Properties

Label 875.2.f
Level $875$
Weight $2$
Character orbit 875.f
Rep. character $\chi_{875}(307,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $128$
Newform subspaces $4$
Sturm bound $200$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 875 = 5^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 875.f (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 35 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 4 \)
Sturm bound: \(200\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(875, [\chi])\).

Total New Old
Modular forms 220 128 92
Cusp forms 180 128 52
Eisenstein series 40 0 40

Trace form

\( 128 q + 4 q^{11} - 112 q^{16} + 24 q^{21} - 168 q^{36} + 112 q^{46} + 28 q^{51} - 28 q^{56} - 16 q^{71} - 104 q^{81} + 152 q^{86} - 176 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(875, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
875.2.f.a 875.f 35.f $16$ $6.987$ 16.0.\(\cdots\).4 \(\Q(\sqrt{-35}) \) 875.2.f.a \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{4}]$ \(q+\beta _{5}q^{3}-2\beta _{7}q^{4}-\beta _{14}q^{7}+(3\beta _{7}+\cdots)q^{9}+\cdots\)
875.2.f.b 875.f 35.f $16$ $6.987$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 875.2.f.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{6}q^{2}+(-\beta _{3}-\beta _{12})q^{3}+(-3\beta _{7}+\cdots)q^{4}+\cdots\)
875.2.f.c 875.f 35.f $32$ $6.987$ None 875.2.f.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$
875.2.f.d 875.f 35.f $64$ $6.987$ None 875.2.f.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$

Decomposition of \(S_{2}^{\mathrm{old}}(875, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(875, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(175, [\chi])\)\(^{\oplus 2}\)