Properties

Label 875.2.f.b
Level $875$
Weight $2$
Character orbit 875.f
Analytic conductor $6.987$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [875,2,Mod(307,875)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("875.307"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(875, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([1, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 875 = 5^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 875.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,0,0,24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.98691017686\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 36x^{14} + 456x^{12} + 2616x^{10} + 7596x^{8} + 11600x^{6} + 9040x^{4} + 3200x^{2} + 400 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{6} q^{2} + ( - \beta_{12} - \beta_{3}) q^{3} + (\beta_{9} - 3 \beta_{7}) q^{4} + ( - \beta_{15} + \beta_{14}) q^{6} + ( - \beta_{11} + \beta_{6}) q^{7} + (\beta_{5} + \beta_1) q^{8} + (4 \beta_{9} - 4 \beta_{7}) q^{9}+ \cdots + (8 \beta_{9} - 12 \beta_{7}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 24 q^{11} + 24 q^{16} + 40 q^{21} - 160 q^{36} + 216 q^{46} - 40 q^{51} + 56 q^{56} + 64 q^{71} - 144 q^{81} + 16 q^{86} + 80 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} + 36x^{14} + 456x^{12} + 2616x^{10} + 7596x^{8} + 11600x^{6} + 9040x^{4} + 3200x^{2} + 400 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( - 1433 \nu^{15} - 3415 \nu^{14} - 39763 \nu^{13} - 126690 \nu^{12} - 251288 \nu^{11} + \cdots - 5551600 ) / 311200 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 444 \nu^{15} + 99 \nu^{14} + 14997 \nu^{13} + 3888 \nu^{12} + 168582 \nu^{11} + 55888 \nu^{10} + \cdots + 151280 ) / 62240 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 444 \nu^{15} - 99 \nu^{14} + 14997 \nu^{13} - 3888 \nu^{12} + 168582 \nu^{11} - 55888 \nu^{10} + \cdots - 151280 ) / 62240 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 1433 \nu^{15} + 3415 \nu^{14} - 39763 \nu^{13} + 126690 \nu^{12} - 251288 \nu^{11} + \cdots + 5551600 ) / 311200 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 1891 \nu^{15} + 4935 \nu^{14} + 67581 \nu^{13} + 169410 \nu^{12} + 842856 \nu^{11} + 1965260 \nu^{10} + \cdots + 1199200 ) / 311200 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 1891 \nu^{15} + 4935 \nu^{14} - 67581 \nu^{13} + 169410 \nu^{12} - 842856 \nu^{11} + \cdots + 1199200 ) / 311200 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 4111 \nu^{15} + 142566 \nu^{13} + 1685766 \nu^{11} + 8509676 \nu^{9} + 19787156 \nu^{7} + \cdots + 383600 \nu ) / 311200 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 279 \nu^{14} - 9684 \nu^{12} - 114854 \nu^{10} - 585869 \nu^{8} - 1410004 \nu^{6} - 1627100 \nu^{4} + \cdots - 144840 ) / 7780 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 2376 \nu^{15} - 83976 \nu^{13} - 1030501 \nu^{11} - 5611736 \nu^{9} - 15162566 \nu^{7} + \cdots - 3055000 \nu ) / 155600 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 708 \nu^{14} + 24587 \nu^{12} + 292202 \nu^{10} + 1502022 \nu^{8} + 3711372 \nu^{6} + 4611964 \nu^{4} + \cdots + 530680 ) / 15560 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 995 \nu^{15} + 925 \nu^{14} + 35929 \nu^{13} + 30952 \nu^{12} + 456374 \nu^{11} + 341682 \nu^{10} + \cdots - 331760 ) / 62240 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 995 \nu^{15} + 925 \nu^{14} - 35929 \nu^{13} + 30952 \nu^{12} - 456374 \nu^{11} + 341682 \nu^{10} + \cdots - 331760 ) / 62240 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 1101 \nu^{14} - 38253 \nu^{12} - 454178 \nu^{10} - 2315738 \nu^{8} - 5525828 \nu^{6} + \cdots - 407440 ) / 15560 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 2331 \nu^{15} - 81360 \nu^{13} - 974720 \nu^{11} - 5062500 \nu^{9} - 12525680 \nu^{7} + \cdots - 998800 \nu ) / 62240 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 6563 \nu^{15} + 229456 \nu^{13} + 2757666 \nu^{11} + 14411016 \nu^{9} + 36067636 \nu^{7} + \cdots + 4458000 \nu ) / 62240 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -2\beta_{7} - \beta_{6} + \beta_{5} + \beta_{3} + \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{13} - \beta_{8} + \beta_{6} + \beta_{5} - \beta_{3} + \beta_{2} - 5 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 3 \beta_{14} - \beta_{12} + \beta_{11} - 3 \beta_{9} + 13 \beta_{7} + 5 \beta_{6} - 5 \beta_{5} + \cdots - \beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( - 14 \beta_{13} + 4 \beta_{12} + 4 \beta_{11} + 2 \beta_{10} + 20 \beta_{8} - 16 \beta_{6} - 16 \beta_{5} + \cdots + 58 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 10 \beta_{15} - 50 \beta_{14} + 25 \beta_{12} - 25 \beta_{11} + 80 \beta_{9} - 206 \beta_{7} + \cdots + 23 \beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 202 \beta_{13} - 110 \beta_{12} - 110 \beta_{11} - 58 \beta_{10} - 374 \beta_{8} + 250 \beta_{6} + \cdots - 844 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( - 266 \beta_{15} + 770 \beta_{14} - 514 \beta_{12} + 514 \beta_{11} - 1554 \beta_{9} + 3256 \beta_{7} + \cdots - 444 \beta_1 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( - 3048 \beta_{13} + 2208 \beta_{12} + 2208 \beta_{11} + 1224 \beta_{10} + 6636 \beta_{8} - 3920 \beta_{6} + \cdots + 13056 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 5304 \beta_{15} - 11928 \beta_{14} + 9498 \beta_{12} - 9498 \beta_{11} + 27420 \beta_{9} + \cdots + 7938 \beta_1 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( 47280 \beta_{13} - 39780 \beta_{12} - 39780 \beta_{11} - 22740 \beta_{10} - 113520 \beta_{8} + \cdots - 206372 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( - 95436 \beta_{15} + 187264 \beta_{14} - 165660 \beta_{12} + 165660 \beta_{11} - 464728 \beta_{9} + \cdots - 136056 \beta_1 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( - 745480 \beta_{13} + 682528 \beta_{12} + 682528 \beta_{11} + 397152 \beta_{10} + 1898488 \beta_{8} + \cdots + 3294272 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( 1637168 \beta_{15} - 2971176 \beta_{14} + 2798816 \beta_{12} - 2798816 \beta_{11} + 7719192 \beta_{9} + \cdots + 2276624 \beta_1 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( 11870216 \beta_{13} - 11418336 \beta_{12} - 11418336 \beta_{11} - 6712608 \beta_{10} - 31322360 \beta_{8} + \cdots - 52862072 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( - 27389920 \beta_{15} + 47477640 \beta_{14} - 46439840 \beta_{12} + 46439840 \beta_{11} + \cdots - 37567872 \beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/875\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(626\)
\(\chi(n)\) \(-\beta_{7}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
307.1
0.668985i
2.02101i
1.13163i
0.530876i
1.46912i
3.13163i
4.02101i
1.33102i
0.668985i
2.02101i
1.13163i
0.530876i
1.46912i
3.13163i
4.02101i
1.33102i
−1.67601 1.67601i −2.17625 2.17625i 3.61803i 0 7.29485i 0.844758 + 2.50727i 2.71184 2.71184i 6.47214i 0
307.2 −1.67601 1.67601i 2.17625 + 2.17625i 3.61803i 0 7.29485i 2.50727 + 0.844758i 2.71184 2.71184i 6.47214i 0
307.3 −1.30038 1.30038i −0.513743 0.513743i 1.38197i 0 1.33612i −0.0446190 + 2.64538i −0.803678 + 0.803678i 2.47214i 0
307.4 −1.30038 1.30038i 0.513743 + 0.513743i 1.38197i 0 1.33612i 2.64538 0.0446190i −0.803678 + 0.803678i 2.47214i 0
307.5 1.30038 + 1.30038i −0.513743 0.513743i 1.38197i 0 1.33612i −2.64538 + 0.0446190i 0.803678 0.803678i 2.47214i 0
307.6 1.30038 + 1.30038i 0.513743 + 0.513743i 1.38197i 0 1.33612i 0.0446190 2.64538i 0.803678 0.803678i 2.47214i 0
307.7 1.67601 + 1.67601i −2.17625 2.17625i 3.61803i 0 7.29485i −2.50727 0.844758i −2.71184 + 2.71184i 6.47214i 0
307.8 1.67601 + 1.67601i 2.17625 + 2.17625i 3.61803i 0 7.29485i −0.844758 2.50727i −2.71184 + 2.71184i 6.47214i 0
818.1 −1.67601 + 1.67601i −2.17625 + 2.17625i 3.61803i 0 7.29485i 0.844758 2.50727i 2.71184 + 2.71184i 6.47214i 0
818.2 −1.67601 + 1.67601i 2.17625 2.17625i 3.61803i 0 7.29485i 2.50727 0.844758i 2.71184 + 2.71184i 6.47214i 0
818.3 −1.30038 + 1.30038i −0.513743 + 0.513743i 1.38197i 0 1.33612i −0.0446190 2.64538i −0.803678 0.803678i 2.47214i 0
818.4 −1.30038 + 1.30038i 0.513743 0.513743i 1.38197i 0 1.33612i 2.64538 + 0.0446190i −0.803678 0.803678i 2.47214i 0
818.5 1.30038 1.30038i −0.513743 + 0.513743i 1.38197i 0 1.33612i −2.64538 0.0446190i 0.803678 + 0.803678i 2.47214i 0
818.6 1.30038 1.30038i 0.513743 0.513743i 1.38197i 0 1.33612i 0.0446190 + 2.64538i 0.803678 + 0.803678i 2.47214i 0
818.7 1.67601 1.67601i −2.17625 + 2.17625i 3.61803i 0 7.29485i −2.50727 + 0.844758i −2.71184 2.71184i 6.47214i 0
818.8 1.67601 1.67601i 2.17625 2.17625i 3.61803i 0 7.29485i −0.844758 + 2.50727i −2.71184 2.71184i 6.47214i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 307.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
5.c odd 4 2 inner
7.b odd 2 1 inner
35.c odd 2 1 inner
35.f even 4 2 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 875.2.f.b 16
5.b even 2 1 inner 875.2.f.b 16
5.c odd 4 2 inner 875.2.f.b 16
7.b odd 2 1 inner 875.2.f.b 16
35.c odd 2 1 inner 875.2.f.b 16
35.f even 4 2 inner 875.2.f.b 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
875.2.f.b 16 1.a even 1 1 trivial
875.2.f.b 16 5.b even 2 1 inner
875.2.f.b 16 5.c odd 4 2 inner
875.2.f.b 16 7.b odd 2 1 inner
875.2.f.b 16 35.c odd 2 1 inner
875.2.f.b 16 35.f even 4 2 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{8} + 43T_{2}^{4} + 361 \) acting on \(S_{2}^{\mathrm{new}}(875, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{8} + 43 T^{4} + 361)^{2} \) Copy content Toggle raw display
$3$ \( (T^{8} + 90 T^{4} + 25)^{2} \) Copy content Toggle raw display
$5$ \( T^{16} \) Copy content Toggle raw display
$7$ \( T^{16} - 124 T^{12} + \cdots + 5764801 \) Copy content Toggle raw display
$11$ \( (T^{2} - 3 T + 1)^{8} \) Copy content Toggle raw display
$13$ \( (T^{8} + 1440 T^{4} + 6400)^{2} \) Copy content Toggle raw display
$17$ \( (T^{8} + 15 T^{4} + 25)^{2} \) Copy content Toggle raw display
$19$ \( (T^{4} - 55 T^{2} + 95)^{4} \) Copy content Toggle raw display
$23$ \( (T^{8} + 3483 T^{4} + 2368521)^{2} \) Copy content Toggle raw display
$29$ \( (T^{4} + 98 T^{2} + 1681)^{4} \) Copy content Toggle raw display
$31$ \( (T^{4} + 85 T^{2} + 95)^{4} \) Copy content Toggle raw display
$37$ \( (T^{8} + 6723 T^{4} + 2368521)^{2} \) Copy content Toggle raw display
$41$ \( (T^{4} + 80 T^{2} + 1520)^{4} \) Copy content Toggle raw display
$43$ \( (T^{8} + 83 T^{4} + 361)^{2} \) Copy content Toggle raw display
$47$ \( (T^{8} + 3840 T^{4} + 1638400)^{2} \) Copy content Toggle raw display
$53$ \( (T^{8} + 6218 T^{4} + 5285401)^{2} \) Copy content Toggle raw display
$59$ \( (T^{4} - 215 T^{2} + 11495)^{4} \) Copy content Toggle raw display
$61$ \( (T^{4} + 245 T^{2} + 11495)^{4} \) Copy content Toggle raw display
$67$ \( (T^{8} + 538 T^{4} + 361)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - 8 T + 11)^{8} \) Copy content Toggle raw display
$73$ \( (T^{8} + 90375 T^{4} + 2036265625)^{2} \) Copy content Toggle raw display
$79$ \( (T^{4} + 108 T^{2} + 1296)^{4} \) Copy content Toggle raw display
$83$ \( (T^{8} + 1290 T^{4} + 366025)^{2} \) Copy content Toggle raw display
$89$ \( (T^{4} - 140 T^{2} + 95)^{4} \) Copy content Toggle raw display
$97$ \( (T^{8} + 1440 T^{4} + 6400)^{2} \) Copy content Toggle raw display
show more
show less