.645044i \(0.223161\pi\)
−0.764146 + 0.645044i \(0.776839\pi\)
\(240\) 0 0
\(241\) 18.3158i 1.17983i 0.807467 + 0.589913i \(0.200838\pi\)
−0.807467 + 0.589913i \(0.799162\pi\)
\(242\) −14.1144 + 14.1144i −0.907310 + 0.907310i
\(243\) −10.7600 + 10.7600i −0.690253 + 0.690253i
\(244\) −18.6312 −1.19274
\(245\) 0 0
\(246\) 9.34752 0.595976
\(247\) −5.81547 + 5.81547i −0.370029 + 0.370029i
\(248\) 7.36001 7.36001i 0.467361 0.467361i
\(249\) 3.94427i 0.249958i
\(250\) 0 0
\(251\) 6.48567i 0.409372i −0.978828 0.204686i \(-0.934383\pi\)
0.978828 0.204686i \(-0.0656173\pi\)
\(252\) 0.152437 + 9.03768i 0.00960261 + 0.569320i
\(253\) 1.49010 + 1.49010i 0.0936818 + 0.0936818i
\(254\) 16.4164i 1.03006i
\(255\) 0 0
\(256\) 20.9787 1.31117
\(257\) 4.10995 + 4.10995i 0.256371 + 0.256371i 0.823577 0.567205i \(-0.191975\pi\)
−0.567205 + 0.823577i \(0.691975\pi\)
\(258\) 2.81127 2.81127i 0.175022 0.175022i
\(259\) −16.9797 16.4164i −1.05507 1.02007i
\(260\) 0 0
\(261\) 11.6393 0.720456
\(262\) −22.7437 22.7437i −1.40511 1.40511i
\(263\) 16.2185 + 16.2185i 1.00008 + 1.00008i 1.00000 7.50320e-5i \(2.38834e-5\pi\)
7.50320e−5 1.00000i \(0.499976\pi\)
\(264\) 0.315415 0.0194125
\(265\) 0 0
\(266\) −4.67376 4.51871i −0.286567 0.277060i
\(267\) 0.424233 0.424233i 0.0259626 0.0259626i
\(268\) 4.70481 + 4.70481i 0.287392 + 0.287392i
\(269\) −19.1416 −1.16708 −0.583541 0.812083i \(-0.698333\pi\)
−0.583541 + 0.812083i \(0.698333\pi\)
\(270\) 0 0
\(271\) 12.1456i 0.737790i −0.929471 0.368895i \(-0.879736\pi\)
0.929471 0.368895i \(-0.120264\pi\)
\(272\) −6.52875 6.52875i −0.395864 0.395864i
\(273\) 11.8305 0.199542i 0.716013 0.0120768i
\(274\) 13.0344i 0.787439i
\(275\) 0 0
\(276\) 5.53942i 0.333434i
\(277\) −4.39783 + 4.39783i −0.264240 + 0.264240i −0.826774 0.562534i \(-0.809827\pi\)
0.562534 + 0.826774i \(0.309827\pi\)
\(278\) −4.54873 + 4.54873i −0.272815 + 0.272815i
\(279\) 22.6396 1.35540
\(280\) 0 0
\(281\) −21.1246 −1.26019 −0.630094 0.776519i \(-0.716984\pi\)
−0.630094 + 0.776519i \(0.716984\pi\)
\(282\) 4.44262 4.44262i 0.264554 0.264554i
\(283\) 16.0650 16.0650i 0.954966 0.954966i −0.0440630 0.999029i \(-0.514030\pi\)
0.999029 + 0.0440630i \(0.0140302\pi\)
\(284\) 8.61803i 0.511386i
\(285\) 0 0
\(286\) 4.32378i 0.255670i
\(287\) −18.5071 + 0.312155i −1.09244 + 0.0184259i
\(288\) 11.6309 + 11.6309i 0.685359 + 0.685359i
\(289\) 13.3820i 0.787174i
\(290\) 0 0
\(291\) 4.47214 0.262161
\(292\) 14.0564 + 14.0564i 0.822586 + 0.822586i
\(293\) 2.29753 2.29753i 0.134223 0.134223i −0.636803 0.771026i \(-0.719744\pi\)
0.771026 + 0.636803i \(0.219744\pi\)
\(294\) 0.315415 + 9.34752i 0.0183954 + 0.545159i
\(295\) 0 0
\(296\) −10.1459 −0.589718
\(297\) 1.07381 + 1.07381i 0.0623088 + 0.0623088i
\(298\) −10.8273 10.8273i −0.627206 0.627206i
\(299\) 33.9594 1.96392
\(300\) 0 0
\(301\) −5.47214 + 5.65990i −0.315409 + 0.326231i
\(302\) −2.41103 + 2.41103i −0.138739 + 0.138739i
\(303\) 0.686423 + 0.686423i 0.0394340 + 0.0394340i
\(304\) −6.48567 −0.371978
\(305\) 0 0
\(306\) 8.64755i 0.494348i
\(307\) 0.588697 + 0.588697i 0.0335987 + 0.0335987i 0.723707 0.690108i \(-0.242437\pi\)
−0.690108 + 0.723707i \(0.742437\pi\)
\(308\) 1.39640 0.0235528i 0.0795672 0.00134204i
\(309\) 1.58359i 0.0900874i
\(310\) 0 0
\(311\) 6.99602i 0.396708i −0.980130 0.198354i \(-0.936440\pi\)
0.980130 0.198354i \(-0.0635595\pi\)
\(312\) 3.59416 3.59416i 0.203479 0.203479i
\(313\) −16.6537 + 16.6537i −0.941323 + 0.941323i −0.998371 0.0570482i \(-0.981831\pi\)
0.0570482 + 0.998371i \(0.481831\pi\)
\(314\) −11.0044 −0.621013
\(315\) 0 0
\(316\) −13.4164 −0.754732
\(317\) 23.7138 23.7138i 1.33190 1.33190i 0.428228 0.903671i \(-0.359138\pi\)
0.903671 0.428228i \(-0.140862\pi\)
\(318\) −8.02366 + 8.02366i −0.449944 + 0.449944i
\(319\) 1.79837i 0.100690i
\(320\) 0 0
\(321\) 8.84249i 0.493540i
\(322\) 0.452700 + 26.8397i 0.0252280 + 1.49572i
\(323\) 1.79708 + 1.79708i 0.0999921 + 0.0999921i
\(324\) 6.25735i 0.347631i
\(325\) 0 0
\(326\) −3.38197 −0.187310
\(327\) 3.59620 + 3.59620i 0.198870 + 0.198870i
\(328\) −5.62254 + 5.62254i −0.310453 + 0.310453i
\(329\) −8.64755 + 8.94427i −0.476755 + 0.493114i
\(330\) 0 0
\(331\) 28.0689 1.54281 0.771403 0.636347i \(-0.219555\pi\)
0.771403 + 0.636347i \(0.219555\pi\)
\(332\) −5.30503 5.30503i −0.291152 0.291152i
\(333\) −15.6045 15.6045i −0.855123 0.855123i
\(334\) −4.00836 −0.219328
\(335\) 0 0
\(336\) 6.70820 + 6.48567i 0.365963 + 0.353822i
\(337\) −0.117255 + 0.117255i −0.00638729 + 0.00638729i −0.710293 0.703906i \(-0.751438\pi\)
0.703906 + 0.710293i \(0.251438\pi\)
\(338\) −32.3645 32.3645i −1.76040 1.76040i
\(339\) −4.51871 −0.245423
\(340\) 0 0
\(341\) 3.49801i 0.189428i
\(342\) −4.29524 4.29524i −0.232260 0.232260i
\(343\) −0.936644 18.4966i −0.0505740 0.998720i
\(344\) 3.38197i 0.182343i
\(345\) 0 0
\(346\) 4.00836i 0.215491i
\(347\) 19.4332 19.4332i 1.04323 1.04323i 0.0442066 0.999022i \(-0.485924\pi\)
0.999022 0.0442066i \(-0.0140760\pi\)
\(348\) −3.34271 + 3.34271i −0.179188 + 0.179188i
\(349\) 33.6440 1.80092 0.900460 0.434938i \(-0.143230\pi\)
0.900460 + 0.434938i \(0.143230\pi\)
\(350\) 0 0
\(351\) 24.4721 1.30623
\(352\) 1.79708 1.79708i 0.0957846 0.0957846i
\(353\) −4.23122 + 4.23122i −0.225205 + 0.225205i −0.810686 0.585481i \(-0.800906\pi\)
0.585481 + 0.810686i \(0.300906\pi\)
\(354\) 13.3394i 0.708981i
\(355\) 0 0
\(356\) 1.14118i 0.0604826i
\(357\) −0.0616619 3.65582i −0.00326350 0.193486i
\(358\) −20.8508 20.8508i −1.10200 1.10200i
\(359\) 8.70820i 0.459601i 0.973238 + 0.229801i \(0.0738074\pi\)
−0.973238 + 0.229801i \(0.926193\pi\)
\(360\) 0 0
\(361\) −17.2148 −0.906041
\(362\) 27.7026 + 27.7026i 1.45601 + 1.45601i
\(363\) −5.57622 + 5.57622i −0.292676 + 0.292676i
\(364\) 15.6436 16.1803i 0.819946 0.848080i
\(365\) 0 0
\(366\) −18.0132 −0.941563
\(367\) −8.11631 8.11631i −0.423668 0.423668i 0.462797 0.886464i \(-0.346846\pi\)
−0.886464 + 0.462797i \(0.846846\pi\)
\(368\) 18.9365 + 18.9365i 0.987133 + 0.987133i
\(369\) −17.2951 −0.900347
\(370\) 0 0
\(371\) 15.6180 16.1539i 0.810848 0.838670i
\(372\) −6.50189 + 6.50189i −0.337107 + 0.337107i
\(373\) 11.9379 + 11.9379i 0.618122 + 0.618122i 0.945049 0.326928i \(-0.106013\pi\)
−0.326928 + 0.945049i \(0.606013\pi\)
\(374\) −1.33612 −0.0690892
\(375\) 0 0
\(376\) 5.34448i 0.275621i
\(377\) −20.4925 20.4925i −1.05542 1.05542i
\(378\) 0.326229 + 19.3415i 0.0167794 + 0.994819i
\(379\) 23.7082i 1.21781i 0.793244 + 0.608904i \(0.208391\pi\)
−0.793244 + 0.608904i \(0.791609\pi\)
\(380\) 0 0
\(381\) 6.48567i 0.332271i
\(382\) −1.67982 + 1.67982i −0.0859472 + 0.0859472i
\(383\) −17.6062 + 17.6062i −0.899637 + 0.899637i −0.995404 0.0957670i \(-0.969470\pi\)
0.0957670 + 0.995404i \(0.469470\pi\)
\(384\) 6.29073 0.321022
\(385\) 0 0
\(386\) 37.5066 1.90903
\(387\) −5.20151 + 5.20151i −0.264408 + 0.264408i
\(388\) 6.01501 6.01501i 0.305366 0.305366i
\(389\) 22.8541i 1.15875i 0.815061 + 0.579374i \(0.196703\pi\)
−0.815061 + 0.579374i \(0.803297\pi\)
\(390\) 0 0
\(391\) 10.4940i 0.530706i
\(392\) −5.81227 5.43282i −0.293564 0.274399i
\(393\) −8.98539 8.98539i −0.453253 0.453253i
\(394\) 15.6180i 0.786825i
\(395\) 0 0
\(396\) 1.30495 0.0655763
\(397\) −10.6101 10.6101i −0.532504 0.532504i 0.388813 0.921317i \(-0.372885\pi\)
−0.921317 + 0.388813i \(0.872885\pi\)
\(398\) −19.9324 + 19.9324i −0.999121 + 0.999121i
\(399\) −1.84647 1.78522i −0.0924393 0.0893727i
\(400\) 0 0
\(401\) 21.0344 1.05041 0.525205 0.850976i \(-0.323989\pi\)
0.525205 + 0.850976i \(0.323989\pi\)
\(402\) 4.54873 + 4.54873i 0.226870 + 0.226870i
\(403\) −39.8598 39.8598i −1.98556 1.98556i
\(404\) 1.84647 0.0918655
\(405\) 0 0
\(406\) 15.9230 16.4693i 0.790245 0.817360i
\(407\) −2.41103 + 2.41103i −0.119510 + 0.119510i
\(408\) −1.11066 1.11066i −0.0549856 0.0549856i
\(409\) −12.1456 −0.600559 −0.300280 0.953851i \(-0.597080\pi\)
−0.300280 + 0.953851i \(0.597080\pi\)
\(410\) 0 0
\(411\) 5.14955i 0.254008i
\(412\) 2.12993 + 2.12993i 0.104934 + 0.104934i
\(413\) −0.445462 26.4106i −0.0219197 1.29958i
\(414\) 25.0820i 1.23271i
\(415\) 0 0
\(416\) 40.9554i 2.00800i
\(417\) −1.79708 + 1.79708i −0.0880033 + 0.0880033i
\(418\) −0.663651 + 0.663651i −0.0324602 + 0.0324602i
\(419\) 7.82179 0.382119 0.191060 0.981578i \(-0.438808\pi\)
0.191060 + 0.981578i \(0.438808\pi\)
\(420\) 0 0
\(421\) −22.7082 −1.10673 −0.553365 0.832939i \(-0.686657\pi\)
−0.553365 + 0.832939i \(0.686657\pi\)
\(422\) −16.2185 + 16.2185i −0.789504 + 0.789504i
\(423\) −8.21989 + 8.21989i −0.399665 + 0.399665i
\(424\) 9.65248i 0.468766i
\(425\) 0 0
\(426\) 8.33214i 0.403693i
\(427\) 35.6641 0.601539i 1.72591 0.0291105i
\(428\) −11.8931 11.8931i −0.574876 0.574876i
\(429\) 1.70820i 0.0824729i
\(430\) 0 0
\(431\) 38.8328 1.87051 0.935255 0.353973i \(-0.115170\pi\)
0.935255 + 0.353973i \(0.115170\pi\)
\(432\) 13.6462 + 13.6462i 0.656553 + 0.656553i
\(433\) −14.5238 + 14.5238i −0.697968 + 0.697968i −0.963972 0.266004i \(-0.914297\pi\)
0.266004 + 0.963972i \(0.414297\pi\)
\(434\) 30.9717 32.0344i 1.48669 1.53770i
\(435\) 0 0
\(436\) 9.67376 0.463289
\(437\) −5.21239 5.21239i −0.249342 0.249342i
\(438\) 13.5901 + 13.5901i 0.649358 + 0.649358i
\(439\) −15.1332 −0.722269 −0.361135 0.932514i \(-0.617611\pi\)
−0.361135 + 0.932514i \(0.617611\pi\)
\(440\) 0 0
\(441\) −0.583592 17.2951i −0.0277901 0.823577i
\(442\) −15.2251 + 15.2251i −0.724184 + 0.724184i
\(443\) −15.4148 15.4148i −0.732380 0.732380i 0.238711 0.971091i \(-0.423275\pi\)
−0.971091 + 0.238711i \(0.923275\pi\)
\(444\) 8.96297 0.425364
\(445\) 0 0
\(446\) 16.9797i 0.804012i
\(447\) −4.27755 4.27755i −0.202321 0.202321i
\(448\) 6.68715 0.112791i 0.315938 0.00532886i
\(449\) 30.2361i 1.42693i −0.700692 0.713464i \(-0.747125\pi\)
0.700692 0.713464i \(-0.252875\pi\)
\(450\) 0 0
\(451\) 2.67224i 0.125831i
\(452\) −6.07766 + 6.07766i −0.285869 + 0.285869i
\(453\) −0.952532 + 0.952532i −0.0447539 + 0.0447539i
\(454\) −54.9474 −2.57881
\(455\) 0 0
\(456\) −1.10333 −0.0516680
\(457\) 1.72461 1.72461i 0.0806739 0.0806739i −0.665618 0.746292i \(-0.731832\pi\)
0.746292 + 0.665618i \(0.231832\pi\)
\(458\) −14.0564 + 14.0564i −0.656811 + 0.656811i
\(459\) 7.56231i 0.352978i
\(460\) 0 0
\(461\) 8.84249i 0.411836i −0.978569 0.205918i \(-0.933982\pi\)
0.978569 0.205918i \(-0.0660180\pi\)
\(462\) 1.35007 0.0227714i 0.0628111 0.00105942i
\(463\) 5.62574 + 5.62574i 0.261451 + 0.261451i 0.825643 0.564193i \(-0.190812\pi\)
−0.564193 + 0.825643i \(0.690812\pi\)
\(464\) 22.8541i 1.06098i
\(465\) 0 0
\(466\) 28.1591 1.30444
\(467\) 10.2926 + 10.2926i 0.476283 + 0.476283i 0.903941 0.427658i \(-0.140661\pi\)
−0.427658 + 0.903941i \(0.640661\pi\)
\(468\) 14.8699 14.8699i 0.687362 0.687362i
\(469\) −9.15791 8.85410i −0.422873 0.408844i
\(470\) 0 0
\(471\) −4.34752 −0.200323
\(472\) −8.02366 8.02366i −0.369319 0.369319i
\(473\) 0.803678 + 0.803678i 0.0369531 + 0.0369531i
\(474\) −12.9713 −0.595793
\(475\) 0 0
\(476\) −5.00000 4.83413i −0.229175 0.221572i
\(477\) 14.8456 14.8456i 0.679735 0.679735i
\(478\) 25.9351 + 25.9351i 1.18624 + 1.18624i
\(479\) −16.6643 −0.761410 −0.380705 0.924696i \(-0.624319\pi\)
−0.380705 + 0.924696i \(0.624319\pi\)
\(480\) 0 0
\(481\) 54.9474i 2.50539i
\(482\) 23.8175 + 23.8175i 1.08486 + 1.08486i
\(483\) 0.178849 + 10.6036i 0.00813792 + 0.482481i
\(484\) 15.0000i 0.681818i
\(485\) 0 0
\(486\) 27.9841i 1.26938i
\(487\) 21.2303 21.2303i 0.962036 0.962036i −0.0372694 0.999305i \(-0.511866\pi\)
0.999305 + 0.0372694i \(0.0118660\pi\)
\(488\) 10.8349 10.8349i 0.490474 0.490474i
\(489\) −1.33612 −0.0604215
\(490\) 0 0
\(491\) 11.7639 0.530899 0.265449 0.964125i \(-0.414480\pi\)
0.265449 + 0.964125i \(0.414480\pi\)
\(492\) 4.96700 4.96700i 0.223930 0.223930i
\(493\) −6.33252 + 6.33252i −0.285202 + 0.285202i
\(494\) 15.1246i 0.680488i
\(495\) 0 0
\(496\) 44.4534i 1.99602i
\(497\) 0.278247 + 16.4967i 0.0124811 + 0.739980i
\(498\) −5.12904 5.12904i −0.229838 0.229838i
\(499\) 19.9787i 0.894370i −0.894441 0.447185i \(-0.852427\pi\)
0.894441 0.447185i \(-0.147573\pi\)
\(500\) 0 0
\(501\) −1.58359 −0.0707497
\(502\) −8.43382 8.43382i −0.376420 0.376420i
\(503\) 26.4612 26.4612i 1.17984 1.17984i 0.200061 0.979783i \(-0.435886\pi\)
0.979783 0.200061i \(-0.0641140\pi\)
\(504\) −5.34448 5.16718i −0.238062 0.230165i
\(505\) 0 0
\(506\) 3.87539 0.172282
\(507\) −12.7863 12.7863i −0.567860 0.567860i
\(508\) 8.72320 + 8.72320i 0.387029 + 0.387029i
\(509\) 37.7728 1.67425 0.837125 0.547011i \(-0.184235\pi\)
0.837125 + 0.547011i \(0.184235\pi\)
\(510\) 0 0
\(511\) −27.3607 26.4530i −1.21037 1.17021i
\(512\) 15.0354 15.0354i 0.664476 0.664476i
\(513\) −3.75620 3.75620i −0.165840 0.165840i
\(514\) 10.6890 0.471470
\(515\) 0 0
\(516\) 2.98766i 0.131524i
\(517\) 1.27004 + 1.27004i 0.0558564 + 0.0558564i
\(518\) −43.4276 + 0.732484i −1.90810 + 0.0321835i
\(519\) 1.58359i 0.0695120i
\(520\) 0 0
\(521\) 8.13720i 0.356497i −0.983985 0.178249i \(-0.942957\pi\)
0.983985 0.178249i \(-0.0570431\pi\)
\(522\) 15.1355 15.1355i 0.662464 0.662464i
\(523\) −15.6262 + 15.6262i −0.683287 + 0.683287i −0.960739 0.277452i \(-0.910510\pi\)
0.277452 + 0.960739i \(0.410510\pi\)
\(524\) −24.1706 −1.05590
\(525\) 0 0
\(526\) 42.1803 1.83915
\(527\) −12.3174 + 12.3174i −0.536553 + 0.536553i
\(528\) 0.952532 0.952532i 0.0414536 0.0414536i
\(529\) 7.43769i 0.323378i
\(530\) 0 0
\(531\) 24.6810i 1.07106i
\(532\) −4.88461 + 0.0823878i −0.211775 + 0.00357196i
\(533\) 30.4502 + 30.4502i 1.31894 + 1.31894i
\(534\) 1.10333i 0.0477456i
\(535\) 0 0
\(536\) −5.47214 −0.236360
\(537\) −8.23758 8.23758i −0.355478 0.355478i
\(538\) −24.8913 + 24.8913i −1.07314 + 1.07314i
\(539\) −2.67224 + 0.0901699i −0.115102 + 0.00388389i
\(540\) 0 0
\(541\) −20.2705 −0.871497 −0.435749 0.900068i \(-0.643516\pi\)
−0.435749 + 0.900068i \(0.643516\pi\)
\(542\) −15.7938 15.7938i −0.678403 0.678403i
\(543\) 10.9445 + 10.9445i 0.469674 + 0.469674i
\(544\) −12.6559 −0.542618
\(545\) 0 0
\(546\) 15.1246 15.6436i 0.647274 0.669483i
\(547\) 20.5439 20.5439i 0.878392 0.878392i −0.114976 0.993368i \(-0.536679\pi\)
0.993368 + 0.114976i \(0.0366792\pi\)
\(548\) −6.92612 6.92612i −0.295869 0.295869i
\(549\) 33.3286 1.42243
\(550\) 0 0
\(551\) 6.29073i 0.267994i
\(552\) 3.22143 + 3.22143i 0.137113 + 0.137113i
\(553\) 25.6818 0.433170i 1.09210 0.0184203i
\(554\) 11.4377i 0.485941i
\(555\) 0 0
\(556\) 4.83413i 0.205013i
\(557\) −10.3306 + 10.3306i −0.437720 + 0.437720i −0.891244 0.453524i \(-0.850167\pi\)
0.453524 + 0.891244i \(0.350167\pi\)
\(558\) 29.4400 29.4400i 1.24630 1.24630i
\(559\) 18.3158 0.774676
\(560\) 0 0
\(561\) −0.527864 −0.0222864
\(562\) −27.4700 + 27.4700i −1.15875 + 1.15875i
\(563\) 3.52125 3.52125i 0.148403 0.148403i −0.629001 0.777404i \(-0.716536\pi\)
0.777404 + 0.629001i \(0.216536\pi\)
\(564\) 4.72136i 0.198805i
\(565\) 0 0
\(566\) 41.7812i 1.75619i
\(567\) −0.202029 11.9779i −0.00848441 0.503024i
\(568\) 5.01179 + 5.01179i 0.210290 + 0.210290i
\(569\) 41.5967i 1.74383i 0.489660 + 0.871913i \(0.337121\pi\)
−0.489660 + 0.871913i \(0.662879\pi\)
\(570\) 0 0
\(571\) −26.5279 −1.11016 −0.555078 0.831798i \(-0.687312\pi\)
−0.555078 + 0.831798i \(0.687312\pi\)
\(572\) −2.29753 2.29753i −0.0960645 0.0960645i
\(573\) −0.663651 + 0.663651i −0.0277244 + 0.0277244i
\(574\) −23.6603 + 24.4721i −0.987562 + 1.02145i
\(575\) 0 0
\(576\) 6.24922 0.260384
\(577\) 5.25871 + 5.25871i 0.218923 + 0.218923i 0.808044 0.589122i \(-0.200526\pi\)
−0.589122 + 0.808044i \(0.700526\pi\)
\(578\) −17.4016 17.4016i −0.723812 0.723812i
\(579\) 14.8178 0.615807
\(580\) 0 0
\(581\) 10.3262 + 9.98367i 0.428405 + 0.414193i
\(582\) 5.81547 5.81547i 0.241059 0.241059i
\(583\) −2.29378 2.29378i −0.0949986 0.0949986i
\(584\) −16.3489 −0.676521
\(585\) 0 0
\(586\) 5.97531i 0.246838i
\(587\) 12.4688 + 12.4688i 0.514643 + 0.514643i 0.915945 0.401303i \(-0.131442\pi\)
−0.401303 + 0.915945i \(0.631442\pi\)
\(588\) 5.13460 + 4.79940i 0.211748 + 0.197924i
\(589\) 12.2361i 0.504178i
\(590\) 0 0
\(591\) 6.17025i 0.253810i
\(592\) −30.6399 + 30.6399i −1.25929 + 1.25929i
\(593\) 21.2774 21.2774i 0.873758 0.873758i −0.119122 0.992880i \(-0.538008\pi\)
0.992880 + 0.119122i \(0.0380079\pi\)
\(594\) 2.79272 0.114587
\(595\) 0 0
\(596\) −11.5066 −0.471328
\(597\) −7.87474 + 7.87474i −0.322291 + 0.322291i
\(598\) 44.1600 44.1600i 1.80584 1.80584i
\(599\) 1.79837i 0.0734796i 0.999325 + 0.0367398i \(0.0116973\pi\)
−0.999325 + 0.0367398i \(0.988303\pi\)
\(600\) 0 0
\(601\) 6.99602i 0.285374i 0.989768 + 0.142687i \(0.0455742\pi\)
−0.989768 + 0.142687i \(0.954426\pi\)
\(602\) 0.244161 + 14.4759i 0.00995127 + 0.589992i
\(603\) −8.41622 8.41622i −0.342735 0.342735i
\(604\) 2.56231i 0.104259i
\(605\) 0 0
\(606\) 1.78522 0.0725195
\(607\) −21.8375 21.8375i −0.886355 0.886355i 0.107816 0.994171i \(-0.465614\pi\)
−0.994171 + 0.107816i \(0.965614\pi\)
\(608\) −6.28620 + 6.28620i −0.254939 + 0.254939i
\(609\) 6.29073 6.50658i 0.254913 0.263660i
\(610\) 0 0
\(611\) 28.9443 1.17096
\(612\) −4.59506 4.59506i −0.185744 0.185744i
\(613\) 16.2185 + 16.2185i 0.655059 + 0.655059i 0.954207 0.299148i \(-0.0967024\pi\)
−0.299148 + 0.954207i \(0.596702\pi\)
\(614\) 1.53106 0.0617885
\(615\) 0 0
\(616\) −0.798374 + 0.825768i −0.0321674 + 0.0332711i
\(617\) −15.0354 + 15.0354i −0.605301 + 0.605301i −0.941714 0.336413i \(-0.890786\pi\)
0.336413 + 0.941714i \(0.390786\pi\)
\(618\) 2.05927 + 2.05927i 0.0828359 + 0.0828359i
\(619\) 24.4861 0.984178 0.492089 0.870545i \(-0.336233\pi\)
0.492089 + 0.870545i \(0.336233\pi\)
\(620\) 0 0
\(621\) 21.9343i 0.880193i
\(622\) −9.09747 9.09747i −0.364775 0.364775i
\(623\) 0.0368449 + 2.18447i 0.00147616 + 0.0875188i
\(624\) 21.7082i 0.869024i
\(625\) 0 0
\(626\) 43.3122i 1.73110i
\(627\) −0.262190 + 0.262190i −0.0104709 + 0.0104709i
\(628\) −5.84741 + 5.84741i −0.233337 + 0.233337i
\(629\) 16.9797 0.677025
\(630\) 0 0
\(631\) 1.23607 0.0492071 0.0246035 0.999697i \(-0.492168\pi\)
0.0246035 + 0.999697i \(0.492168\pi\)
\(632\) 7.80227 7.80227i 0.310358 0.310358i
\(633\) −6.40747 + 6.40747i −0.254674 + 0.254674i
\(634\) 61.6738i 2.44938i
\(635\) 0 0
\(636\) 8.52708i 0.338121i
\(637\) −29.4227 + 31.4777i −1.16577 + 1.24719i
\(638\) −2.33857 2.33857i −0.0925847 0.0925847i
\(639\) 15.4164i 0.609864i
\(640\) 0 0
\(641\) −12.5066 −0.493980 −0.246990 0.969018i \(-0.579442\pi\)
−0.246990 + 0.969018i \(0.579442\pi\)
\(642\) −11.4986 11.4986i −0.453813 0.453813i
\(643\) 29.5899 29.5899i 1.16691 1.16691i 0.183984 0.982929i \(-0.441101\pi\)
0.982929 0.183984i \(-0.0588994\pi\)
\(644\) 14.5024 + 14.0213i 0.571474 + 0.552516i
\(645\) 0 0
\(646\) 4.67376 0.183887
\(647\) 27.4600 + 27.4600i 1.07956 + 1.07956i 0.996548 + 0.0830161i \(0.0264553\pi\)
0.0830161 + 0.996548i \(0.473545\pi\)
\(648\) −3.63894 3.63894i −0.142951 0.142951i
\(649\) −3.81342 −0.149690
\(650\) 0 0
\(651\) 12.2361 12.6559i 0.479569 0.496024i
\(652\) −1.79708 + 1.79708i −0.0703790 + 0.0703790i
\(653\) 10.3306 + 10.3306i 0.404266 + 0.404266i 0.879733 0.475467i \(-0.157721\pi\)
−0.475467 + 0.879733i \(0.657721\pi\)
\(654\) 9.35284 0.365725
\(655\) 0 0
\(656\) 33.9594i 1.32589i
\(657\) −25.1448 25.1448i −0.980991 0.980991i
\(658\) 0.385845 + 22.8760i 0.0150418 + 0.891800i
\(659\) 35.4721i 1.38180i 0.722951 + 0.690899i \(0.242785\pi\)
−0.722951 + 0.690899i \(0.757215\pi\)
\(660\) 0 0
\(661\) 6.17025i 0.239995i −0.992774 0.119997i \(-0.961711\pi\)
0.992774 0.119997i \(-0.0382886\pi\)
\(662\) 36.5002 36.5002i 1.41862 1.41862i
\(663\) −6.01501 + 6.01501i −0.233604 + 0.233604i
\(664\) 6.17025 0.239452
\(665\) 0 0
\(666\) −40.5836 −1.57258
\(667\) 18.3673 18.3673i 0.711186 0.711186i
\(668\) −2.12993 + 2.12993i −0.0824093 + 0.0824093i
\(669\) 6.70820i 0.259354i
\(670\) 0 0
\(671\) 5.14955i 0.198796i
\(672\) 12.7881 0.215694i 0.493311 0.00832058i
\(673\) −8.22650 8.22650i −0.317108 0.317108i 0.530547 0.847655i \(-0.321987\pi\)
−0.847655 + 0.530547i \(0.821987\pi\)
\(674\) 0.304952i 0.0117463i
\(675\) 0 0
\(676\) −34.3951 −1.32289
\(677\) 12.5438 + 12.5438i 0.482096 + 0.482096i 0.905800 0.423705i \(-0.139271\pi\)
−0.423705 + 0.905800i \(0.639271\pi\)
\(678\) −5.87604 + 5.87604i −0.225668 + 0.225668i
\(679\) −11.3198 + 11.7082i −0.434414 + 0.449320i
\(680\) 0 0
\(681\) −21.7082 −0.831860
\(682\) −4.54873 4.54873i −0.174180 0.174180i
\(683\) 9.71660 + 9.71660i 0.371795 + 0.371795i 0.868131 0.496335i \(-0.165321\pi\)
−0.496335 + 0.868131i \(0.665321\pi\)
\(684\) −4.56473 −0.174537
\(685\) 0 0
\(686\) −25.2705 22.8345i −0.964833 0.871826i
\(687\) −5.55328 + 5.55328i −0.211871 + 0.211871i
\(688\) 10.2133 + 10.2133i 0.389378 + 0.389378i
\(689\) −52.2752 −1.99153
\(690\) 0 0
\(691\) 39.1089i 1.48777i 0.668305 + 0.743887i \(0.267020\pi\)
−0.668305 + 0.743887i \(0.732980\pi\)
\(692\) −2.12993 2.12993i −0.0809677 0.0809677i
\(693\) −2.49795 + 0.0421325i −0.0948894 + 0.00160048i
\(694\) 50.5410i 1.91851i
\(695\) 0 0
\(696\) 3.88788i 0.147370i
\(697\) 9.40962 9.40962i 0.356415 0.356415i
\(698\) 43.7499 43.7499i 1.65596 1.65596i
\(699\) 11.1249 0.420781
\(700\) 0 0
\(701\) −20.7639 −0.784243 −0.392121 0.919913i \(-0.628259\pi\)
−0.392121 + 0.919913i \(0.628259\pi\)
\(702\) 31.8230 31.8230i 1.20108 1.20108i
\(703\) 8.43382 8.43382i 0.318087 0.318087i
\(704\) 0.965558i 0.0363908i
\(705\) 0 0
\(706\) 11.0044i 0.414155i
\(707\) −3.53454 + 0.0596164i −0.132930 + 0.00224210i
\(708\) 7.08817 + 7.08817i 0.266390 + 0.266390i
\(709\) 28.6869i 1.07736i 0.842511 + 0.538680i \(0.181077\pi\)
−0.842511 + 0.538680i \(0.818923\pi\)
\(710\) 0 0
\(711\) 24.0000 0.900070
\(712\) 0.663651 + 0.663651i 0.0248714 + 0.0248714i
\(713\) 35.7262 35.7262i 1.33796 1.33796i
\(714\) −4.83413 4.67376i −0.180913 0.174911i
\(715\) 0 0
\(716\) −22.1591 −0.828123
\(717\) 10.2462 + 10.2462i 0.382653 + 0.382653i
\(718\) 11.3240 + 11.3240i 0.422606 + 0.422606i
\(719\) 18.6312 0.694828 0.347414 0.937712i \(-0.387060\pi\)
0.347414 + 0.937712i \(0.387060\pi\)
\(720\) 0 0
\(721\) −4.14590 4.00836i −0.154401 0.149279i
\(722\) −22.3857 + 22.3857i −0.833110 + 0.833110i
\(723\) 9.40962 + 9.40962i 0.349948 + 0.349948i
\(724\) 29.4407 1.09415
\(725\) 0 0
\(726\) 14.5024i 0.538234i
\(727\) 22.2763 + 22.2763i 0.826180 + 0.826180i 0.986986 0.160806i \(-0.0514092\pi\)
−0.160806 + 0.986986i \(0.551409\pi\)
\(728\) 0.312155 + 18.5071i 0.0115692 + 0.685918i
\(729\) 2.52786i 0.0936246i
\(730\) 0 0
\(731\) 5.65990i 0.209339i
\(732\) −9.57167 + 9.57167i −0.353779 + 0.353779i
\(733\) −15.0662 + 15.0662i −0.556481 + 0.556481i −0.928304 0.371823i \(-0.878733\pi\)
0.371823 + 0.928304i \(0.378733\pi\)
\(734\) −21.1085 −0.779130
\(735\) 0 0
\(736\) 36.7082 1.35308
\(737\) −1.30038 + 1.30038i −0.0479000 + 0.0479000i
\(738\) −22.4902 + 22.4902i −0.827875 + 0.827875i
\(739\) 9.58359i 0.352538i −0.984342 0.176269i \(-0.943597\pi\)
0.984342 0.176269i \(-0.0564029\pi\)
\(740\) 0 0
\(741\) 5.97531i 0.219509i
\(742\) −0.696861 41.3156i −0.0255826 1.51674i
\(743\) 17.5189 + 17.5189i 0.642705 + 0.642705i 0.951220 0.308515i \(-0.0998319\pi\)
−0.308515 + 0.951220i \(0.599832\pi\)
\(744\) 7.56231i 0.277248i
\(745\) 0 0
\(746\) 31.0476 1.13673
\(747\) 9.48993 + 9.48993i 0.347219 + 0.347219i
\(748\) −0.709976 + 0.709976i −0.0259593 + 0.0259593i
\(749\) 23.1499 + 22.3820i 0.845881 + 0.817819i
\(750\) 0 0
\(751\) 9.96556 0.363648 0.181824 0.983331i \(-0.441800\pi\)
0.181824 + 0.983331i \(0.441800\pi\)
\(752\) 16.1400 + 16.1400i 0.588564 + 0.588564i
\(753\) −3.33197 3.33197i −0.121424 0.121424i
\(754\) −53.2959 −1.94092
\(755\) 0 0
\(756\) 10.4508 + 10.1042i 0.380094 + 0.367484i
\(757\) −28.4634 + 28.4634i −1.03452 + 1.03452i −0.0351367 + 0.999383i \(0.511187\pi\)
−0.999383 + 0.0351367i \(0.988813\pi\)
\(758\) 30.8296 + 30.8296i 1.11978 + 1.11978i
\(759\) 1.53106 0.0555739
\(760\) 0 0
\(761\) 48.4618i 1.75674i 0.477983 + 0.878369i \(0.341368\pi\)
−0.477983 + 0.878369i \(0.658632\pi\)
\(762\) 8.43382 + 8.43382i 0.305525 + 0.305525i
\(763\) −18.5176 + 0.312333i −0.670383 + 0.0113072i
\(764\) 1.78522i 0.0645869i
\(765\) 0 0
\(766\) 45.7895i 1.65444i
\(767\) −43.4540 + 43.4540i −1.56903 + 1.56903i
\(768\) 10.7777 10.7777i 0.388906 0.388906i
\(769\) 27.9841 1.00913 0.504566 0.863373i \(-0.331653\pi\)
0.504566 + 0.863373i \(0.331653\pi\)
\(770\) 0 0
\(771\) 4.22291 0.152084
\(772\) 19.9299 19.9299i 0.717293 0.717293i
\(773\) −18.8763 + 18.8763i −0.678933 + 0.678933i −0.959759 0.280826i \(-0.909392\pi\)
0.280826 + 0.959759i \(0.409392\pi\)
\(774\) 13.5279i 0.486249i
\(775\) 0 0
\(776\) 6.99602i 0.251142i
\(777\) −17.1570 + 0.289384i −0.615505 + 0.0103816i
\(778\) 29.7190 + 29.7190i 1.06548 + 1.06548i
\(779\) 9.34752i 0.334910i
\(780\) 0 0
\(781\) 2.38197 0.0852334
\(782\) −13.6462 13.6462i −0.487987 0.487987i
\(783\) 13.2360 13.2360i 0.473018 0.473018i
\(784\) −33.9594 + 1.14590i −1.21284 + 0.0409249i
\(785\) 0 0
\(786\) −23.3688 −0.833538
\(787\) 4.67001 + 4.67001i 0.166468 + 0.166468i 0.785425 0.618957i \(-0.212444\pi\)
−0.618957 + 0.785425i \(0.712444\pi\)
\(788\) −8.29897 8.29897i −0.295639 0.295639i
\(789\) 16.6643 0.593264
\(790\) 0 0
\(791\) 11.4377 11.8301i 0.406678 0.420632i
\(792\) −0.758890 + 0.758890i −0.0269660 + 0.0269660i
\(793\) −58.6791 58.6791i −2.08375 2.08375i
\(794\) −27.5942 −0.979281
\(795\) 0 0
\(796\) 21.1830i 0.750811i
\(797\) −5.77245 5.77245i −0.204471 0.204471i 0.597442 0.801912i \(-0.296184\pi\)
−0.801912 + 0.597442i \(0.796184\pi\)
\(798\) −4.72257 + 0.0796547i −0.167177 + 0.00281974i
\(799\) 8.94427i 0.316426i
\(800\) 0 0
\(801\) 2.04141i 0.0721297i
\(802\) 27.3527 27.3527i 0.965858 0.965858i
\(803\) −3.88508 + 3.88508i −0.137102 + 0.137102i
\(804\) 4.83413 0.170487
\(805\) 0 0
\(806\) −103.666 −3.65147
\(807\) −9.83386 + 9.83386i −0.346168 + 0.346168i
\(808\) −1.07381 + 1.07381i −0.0377765 + 0.0377765i
\(809\) 34.3050i 1.20610i −0.797704 0.603049i \(-0.793952\pi\)
0.797704 0.603049i \(-0.206048\pi\)
\(810\) 0 0
\(811\) 40.1296i 1.40914i −0.709633 0.704571i \(-0.751139\pi\)
0.709633 0.704571i \(-0.248861\pi\)
\(812\) −0.290317 17.2123i −0.0101881 0.604035i
\(813\) −6.23970 6.23970i −0.218836 0.218836i
\(814\) 6.27051i 0.219781i
\(815\) 0 0
\(816\) −6.70820 −0.234834
\(817\) −2.81127 2.81127i −0.0983540 0.0983540i
\(818\) −15.7938 + 15.7938i −0.552218 + 0.552218i
\(819\) −27.9841 + 28.9443i −0.977843 + 1.01139i
\(820\) 0 0
\(821\) −12.9230 −0.451015 −0.225508 0.974241i \(-0.572404\pi\)
−0.225508 + 0.974241i \(0.572404\pi\)
\(822\) −6.69636 6.69636i −0.233562 0.233562i
\(823\) −1.22791 1.22791i −0.0428023 0.0428023i 0.685382 0.728184i \(-0.259635\pi\)
−0.728184 + 0.685382i \(0.759635\pi\)
\(824\) −2.47730 −0.0863010
\(825\) 0 0
\(826\) −34.9230 33.7644i −1.21513 1.17482i
\(827\) −8.10925 + 8.10925i −0.281986 + 0.281986i −0.833901 0.551915i \(-0.813897\pi\)
0.551915 + 0.833901i \(0.313897\pi\)
\(828\) 13.3279 + 13.3279i 0.463175 + 0.463175i
\(829\) 7.31143 0.253937 0.126968 0.991907i \(-0.459475\pi\)
0.126968 + 0.991907i \(0.459475\pi\)
\(830\) 0 0
\(831\) 4.51871i 0.156752i
\(832\) −11.0025 11.0025i −0.381444 0.381444i
\(833\) 9.72713 + 9.09211i 0.337025 + 0.315023i
\(834\) 4.67376i 0.161839i
\(835\) 0 0
\(836\) 0.705290i 0.0243930i
\(837\) 25.7454 25.7454i 0.889890 0.889890i
\(838\) 10.1713 10.1713i 0.351361 0.351361i
\(839\) 36.6316 1.26466 0.632332 0.774697i \(-0.282098\pi\)
0.632332 + 0.774697i \(0.282098\pi\)
\(840\) 0 0
\(841\) 6.83282 0.235614
\(842\) −29.5292 + 29.5292i −1.01765 + 1.01765i
\(843\) −10.8526 + 10.8526i −0.373784 + 0.373784i
\(844\) 17.2361i 0.593290i
\(845\) 0 0
\(846\) 21.3779i 0.734988i
\(847\) −0.484299 28.7132i −0.0166407 0.986596i
\(848\) −29.1498 29.1498i −1.00101 1.00101i
\(849\) 16.5066i 0.566504i
\(850\) 0 0
\(851\) −49.2492 −1.68824
\(852\) −4.42746 4.42746i −0.151682 0.151682i
\(853\) −6.18261 + 6.18261i −0.211689 + 0.211689i −0.804984 0.593296i \(-0.797826\pi\)
0.593296 + 0.804984i \(0.297826\pi\)
\(854\) 45.5946 47.1591i 1.56021 1.61375i
\(855\) 0 0
\(856\) 13.8328 0.472796
\(857\) 19.4650 + 19.4650i 0.664911 + 0.664911i 0.956534 0.291622i \(-0.0941951\pi\)
−0.291622 + 0.956534i \(0.594195\pi\)
\(858\) −2.22131 2.22131i −0.0758343 0.0758343i
\(859\) −31.7975 −1.08492 −0.542458 0.840083i \(-0.682506\pi\)
−0.542458 + 0.840083i \(0.682506\pi\)
\(860\) 0 0
\(861\) −9.34752 + 9.66826i −0.318563 + 0.329493i
\(862\) 50.4973 50.4973i 1.71995 1.71995i
\(863\) 6.80887 + 6.80887i 0.231777 + 0.231777i 0.813434 0.581657i \(-0.197596\pi\)
−0.581657 + 0.813434i \(0.697596\pi\)
\(864\) 26.4530 0.899950
\(865\) 0 0
\(866\) 37.7728i 1.28357i
\(867\) −6.87489 6.87489i −0.233484 0.233484i
\(868\) −0.564694 33.4796i −0.0191670 1.13637i
\(869\) 3.70820i 0.125792i
\(870\) 0 0
\(871\) 29.6356i 1.00416i
\(872\) −5.62574 + 5.62574i −0.190512 + 0.190512i
\(873\) −10.7600 + 10.7600i −0.364170 + 0.364170i
\(874\) −13.5561 −0.458543
\(875\) 0 0
\(876\) 14.4427 0.487974
\(877\) −0.803678 + 0.803678i −0.0271383 + 0.0271383i −0.720546 0.693407i \(-0.756109\pi\)
0.693407 + 0.720546i \(0.256109\pi\)
\(878\) −19.6789 + 19.6789i −0.664131 + 0.664131i
\(879\) 2.36068i 0.0796238i
\(880\) 0 0
\(881\) 32.1129i 1.08191i −0.841051 0.540956i \(-0.818063\pi\)
0.841051 0.540956i \(-0.181937\pi\)
\(882\) −23.2491 21.7313i −0.782837 0.731731i
\(883\) −20.9958 20.9958i −0.706564 0.706564i 0.259247 0.965811i \(-0.416526\pi\)
−0.965811 + 0.259247i \(0.916526\pi\)
\(884\) 16.1803i 0.544204i
\(885\) 0 0
\(886\) −40.0902 −1.34686
\(887\) 41.1062 + 41.1062i 1.38021 + 1.38021i 0.844229 + 0.535982i \(0.180059\pi\)
0.535982 + 0.844229i \(0.319941\pi\)
\(888\) −5.21239 + 5.21239i −0.174916 + 0.174916i
\(889\) −16.9797 16.4164i −0.569481 0.550589i
\(890\) 0 0
\(891\) −1.72949 −0.0579401
\(892\) 9.02251 + 9.02251i 0.302096 + 0.302096i
\(893\) −4.44262 4.44262i −0.148667 0.148667i
\(894\) −11.1249 −0.372071
\(895\) 0 0
\(896\) −15.9230 + 16.4693i −0.531950 + 0.550202i
\(897\) 17.4464 17.4464i 0.582518 0.582518i
\(898\) −39.3183 39.3183i −1.31207 1.31207i
\(899\) −43.1173 −1.43804
\(900\) 0 0
\(901\) 16.1539i 0.538165i
\(902\) 3.47492 + 3.47492i 0.115702 + 0.115702i
\(903\) 0.0964613 + 5.71901i 0.00321003 + 0.190317i
\(904\) 7.06888i 0.235108i
\(905\) 0 0
\(906\) 2.47730i 0.0823029i
\(907\) −34.4238 + 34.4238i −1.14302 + 1.14302i −0.155129 + 0.987894i \(0.549579\pi\)
−0.987894 + 0.155129i \(0.950421\pi\)
\(908\) −29.1975 + 29.1975i −0.968952 + 0.968952i
\(909\) −3.30307 −0.109556
\(910\) 0 0
\(911\) 25.8328 0.855879 0.427940 0.903807i \(-0.359240\pi\)
0.427940 + 0.903807i \(0.359240\pi\)
\(912\) −3.33197 + 3.33197i −0.110332 + 0.110332i
\(913\) 1.46628 1.46628i 0.0485266 0.0485266i
\(914\) 4.48529i 0.148360i
\(915\) 0 0
\(916\) 14.9383i 0.493575i
\(917\) 46.2677 0.780388i 1.52790 0.0257707i
\(918\) −9.83386 9.83386i −0.324566 0.324566i
\(919\) 37.2705i 1.22944i −0.788745 0.614720i \(-0.789269\pi\)
0.788745 0.614720i \(-0.210731\pi\)
\(920\) 0 0
\(921\) 0.604878 0.0199314
\(922\) −11.4986 11.4986i −0.378686 0.378686i
\(923\) 27.1425 27.1425i 0.893406 0.893406i
\(924\) 0.705290 0.729490i 0.0232023 0.0239985i
\(925\) 0 0
\(926\) 14.6312 0.480811
\(927\) −3.81013 3.81013i −0.125141 0.125141i
\(928\) −22.1512 22.1512i −0.727149 0.727149i
\(929\) 35.4904 1.16440 0.582202 0.813044i \(-0.302191\pi\)
0.582202 + 0.813044i \(0.302191\pi\)
\(930\) 0 0
\(931\) 9.34752 0.315415i 0.306353 0.0103373i
\(932\) 14.9629 14.9629i 0.490126 0.490126i
\(933\) −3.59416 3.59416i −0.117667 0.117667i
\(934\) 26.7684 0.875890
\(935\) 0 0
\(936\) 17.2951i 0.565308i
\(937\) 3.79243 + 3.79243i 0.123893 + 0.123893i 0.766335 0.642441i \(-0.222078\pi\)
−0.642441 + 0.766335i \(0.722078\pi\)
\(938\) −23.4224 + 0.395061i −0.764769 + 0.0128992i
\(939\) 17.1115i 0.558411i
\(940\) 0 0
\(941\) 29.8305i 0.972448i 0.873834 + 0.486224i \(0.161626\pi\)
−0.873834 + 0.486224i \(0.838374\pi\)
\(942\) −5.65342 + 5.65342i −0.184199 + 0.184199i
\(943\) −27.2924 + 27.2924i −0.888763 + 0.888763i
\(944\) −48.4618 −1.57730
\(945\) 0 0
\(946\) 2.09017 0.0679573
\(947\) −31.5161 + 31.5161i −1.02413 + 1.02413i −0.0244325 + 0.999701i \(0.507778\pi\)
−0.999701 + 0.0244325i \(0.992222\pi\)
\(948\) −6.89259 + 6.89259i −0.223861 + 0.223861i
\(949\) 88.5410i 2.87416i
\(950\) 0 0
\(951\) 24.3656i 0.790108i
\(952\) 5.71901 0.0964613i 0.185354 0.00312633i
\(953\) −24.3277 24.3277i −0.788053 0.788053i 0.193122 0.981175i \(-0.438139\pi\)
−0.981175 + 0.193122i \(0.938139\pi\)
\(954\) 38.6099i 1.25004i
\(955\) 0 0
\(956\) 27.5623 0.891429
\(957\) −0.923902 0.923902i −0.0298655 0.0298655i
\(958\) −21.6699 + 21.6699i −0.700121 + 0.700121i
\(959\) 13.4817 + 13.0344i 0.435346 + 0.420904i
\(960\) 0 0
\(961\) −52.8673 −1.70540
\(962\) 71.4524 + 71.4524i 2.30372 + 2.30372i
\(963\) 21.2751 + 21.2751i 0.685579 + 0.685579i
\(964\) 25.3118 0.815239
\(965\) 0 0
\(966\) 14.0213 + 13.5561i 0.451127 + 0.436162i
\(967\) 13.9972 13.9972i 0.450119 0.450119i −0.445275 0.895394i \(-0.646894\pi\)
0.895394 + 0.445275i \(0.146894\pi\)
\(968\) −8.72320 8.72320i −0.280374 0.280374i
\(969\) 1.84647 0.0593173
\(970\) 0 0
\(971\) 31.7975i 1.02043i −0.860047 0.510215i \(-0.829566\pi\)
0.860047 0.510215i \(-0.170434\pi\)
\(972\) 14.8699 + 14.8699i 0.476953 + 0.476953i
\(973\) −0.156078 9.25355i −0.00500362 0.296655i
\(974\) 55.2148i 1.76920i
\(975\) 0 0
\(976\) 65.4415i 2.09473i
\(977\) −24.8692 + 24.8692i −0.795637 + 0.795637i −0.982404 0.186767i \(-0.940199\pi\)
0.186767 + 0.982404i \(0.440199\pi\)
\(978\) −1.73746 + 1.73746i −0.0555579 + 0.0555579i
\(979\) 0.315415 0.0100807
\(980\) 0 0
\(981\) −17.3050 −0.552505
\(982\) 15.2976 15.2976i 0.488165 0.488165i
\(983\) −32.3263 + 32.3263i −1.03105 + 1.03105i −0.0315450 + 0.999502i \(0.510043\pi\)
−0.999502 + 0.0315450i \(0.989957\pi\)
\(984\) 5.77709i 0.184167i
\(985\) 0 0
\(986\) 16.4693i 0.524491i
\(987\) 0.152437 + 9.03768i 0.00485211 + 0.287673i
\(988\) 8.03678 + 8.03678i 0.255684 + 0.255684i
\(989\) 16.4164i 0.522011i
\(990\) 0 0
\(991\) 36.1591 1.14863 0.574315 0.818634i \(-0.305268\pi\)
0.574315 + 0.818634i \(0.305268\pi\)
\(992\) −43.0862 43.0862i −1.36799 1.36799i
\(993\) 14.4202 14.4202i 0.457611 0.457611i
\(994\) 21.8138 + 21.0902i 0.691892 + 0.668940i
\(995\) 0 0
\(996\) −5.45085 −0.172717
\(997\) 15.0662 + 15.0662i 0.477150 + 0.477150i 0.904219 0.427069i \(-0.140454\pi\)
−0.427069 + 0.904219i \(0.640454\pi\)
\(998\) −25.9799 25.9799i −0.822379 0.822379i
\(999\) −35.4904 −1.12287
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 875.2.f.b.818.6 yes 16
5.2 odd 4 inner 875.2.f.b.307.5 yes 16
5.3 odd 4 inner 875.2.f.b.307.4 yes 16
5.4 even 2 inner 875.2.f.b.818.3 yes 16
7.6 odd 2 inner 875.2.f.b.818.5 yes 16
35.13 even 4 inner 875.2.f.b.307.3 16
35.27 even 4 inner 875.2.f.b.307.6 yes 16
35.34 odd 2 inner 875.2.f.b.818.4 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
875.2.f.b.307.3 16 35.13 even 4 inner
875.2.f.b.307.4 yes 16 5.3 odd 4 inner
875.2.f.b.307.5 yes 16 5.2 odd 4 inner
875.2.f.b.307.6 yes 16 35.27 even 4 inner
875.2.f.b.818.3 yes 16 5.4 even 2 inner
875.2.f.b.818.4 yes 16 35.34 odd 2 inner
875.2.f.b.818.5 yes 16 7.6 odd 2 inner
875.2.f.b.818.6 yes 16 1.1 even 1 trivial