Defining parameters
| Level: | \( N \) | \(=\) | \( 875 = 5^{3} \cdot 7 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 875.f (of order \(4\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 35 \) |
| Character field: | \(\Q(i)\) | ||
| Newform subspaces: | \( 4 \) | ||
| Sturm bound: | \(200\) | ||
| Trace bound: | \(11\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(875, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 220 | 128 | 92 |
| Cusp forms | 180 | 128 | 52 |
| Eisenstein series | 40 | 0 | 40 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(875, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 875.2.f.a | $16$ | $6.987$ | 16.0.\(\cdots\).4 | \(\Q(\sqrt{-35}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{5}q^{3}-2\beta _{7}q^{4}-\beta _{14}q^{7}+(3\beta _{7}+\cdots)q^{9}+\cdots\) |
| 875.2.f.b | $16$ | $6.987$ | \(\mathbb{Q}[x]/(x^{16} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{6}q^{2}+(-\beta _{3}-\beta _{12})q^{3}+(-3\beta _{7}+\cdots)q^{4}+\cdots\) |
| 875.2.f.c | $32$ | $6.987$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
| 875.2.f.d | $64$ | $6.987$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
Decomposition of \(S_{2}^{\mathrm{old}}(875, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(875, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(175, [\chi])\)\(^{\oplus 2}\)