Properties

Label 875.2.f.b.307.8
Level $875$
Weight $2$
Character 875.307
Analytic conductor $6.987$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [875,2,Mod(307,875)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("875.307"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(875, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([1, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 875 = 5^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 875.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,0,0,24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.98691017686\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 36x^{14} + 456x^{12} + 2616x^{10} + 7596x^{8} + 11600x^{6} + 9040x^{4} + 3200x^{2} + 400 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 307.8
Root \(1.33102i\) of defining polynomial
Character \(\chi\) \(=\) 875.307
Dual form 875.2.f.b.818.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.67601 + 1.67601i) q^{2} +(2.17625 + 2.17625i) q^{3} +3.61803i q^{4} +7.29485i q^{6} +(-0.844758 - 2.50727i) q^{7} +(-2.71184 + 2.71184i) q^{8} +6.47214i q^{9} +2.61803 q^{11} +(-7.87375 + 7.87375i) q^{12} +(-1.02749 - 1.02749i) q^{13} +(2.78638 - 5.61803i) q^{14} -1.85410 q^{16} +(-0.831254 + 0.831254i) q^{17} +(-10.8474 + 10.8474i) q^{18} -7.29485 q^{19} +(3.61803 - 7.29485i) q^{21} +(4.38786 + 4.38786i) q^{22} +(5.02804 - 5.02804i) q^{23} -11.8033 q^{24} -3.44416i q^{26} +(-7.55624 + 7.55624i) q^{27} +(9.07137 - 3.05636i) q^{28} -8.70820i q^{29} +1.06430i q^{31} +(2.31619 + 2.31619i) q^{32} +(5.69750 + 5.69750i) q^{33} -2.78638 q^{34} -23.4164 q^{36} +(3.10750 + 3.10750i) q^{37} +(-12.2263 - 12.2263i) q^{38} -4.47214i q^{39} -5.57277i q^{41} +(18.2901 - 6.16238i) q^{42} +(-1.03583 + 1.03583i) q^{43} +9.47214i q^{44} +16.8541 q^{46} +(-5.37999 + 5.37999i) q^{47} +(-4.03499 - 4.03499i) q^{48} +(-5.57277 + 4.23607i) q^{49} -3.61803 q^{51} +(3.71748 - 3.71748i) q^{52} +(-3.99220 + 3.99220i) q^{53} -25.3287 q^{54} +(9.09017 + 4.50846i) q^{56} +(-15.8754 - 15.8754i) q^{57} +(14.5951 - 14.5951i) q^{58} +10.7390 q^{59} -7.95262i q^{61} +(-1.78379 + 1.78379i) q^{62} +(16.2274 - 5.46739i) q^{63} +11.4721i q^{64} +19.0982i q^{66} +(-0.640180 - 0.640180i) q^{67} +(-3.00750 - 3.00750i) q^{68} +21.8845 q^{69} +1.76393 q^{71} +(-17.5514 - 17.5514i) q^{72} +(10.4425 + 10.4425i) q^{73} +10.4164i q^{74} -26.3930i q^{76} +(-2.21161 - 6.56411i) q^{77} +(7.49535 - 7.49535i) q^{78} -3.70820i q^{79} -13.4721 q^{81} +(9.34003 - 9.34003i) q^{82} +(-3.20374 - 3.20374i) q^{83} +(26.3930 + 13.0902i) q^{84} -3.47214 q^{86} +(18.9512 - 18.9512i) q^{87} +(-7.09970 + 7.09970i) q^{88} -11.8033 q^{89} +(-1.70820 + 3.44416i) q^{91} +(18.1916 + 18.1916i) q^{92} +(-2.31619 + 2.31619i) q^{93} -18.0339 q^{94} +10.0812i q^{96} +(-1.02749 + 1.02749i) q^{97} +(-16.4397 - 2.24032i) q^{98} +16.9443i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 24 q^{11} + 24 q^{16} + 40 q^{21} - 160 q^{36} + 216 q^{46} - 40 q^{51} + 56 q^{56} + 64 q^{71} - 144 q^{81} + 16 q^{86} + 80 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/875\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(626\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.67601 + 1.67601i 1.18512 + 1.18512i 0.978400 + 0.206719i \(0.0662787\pi\)
0.206719 + 0.978400i \(0.433721\pi\)
\(3\) 2.17625 + 2.17625i 1.25646 + 1.25646i 0.952772 + 0.303687i \(0.0982178\pi\)
0.303687 + 0.952772i \(0.401782\pi\)
\(4\) 3.61803i 1.80902i
\(5\) 0 0
\(6\) 7.29485i 2.97811i
\(7\) −0.844758 2.50727i −0.319289 0.947658i
\(8\) −2.71184 + 2.71184i −0.958782 + 0.958782i
\(9\) 6.47214i 2.15738i
\(10\) 0 0
\(11\) 2.61803 0.789367 0.394683 0.918817i \(-0.370854\pi\)
0.394683 + 0.918817i \(0.370854\pi\)
\(12\) −7.87375 + 7.87375i −2.27296 + 2.27296i
\(13\) −1.02749 1.02749i −0.284973 0.284973i 0.550115 0.835089i \(-0.314584\pi\)
−0.835089 + 0.550115i \(0.814584\pi\)
\(14\) 2.78638 5.61803i 0.744692 1.50148i
\(15\) 0 0
\(16\) −1.85410 −0.463525
\(17\) −0.831254 + 0.831254i −0.201609 + 0.201609i −0.800689 0.599080i \(-0.795533\pi\)
0.599080 + 0.800689i \(0.295533\pi\)
\(18\) −10.8474 + 10.8474i −2.55675 + 2.55675i
\(19\) −7.29485 −1.67355 −0.836776 0.547545i \(-0.815562\pi\)
−0.836776 + 0.547545i \(0.815562\pi\)
\(20\) 0 0
\(21\) 3.61803 7.29485i 0.789520 1.59187i
\(22\) 4.38786 + 4.38786i 0.935494 + 0.935494i
\(23\) 5.02804 5.02804i 1.04842 1.04842i 0.0496515 0.998767i \(-0.484189\pi\)
0.998767 0.0496515i \(-0.0158111\pi\)
\(24\) −11.8033 −2.40934
\(25\) 0 0
\(26\) 3.44416i 0.675455i
\(27\) −7.55624 + 7.55624i −1.45420 + 1.45420i
\(28\) 9.07137 3.05636i 1.71433 0.577599i
\(29\) 8.70820i 1.61707i −0.588446 0.808536i \(-0.700260\pi\)
0.588446 0.808536i \(-0.299740\pi\)
\(30\) 0 0
\(31\) 1.06430i 0.191155i 0.995422 + 0.0955773i \(0.0304697\pi\)
−0.995422 + 0.0955773i \(0.969530\pi\)
\(32\) 2.31619 + 2.31619i 0.409449 + 0.409449i
\(33\) 5.69750 + 5.69750i 0.991807 + 0.991807i
\(34\) −2.78638 −0.477861
\(35\) 0 0
\(36\) −23.4164 −3.90273
\(37\) 3.10750 + 3.10750i 0.510869 + 0.510869i 0.914793 0.403923i \(-0.132354\pi\)
−0.403923 + 0.914793i \(0.632354\pi\)
\(38\) −12.2263 12.2263i −1.98336 1.98336i
\(39\) 4.47214i 0.716115i
\(40\) 0 0
\(41\) 5.57277i 0.870320i −0.900353 0.435160i \(-0.856692\pi\)
0.900353 0.435160i \(-0.143308\pi\)
\(42\) 18.2901 6.16238i 2.82223 0.950876i
\(43\) −1.03583 + 1.03583i −0.157963 + 0.157963i −0.781663 0.623700i \(-0.785629\pi\)
0.623700 + 0.781663i \(0.285629\pi\)
\(44\) 9.47214i 1.42798i
\(45\) 0 0
\(46\) 16.8541 2.48500
\(47\) −5.37999 + 5.37999i −0.784752 + 0.784752i −0.980629 0.195877i \(-0.937245\pi\)
0.195877 + 0.980629i \(0.437245\pi\)
\(48\) −4.03499 4.03499i −0.582401 0.582401i
\(49\) −5.57277 + 4.23607i −0.796110 + 0.605153i
\(50\) 0 0
\(51\) −3.61803 −0.506626
\(52\) 3.71748 3.71748i 0.515522 0.515522i
\(53\) −3.99220 + 3.99220i −0.548371 + 0.548371i −0.925970 0.377598i \(-0.876750\pi\)
0.377598 + 0.925970i \(0.376750\pi\)
\(54\) −25.3287 −3.44680
\(55\) 0 0
\(56\) 9.09017 + 4.50846i 1.21473 + 0.602469i
\(57\) −15.8754 15.8754i −2.10275 2.10275i
\(58\) 14.5951 14.5951i 1.91642 1.91642i
\(59\) 10.7390 1.39810 0.699050 0.715073i \(-0.253607\pi\)
0.699050 + 0.715073i \(0.253607\pi\)
\(60\) 0 0
\(61\) 7.95262i 1.01823i −0.860699 0.509114i \(-0.829973\pi\)
0.860699 0.509114i \(-0.170027\pi\)
\(62\) −1.78379 + 1.78379i −0.226541 + 0.226541i
\(63\) 16.2274 5.46739i 2.04446 0.688827i
\(64\) 11.4721i 1.43402i
\(65\) 0 0
\(66\) 19.0982i 2.35082i
\(67\) −0.640180 0.640180i −0.0782104 0.0782104i 0.666919 0.745130i \(-0.267613\pi\)
−0.745130 + 0.666919i \(0.767613\pi\)
\(68\) −3.00750 3.00750i −0.364714 0.364714i
\(69\) 21.8845 2.63459
\(70\) 0 0
\(71\) 1.76393 0.209340 0.104670 0.994507i \(-0.466621\pi\)
0.104670 + 0.994507i \(0.466621\pi\)
\(72\) −17.5514 17.5514i −2.06846 2.06846i
\(73\) 10.4425 + 10.4425i 1.22220 + 1.22220i 0.966849 + 0.255349i \(0.0821905\pi\)
0.255349 + 0.966849i \(0.417810\pi\)
\(74\) 10.4164i 1.21088i
\(75\) 0 0
\(76\) 26.3930i 3.02748i
\(77\) −2.21161 6.56411i −0.252036 0.748050i
\(78\) 7.49535 7.49535i 0.848682 0.848682i
\(79\) 3.70820i 0.417206i −0.978000 0.208603i \(-0.933108\pi\)
0.978000 0.208603i \(-0.0668916\pi\)
\(80\) 0 0
\(81\) −13.4721 −1.49690
\(82\) 9.34003 9.34003i 1.03143 1.03143i
\(83\) −3.20374 3.20374i −0.351656 0.351656i 0.509070 0.860725i \(-0.329990\pi\)
−0.860725 + 0.509070i \(0.829990\pi\)
\(84\) 26.3930 + 13.0902i 2.87971 + 1.42825i
\(85\) 0 0
\(86\) −3.47214 −0.374410
\(87\) 18.9512 18.9512i 2.03179 2.03179i
\(88\) −7.09970 + 7.09970i −0.756831 + 0.756831i
\(89\) −11.8033 −1.25115 −0.625574 0.780165i \(-0.715135\pi\)
−0.625574 + 0.780165i \(0.715135\pi\)
\(90\) 0 0
\(91\) −1.70820 + 3.44416i −0.179068 + 0.361046i
\(92\) 18.1916 + 18.1916i 1.89661 + 1.89661i
\(93\) −2.31619 + 2.31619i −0.240178 + 0.240178i
\(94\) −18.0339 −1.86005
\(95\) 0 0
\(96\) 10.0812i 1.02891i
\(97\) −1.02749 + 1.02749i −0.104325 + 0.104325i −0.757343 0.653017i \(-0.773503\pi\)
0.653017 + 0.757343i \(0.273503\pi\)
\(98\) −16.4397 2.24032i −1.66066 0.226307i
\(99\) 16.9443i 1.70296i
\(100\) 0 0
\(101\) 7.29485i 0.725864i −0.931816 0.362932i \(-0.881776\pi\)
0.931816 0.362932i \(-0.118224\pi\)
\(102\) −6.06387 6.06387i −0.600413 0.600413i
\(103\) −6.52875 6.52875i −0.643297 0.643297i 0.308067 0.951365i \(-0.400318\pi\)
−0.951365 + 0.308067i \(0.900318\pi\)
\(104\) 5.57277 0.546455
\(105\) 0 0
\(106\) −13.3820 −1.29977
\(107\) 7.34423 + 7.34423i 0.709993 + 0.709993i 0.966534 0.256540i \(-0.0825826\pi\)
−0.256540 + 0.966534i \(0.582583\pi\)
\(108\) −27.3387 27.3387i −2.63067 2.63067i
\(109\) 7.00000i 0.670478i −0.942133 0.335239i \(-0.891183\pi\)
0.942133 0.335239i \(-0.108817\pi\)
\(110\) 0 0
\(111\) 13.5254i 1.28377i
\(112\) 1.56627 + 4.64873i 0.147998 + 0.439263i
\(113\) −9.41589 + 9.41589i −0.885773 + 0.885773i −0.994114 0.108341i \(-0.965446\pi\)
0.108341 + 0.994114i \(0.465446\pi\)
\(114\) 53.2148i 4.98402i
\(115\) 0 0
\(116\) 31.5066 2.92531
\(117\) 6.65003 6.65003i 0.614796 0.614796i
\(118\) 17.9987 + 17.9987i 1.65692 + 1.65692i
\(119\) 2.78638 + 1.38197i 0.255427 + 0.126685i
\(120\) 0 0
\(121\) −4.14590 −0.376900
\(122\) 13.3287 13.3287i 1.20672 1.20672i
\(123\) 12.1277 12.1277i 1.09352 1.09352i
\(124\) −3.85069 −0.345802
\(125\) 0 0
\(126\) 36.3607 + 18.0339i 3.23927 + 1.60658i
\(127\) 3.10750 + 3.10750i 0.275746 + 0.275746i 0.831408 0.555662i \(-0.187535\pi\)
−0.555662 + 0.831408i \(0.687535\pi\)
\(128\) −14.5951 + 14.5951i −1.29003 + 1.29003i
\(129\) −4.50846 −0.396948
\(130\) 0 0
\(131\) 13.9319i 1.21724i 0.793463 + 0.608619i \(0.208276\pi\)
−0.793463 + 0.608619i \(0.791724\pi\)
\(132\) −20.6137 + 20.6137i −1.79420 + 1.79420i
\(133\) 6.16238 + 18.2901i 0.534346 + 1.58595i
\(134\) 2.14590i 0.185377i
\(135\) 0 0
\(136\) 4.50846i 0.386598i
\(137\) −4.78351 4.78351i −0.408683 0.408683i 0.472596 0.881279i \(-0.343317\pi\)
−0.881279 + 0.472596i \(0.843317\pi\)
\(138\) 36.6788 + 36.6788i 3.12230 + 3.12230i
\(139\) −2.78638 −0.236338 −0.118169 0.992994i \(-0.537702\pi\)
−0.118169 + 0.992994i \(0.537702\pi\)
\(140\) 0 0
\(141\) −23.4164 −1.97202
\(142\) 2.95637 + 2.95637i 0.248093 + 0.248093i
\(143\) −2.68999 2.68999i −0.224949 0.224949i
\(144\) 12.0000i 1.00000i
\(145\) 0 0
\(146\) 35.0034i 2.89690i
\(147\) −21.3465 2.90899i −1.76063 0.239930i
\(148\) −11.2430 + 11.2430i −0.924172 + 0.924172i
\(149\) 7.32624i 0.600189i −0.953910 0.300094i \(-0.902982\pi\)
0.953910 0.300094i \(-0.0970182\pi\)
\(150\) 0 0
\(151\) 4.85410 0.395021 0.197511 0.980301i \(-0.436714\pi\)
0.197511 + 0.980301i \(0.436714\pi\)
\(152\) 19.7825 19.7825i 1.60457 1.60457i
\(153\) −5.37999 5.37999i −0.434946 0.434946i
\(154\) 7.29485 14.7082i 0.587835 1.18522i
\(155\) 0 0
\(156\) 16.1803 1.29546
\(157\) −8.19126 + 8.19126i −0.653734 + 0.653734i −0.953890 0.300156i \(-0.902961\pi\)
0.300156 + 0.953890i \(0.402961\pi\)
\(158\) 6.21500 6.21500i 0.494438 0.494438i
\(159\) −17.3761 −1.37801
\(160\) 0 0
\(161\) −16.8541 8.35915i −1.32829 0.658793i
\(162\) −22.5795 22.5795i −1.77401 1.77401i
\(163\) −1.67601 + 1.67601i −0.131275 + 0.131275i −0.769691 0.638416i \(-0.779590\pi\)
0.638416 + 0.769691i \(0.279590\pi\)
\(164\) 20.1625 1.57442
\(165\) 0 0
\(166\) 10.7390i 0.833508i
\(167\) −6.52875 + 6.52875i −0.505210 + 0.505210i −0.913052 0.407842i \(-0.866281\pi\)
0.407842 + 0.913052i \(0.366281\pi\)
\(168\) 9.97094 + 29.5940i 0.769275 + 2.28323i
\(169\) 10.8885i 0.837580i
\(170\) 0 0
\(171\) 47.2132i 3.61049i
\(172\) −3.74768 3.74768i −0.285758 0.285758i
\(173\) 6.52875 + 6.52875i 0.496372 + 0.496372i 0.910307 0.413935i \(-0.135846\pi\)
−0.413935 + 0.910307i \(0.635846\pi\)
\(174\) 63.5250 4.81582
\(175\) 0 0
\(176\) −4.85410 −0.365892
\(177\) 23.3708 + 23.3708i 1.75665 + 1.75665i
\(178\) −19.7825 19.7825i −1.48276 1.48276i
\(179\) 13.0344i 0.974240i −0.873335 0.487120i \(-0.838047\pi\)
0.873335 0.487120i \(-0.161953\pi\)
\(180\) 0 0
\(181\) 14.1832i 1.05423i 0.849795 + 0.527113i \(0.176726\pi\)
−0.849795 + 0.527113i \(0.823274\pi\)
\(182\) −8.63542 + 2.90948i −0.640100 + 0.215665i
\(183\) 17.3069 17.3069i 1.27936 1.27936i
\(184\) 27.2705i 2.01041i
\(185\) 0 0
\(186\) −7.76393 −0.569279
\(187\) −2.17625 + 2.17625i −0.159143 + 0.159143i
\(188\) −19.4650 19.4650i −1.41963 1.41963i
\(189\) 25.3287 + 12.5623i 1.84239 + 0.913773i
\(190\) 0 0
\(191\) −14.7082 −1.06425 −0.532124 0.846666i \(-0.678606\pi\)
−0.532124 + 0.846666i \(0.678606\pi\)
\(192\) −24.9662 + 24.9662i −1.80178 + 1.80178i
\(193\) −0.151126 + 0.151126i −0.0108783 + 0.0108783i −0.712525 0.701647i \(-0.752448\pi\)
0.701647 + 0.712525i \(0.252448\pi\)
\(194\) −3.44416 −0.247276
\(195\) 0 0
\(196\) −15.3262 20.1625i −1.09473 1.44018i
\(197\) 3.99220 + 3.99220i 0.284433 + 0.284433i 0.834874 0.550441i \(-0.185540\pi\)
−0.550441 + 0.834874i \(0.685540\pi\)
\(198\) −28.3988 + 28.3988i −2.01822 + 2.01822i
\(199\) −18.4404 −1.30720 −0.653602 0.756839i \(-0.726743\pi\)
−0.653602 + 0.756839i \(0.726743\pi\)
\(200\) 0 0
\(201\) 2.78638i 0.196536i
\(202\) 12.2263 12.2263i 0.860236 0.860236i
\(203\) −21.8338 + 7.35633i −1.53243 + 0.516313i
\(204\) 13.0902i 0.916495i
\(205\) 0 0
\(206\) 21.8845i 1.52477i
\(207\) 32.5421 + 32.5421i 2.26183 + 2.26183i
\(208\) 1.90506 + 1.90506i 0.132092 + 0.132092i
\(209\) −19.0982 −1.32105
\(210\) 0 0
\(211\) −3.52786 −0.242868 −0.121434 0.992599i \(-0.538749\pi\)
−0.121434 + 0.992599i \(0.538749\pi\)
\(212\) −14.4439 14.4439i −0.992013 0.992013i
\(213\) 3.83876 + 3.83876i 0.263027 + 0.263027i
\(214\) 24.6180i 1.68285i
\(215\) 0 0
\(216\) 40.9827i 2.78852i
\(217\) 2.66849 0.899079i 0.181149 0.0610335i
\(218\) 11.7321 11.7321i 0.794597 0.794597i
\(219\) 45.4508i 3.07128i
\(220\) 0 0
\(221\) 1.70820 0.114906
\(222\) −22.6687 + 22.6687i −1.52142 + 1.52142i
\(223\) 1.54123 + 1.54123i 0.103208 + 0.103208i 0.756825 0.653617i \(-0.226749\pi\)
−0.653617 + 0.756825i \(0.726749\pi\)
\(224\) 3.85069 7.76393i 0.257285 0.518750i
\(225\) 0 0
\(226\) −31.5623 −2.09949
\(227\) −1.90506 + 1.90506i −0.126444 + 0.126444i −0.767497 0.641053i \(-0.778498\pi\)
0.641053 + 0.767497i \(0.278498\pi\)
\(228\) 57.4378 57.4378i 3.80391 3.80391i
\(229\) 22.5423 1.48964 0.744819 0.667267i \(-0.232536\pi\)
0.744819 + 0.667267i \(0.232536\pi\)
\(230\) 0 0
\(231\) 9.47214 19.0982i 0.623221 1.25657i
\(232\) 23.6153 + 23.6153i 1.55042 + 1.55042i
\(233\) −12.2789 + 12.2789i −0.804415 + 0.804415i −0.983782 0.179367i \(-0.942595\pi\)
0.179367 + 0.983782i \(0.442595\pi\)
\(234\) 22.2911 1.45721
\(235\) 0 0
\(236\) 38.8541i 2.52919i
\(237\) 8.06998 8.06998i 0.524202 0.524202i
\(238\) 2.35382 + 6.98620i 0.152576 + 0.452848i
\(239\) 2.05573i 0.132974i −0.997787 0.0664870i \(-0.978821\pi\)
0.997787 0.0664870i \(-0.0211791\pi\)
\(240\) 0 0
\(241\) 2.12861i 0.137116i −0.997647 0.0685578i \(-0.978160\pi\)
0.997647 0.0685578i \(-0.0218398\pi\)
\(242\) −6.94858 6.94858i −0.446671 0.446671i
\(243\) −6.65003 6.65003i −0.426600 0.426600i
\(244\) 28.7729 1.84199
\(245\) 0 0
\(246\) 40.6525 2.59191
\(247\) 7.49535 + 7.49535i 0.476918 + 0.476918i
\(248\) −2.88623 2.88623i −0.183276 0.183276i
\(249\) 13.9443i 0.883682i
\(250\) 0 0
\(251\) 13.5254i 0.853715i −0.904319 0.426857i \(-0.859621\pi\)
0.904319 0.426857i \(-0.140379\pi\)
\(252\) 19.7812 + 58.7112i 1.24610 + 3.69846i
\(253\) 13.1636 13.1636i 0.827587 0.827587i
\(254\) 10.4164i 0.653584i
\(255\) 0 0
\(256\) −25.9787 −1.62367
\(257\) 17.4100 17.4100i 1.08601 1.08601i 0.0900711 0.995935i \(-0.471291\pi\)
0.995935 0.0900711i \(-0.0287094\pi\)
\(258\) −7.55624 7.55624i −0.470431 0.470431i
\(259\) 5.16624 10.4164i 0.321014 0.647244i
\(260\) 0 0
\(261\) 56.3607 3.48864
\(262\) −23.3501 + 23.3501i −1.44257 + 1.44257i
\(263\) 5.91274 5.91274i 0.364595 0.364595i −0.500906 0.865502i \(-0.667000\pi\)
0.865502 + 0.500906i \(0.167000\pi\)
\(264\) −30.9015 −1.90185
\(265\) 0 0
\(266\) −20.3262 + 40.9827i −1.24628 + 2.51281i
\(267\) −25.6870 25.6870i −1.57202 1.57202i
\(268\) 2.31619 2.31619i 0.141484 0.141484i
\(269\) 9.67470 0.589877 0.294938 0.955516i \(-0.404701\pi\)
0.294938 + 0.955516i \(0.404701\pi\)
\(270\) 0 0
\(271\) 15.2475i 0.926218i −0.886301 0.463109i \(-0.846734\pi\)
0.886301 0.463109i \(-0.153266\pi\)
\(272\) 1.54123 1.54123i 0.0934508 0.0934508i
\(273\) −11.2128 + 3.77787i −0.678632 + 0.228647i
\(274\) 16.0344i 0.968676i
\(275\) 0 0
\(276\) 79.1790i 4.76602i
\(277\) −9.41589 9.41589i −0.565746 0.565746i 0.365188 0.930934i \(-0.381005\pi\)
−0.930934 + 0.365188i \(0.881005\pi\)
\(278\) −4.67001 4.67001i −0.280089 0.280089i
\(279\) −6.88832 −0.412393
\(280\) 0 0
\(281\) 19.1246 1.14088 0.570439 0.821340i \(-0.306773\pi\)
0.570439 + 0.821340i \(0.306773\pi\)
\(282\) −39.2462 39.2462i −2.33708 2.33708i
\(283\) −4.94120 4.94120i −0.293724 0.293724i 0.544826 0.838549i \(-0.316596\pi\)
−0.838549 + 0.544826i \(0.816596\pi\)
\(284\) 6.38197i 0.378700i
\(285\) 0 0
\(286\) 9.01693i 0.533182i
\(287\) −13.9724 + 4.70764i −0.824765 + 0.277883i
\(288\) −14.9907 + 14.9907i −0.883336 + 0.883336i
\(289\) 15.6180i 0.918708i
\(290\) 0 0
\(291\) −4.47214 −0.262161
\(292\) −37.7812 + 37.7812i −2.21098 + 2.21098i
\(293\) −9.73249 9.73249i −0.568578 0.568578i 0.363152 0.931730i \(-0.381701\pi\)
−0.931730 + 0.363152i \(0.881701\pi\)
\(294\) −30.9015 40.6525i −1.80221 2.37090i
\(295\) 0 0
\(296\) −16.8541 −0.979625
\(297\) −19.7825 + 19.7825i −1.14790 + 1.14790i
\(298\) 12.2789 12.2789i 0.711296 0.711296i
\(299\) −10.3325 −0.597543
\(300\) 0 0
\(301\) 3.47214 + 1.72208i 0.200131 + 0.0992590i
\(302\) 8.13553 + 8.13553i 0.468147 + 0.468147i
\(303\) 15.8754 15.8754i 0.912019 0.912019i
\(304\) 13.5254 0.775734
\(305\) 0 0
\(306\) 18.0339i 1.03093i
\(307\) 17.0925 17.0925i 0.975520 0.975520i −0.0241871 0.999707i \(-0.507700\pi\)
0.999707 + 0.0241871i \(0.00769976\pi\)
\(308\) 23.7492 8.00167i 1.35323 0.455937i
\(309\) 28.4164i 1.61655i
\(310\) 0 0
\(311\) 5.57277i 0.316003i 0.987439 + 0.158001i \(0.0505050\pi\)
−0.987439 + 0.158001i \(0.949495\pi\)
\(312\) 12.1277 + 12.1277i 0.686598 + 0.686598i
\(313\) −12.1513 12.1513i −0.686832 0.686832i 0.274698 0.961530i \(-0.411422\pi\)
−0.961530 + 0.274698i \(0.911422\pi\)
\(314\) −27.4573 −1.54951
\(315\) 0 0
\(316\) 13.4164 0.754732
\(317\) 23.0685 + 23.0685i 1.29566 + 1.29566i 0.931233 + 0.364424i \(0.118734\pi\)
0.364424 + 0.931233i \(0.381266\pi\)
\(318\) −29.1225 29.1225i −1.63311 1.63311i
\(319\) 22.7984i 1.27646i
\(320\) 0 0
\(321\) 31.9658i 1.78416i
\(322\) −14.2376 42.2577i −0.793433 2.35493i
\(323\) 6.06387 6.06387i 0.337403 0.337403i
\(324\) 48.7426i 2.70792i
\(325\) 0 0
\(326\) −5.61803 −0.311154
\(327\) 15.2338 15.2338i 0.842429 0.842429i
\(328\) 15.1125 + 15.1125i 0.834447 + 0.834447i
\(329\) 18.0339 + 8.94427i 0.994238 + 0.493114i
\(330\) 0 0
\(331\) −30.0689 −1.65274 −0.826368 0.563131i \(-0.809597\pi\)
−0.826368 + 0.563131i \(0.809597\pi\)
\(332\) 11.5912 11.5912i 0.636151 0.636151i
\(333\) −20.1121 + 20.1121i −1.10214 + 1.10214i
\(334\) −21.8845 −1.19747
\(335\) 0 0
\(336\) −6.70820 + 13.5254i −0.365963 + 0.737870i
\(337\) 18.5873 + 18.5873i 1.01251 + 1.01251i 0.999921 + 0.0125919i \(0.00400822\pi\)
0.0125919 + 0.999921i \(0.495992\pi\)
\(338\) 18.2493 18.2493i 0.992633 0.992633i
\(339\) −40.9827 −2.22587
\(340\) 0 0
\(341\) 2.78638i 0.150891i
\(342\) 79.1300 79.1300i 4.27886 4.27886i
\(343\) 15.3286 + 10.3940i 0.827666 + 0.561221i
\(344\) 5.61803i 0.302904i
\(345\) 0 0
\(346\) 21.8845i 1.17652i
\(347\) −4.93464 4.93464i −0.264905 0.264905i 0.562138 0.827043i \(-0.309979\pi\)
−0.827043 + 0.562138i \(0.809979\pi\)
\(348\) 68.5662 + 68.5662i 3.67554 + 3.67554i
\(349\) 20.5690 1.10103 0.550516 0.834824i \(-0.314431\pi\)
0.550516 + 0.834824i \(0.314431\pi\)
\(350\) 0 0
\(351\) 15.5279 0.828816
\(352\) 6.06387 + 6.06387i 0.323205 + 0.323205i
\(353\) −8.19126 8.19126i −0.435977 0.435977i 0.454679 0.890656i \(-0.349754\pi\)
−0.890656 + 0.454679i \(0.849754\pi\)
\(354\) 78.3394i 4.16369i
\(355\) 0 0
\(356\) 42.7048i 2.26335i
\(357\) 3.05636 + 9.07137i 0.161760 + 0.480108i
\(358\) 21.8459 21.8459i 1.15459 1.15459i
\(359\) 4.70820i 0.248489i 0.992252 + 0.124245i \(0.0396508\pi\)
−0.992252 + 0.124245i \(0.960349\pi\)
\(360\) 0 0
\(361\) 34.2148 1.80078
\(362\) −23.7712 + 23.7712i −1.24938 + 1.24938i
\(363\) −9.02251 9.02251i −0.473559 0.473559i
\(364\) −12.4611 6.18034i −0.653138 0.323938i
\(365\) 0 0
\(366\) 58.0132 3.03240
\(367\) 19.1475 19.1475i 0.999490 0.999490i −0.000510121 1.00000i \(-0.500162\pi\)
1.00000 0.000510121i \(0.000162376\pi\)
\(368\) −9.32249 + 9.32249i −0.485969 + 0.485969i
\(369\) 36.0677 1.87761
\(370\) 0 0
\(371\) 13.3820 + 6.63707i 0.694757 + 0.344580i
\(372\) −8.38006 8.38006i −0.434486 0.434486i
\(373\) −22.0904 + 22.0904i −1.14380 + 1.14380i −0.156049 + 0.987749i \(0.549876\pi\)
−0.987749 + 0.156049i \(0.950124\pi\)
\(374\) −7.29485 −0.377208
\(375\) 0 0
\(376\) 29.1794i 1.50481i
\(377\) −8.94756 + 8.94756i −0.460823 + 0.460823i
\(378\) 21.3966 + 63.5058i 1.10052 + 3.26639i
\(379\) 10.2918i 0.528654i −0.964433 0.264327i \(-0.914850\pi\)
0.964433 0.264327i \(-0.0851498\pi\)
\(380\) 0 0
\(381\) 13.5254i 0.692927i
\(382\) −24.6511 24.6511i −1.26126 1.26126i
\(383\) −1.58755 1.58755i −0.0811202 0.0811202i 0.665382 0.746503i \(-0.268268\pi\)
−0.746503 + 0.665382i \(0.768268\pi\)
\(384\) −63.5250 −3.24175
\(385\) 0 0
\(386\) −0.506578 −0.0257841
\(387\) −6.70405 6.70405i −0.340786 0.340786i
\(388\) −3.71748 3.71748i −0.188726 0.188726i
\(389\) 16.1459i 0.818630i −0.912393 0.409315i \(-0.865768\pi\)
0.912393 0.409315i \(-0.134232\pi\)
\(390\) 0 0
\(391\) 8.35915i 0.422740i
\(392\) 3.62492 26.6000i 0.183086 1.34350i
\(393\) −30.3193 + 30.3193i −1.52941 + 1.52941i
\(394\) 13.3820i 0.674174i
\(395\) 0 0
\(396\) −61.3050 −3.08069
\(397\) 23.1825 23.1825i 1.16349 1.16349i 0.179789 0.983705i \(-0.442458\pi\)
0.983705 0.179789i \(-0.0575415\pi\)
\(398\) −30.9063 30.9063i −1.54919 1.54919i
\(399\) −26.3930 + 53.2148i −1.32130 + 2.66407i
\(400\) 0 0
\(401\) −8.03444 −0.401221 −0.200610 0.979671i \(-0.564293\pi\)
−0.200610 + 0.979671i \(0.564293\pi\)
\(402\) 4.67001 4.67001i 0.232919 0.232919i
\(403\) 1.09356 1.09356i 0.0544740 0.0544740i
\(404\) 26.3930 1.31310
\(405\) 0 0
\(406\) −48.9230 24.2644i −2.42801 1.20422i
\(407\) 8.13553 + 8.13553i 0.403263 + 0.403263i
\(408\) 9.81155 9.81155i 0.485744 0.485744i
\(409\) 15.2475 0.753939 0.376969 0.926226i \(-0.376966\pi\)
0.376969 + 0.926226i \(0.376966\pi\)
\(410\) 0 0
\(411\) 20.8202i 1.02699i
\(412\) 23.6212 23.6212i 1.16374 1.16374i
\(413\) −9.07186 26.9255i −0.446397 1.32492i
\(414\) 109.082i 5.36109i
\(415\) 0 0
\(416\) 4.75971i 0.233364i
\(417\) −6.06387 6.06387i −0.296949 0.296949i
\(418\) −32.0087 32.0087i −1.56560 1.56560i
\(419\) −6.23054 −0.304382 −0.152191 0.988351i \(-0.548633\pi\)
−0.152191 + 0.988351i \(0.548633\pi\)
\(420\) 0 0
\(421\) −9.29180 −0.452854 −0.226427 0.974028i \(-0.572705\pi\)
−0.226427 + 0.974028i \(0.572705\pi\)
\(422\) −5.91274 5.91274i −0.287828 0.287828i
\(423\) −34.8200 34.8200i −1.69301 1.69301i
\(424\) 21.6525i 1.05154i
\(425\) 0 0
\(426\) 12.8676i 0.623438i
\(427\) −19.9393 + 6.71804i −0.964932 + 0.325109i
\(428\) −26.5717 + 26.5717i −1.28439 + 1.28439i
\(429\) 11.7082i 0.565277i
\(430\) 0 0
\(431\) −14.8328 −0.714472 −0.357236 0.934014i \(-0.616281\pi\)
−0.357236 + 0.934014i \(0.616281\pi\)
\(432\) 14.0100 14.0100i 0.674058 0.674058i
\(433\) 11.4700 + 11.4700i 0.551211 + 0.551211i 0.926790 0.375579i \(-0.122556\pi\)
−0.375579 + 0.926790i \(0.622556\pi\)
\(434\) 5.97929 + 2.96556i 0.287015 + 0.142351i
\(435\) 0 0
\(436\) 25.3262 1.21291
\(437\) −36.6788 + 36.6788i −1.75458 + 1.75458i
\(438\) −76.1762 + 76.1762i −3.63984 + 3.63984i
\(439\) 31.5592 1.50624 0.753120 0.657883i \(-0.228548\pi\)
0.753120 + 0.657883i \(0.228548\pi\)
\(440\) 0 0
\(441\) −27.4164 36.0677i −1.30554 1.71751i
\(442\) 2.86297 + 2.86297i 0.136178 + 0.136178i
\(443\) −8.62459 + 8.62459i −0.409767 + 0.409767i −0.881657 0.471891i \(-0.843572\pi\)
0.471891 + 0.881657i \(0.343572\pi\)
\(444\) −48.9353 −2.32237
\(445\) 0 0
\(446\) 5.16624i 0.244628i
\(447\) 15.9437 15.9437i 0.754113 0.754113i
\(448\) 28.7637 9.69118i 1.35896 0.457865i
\(449\) 25.7639i 1.21588i 0.793985 + 0.607938i \(0.208003\pi\)
−0.793985 + 0.607938i \(0.791997\pi\)
\(450\) 0 0
\(451\) 14.5897i 0.687002i
\(452\) −34.0670 34.0670i −1.60238 1.60238i
\(453\) 10.5637 + 10.5637i 0.496328 + 0.496328i
\(454\) −6.38582 −0.299701
\(455\) 0 0
\(456\) 86.1033 4.03216
\(457\) −24.0109 24.0109i −1.12318 1.12318i −0.991260 0.131925i \(-0.957884\pi\)
−0.131925 0.991260i \(-0.542116\pi\)
\(458\) 37.7812 + 37.7812i 1.76540 + 1.76540i
\(459\) 12.5623i 0.586358i
\(460\) 0 0
\(461\) 31.9658i 1.48879i 0.667737 + 0.744397i \(0.267263\pi\)
−0.667737 + 0.744397i \(0.732737\pi\)
\(462\) 47.8842 16.1333i 2.22777 0.750590i
\(463\) −18.9829 + 18.9829i −0.882211 + 0.882211i −0.993759 0.111548i \(-0.964419\pi\)
0.111548 + 0.993759i \(0.464419\pi\)
\(464\) 16.1459i 0.749554i
\(465\) 0 0
\(466\) −41.1591 −1.90666
\(467\) −19.6612 + 19.6612i −0.909812 + 0.909812i −0.996257 0.0864443i \(-0.972450\pi\)
0.0864443 + 0.996257i \(0.472450\pi\)
\(468\) 24.0600 + 24.0600i 1.11218 + 1.11218i
\(469\) −1.06430 + 2.14590i −0.0491450 + 0.0990884i
\(470\) 0 0
\(471\) −35.6525 −1.64278
\(472\) −29.1225 + 29.1225i −1.34047 + 1.34047i
\(473\) −2.71184 + 2.71184i −0.124691 + 0.124691i
\(474\) 27.0508 1.24248
\(475\) 0 0
\(476\) −5.00000 + 10.0812i −0.229175 + 0.462072i
\(477\) −25.8381 25.8381i −1.18304 1.18304i
\(478\) 3.44543 3.44543i 0.157590 0.157590i
\(479\) −25.7352 −1.17587 −0.587936 0.808907i \(-0.700059\pi\)
−0.587936 + 0.808907i \(0.700059\pi\)
\(480\) 0 0
\(481\) 6.38582i 0.291168i
\(482\) 3.56757 3.56757i 0.162498 0.162498i
\(483\) −18.4871 54.8704i −0.841194 2.49669i
\(484\) 15.0000i 0.681818i
\(485\) 0 0
\(486\) 22.2911i 1.01114i
\(487\) 1.12923 + 1.12923i 0.0511705 + 0.0511705i 0.732229 0.681059i \(-0.238480\pi\)
−0.681059 + 0.732229i \(0.738480\pi\)
\(488\) 21.5663 + 21.5663i 0.976259 + 0.976259i
\(489\) −7.29485 −0.329884
\(490\) 0 0
\(491\) 16.2361 0.732723 0.366362 0.930472i \(-0.380603\pi\)
0.366362 + 0.930472i \(0.380603\pi\)
\(492\) 43.8786 + 43.8786i 1.97820 + 1.97820i
\(493\) 7.23873 + 7.23873i 0.326016 + 0.326016i
\(494\) 25.1246i 1.13041i
\(495\) 0 0
\(496\) 1.97333i 0.0886050i
\(497\) −1.49010 4.42265i −0.0668400 0.198383i
\(498\) 23.3708 23.3708i 1.04727 1.04727i
\(499\) 26.9787i 1.20773i −0.797085 0.603867i \(-0.793626\pi\)
0.797085 0.603867i \(-0.206374\pi\)
\(500\) 0 0
\(501\) −28.4164 −1.26955
\(502\) 22.6687 22.6687i 1.01175 1.01175i
\(503\) 29.3651 + 29.3651i 1.30932 + 1.30932i 0.921903 + 0.387421i \(0.126634\pi\)
0.387421 + 0.921903i \(0.373366\pi\)
\(504\) −29.1794 + 58.8328i −1.29975 + 2.62062i
\(505\) 0 0
\(506\) 44.1246 1.96158
\(507\) 23.6962 23.6962i 1.05239 1.05239i
\(508\) −11.2430 + 11.2430i −0.498829 + 0.498829i
\(509\) −38.4476 −1.70416 −0.852079 0.523413i \(-0.824658\pi\)
−0.852079 + 0.523413i \(0.824658\pi\)
\(510\) 0 0
\(511\) 17.3607 35.0034i 0.767991 1.54846i
\(512\) −14.3505 14.3505i −0.634210 0.634210i
\(513\) 55.1216 55.1216i 2.43368 2.43368i
\(514\) 58.3588 2.57409
\(515\) 0 0
\(516\) 16.3118i 0.718086i
\(517\) −14.0850 + 14.0850i −0.619457 + 0.619457i
\(518\) 26.1167 8.79935i 1.14750 0.386621i
\(519\) 28.4164i 1.24734i
\(520\) 0 0
\(521\) 37.1320i 1.62678i −0.581717 0.813391i \(-0.697619\pi\)
0.581717 0.813391i \(-0.302381\pi\)
\(522\) 94.4612 + 94.4612i 4.13445 + 4.13445i
\(523\) −7.79880 7.79880i −0.341018 0.341018i 0.515732 0.856750i \(-0.327520\pi\)
−0.856750 + 0.515732i \(0.827520\pi\)
\(524\) −50.4061 −2.20200
\(525\) 0 0
\(526\) 19.8197 0.864178
\(527\) −0.884707 0.884707i −0.0385384 0.0385384i
\(528\) −10.5637 10.5637i −0.459728 0.459728i
\(529\) 27.5623i 1.19836i
\(530\) 0 0
\(531\) 69.5043i 3.01623i
\(532\) −66.1743 + 22.2957i −2.86902 + 0.966642i
\(533\) −5.72594 + 5.72594i −0.248018 + 0.248018i
\(534\) 86.1033i 3.72606i
\(535\) 0 0
\(536\) 3.47214 0.149973
\(537\) 28.3662 28.3662i 1.22409 1.22409i
\(538\) 16.2149 + 16.2149i 0.699075 + 0.699075i
\(539\) −14.5897 + 11.0902i −0.628423 + 0.477687i
\(540\) 0 0
\(541\) 13.2705 0.570544 0.285272 0.958447i \(-0.407916\pi\)
0.285272 + 0.958447i \(0.407916\pi\)
\(542\) 25.5549 25.5549i 1.09768 1.09768i
\(543\) −30.8661 + 30.8661i −1.32459 + 1.32459i
\(544\) −3.85069 −0.165097
\(545\) 0 0
\(546\) −25.1246 12.4611i −1.07523 0.533285i
\(547\) −14.7462 14.7462i −0.630501 0.630501i 0.317693 0.948194i \(-0.397092\pi\)
−0.948194 + 0.317693i \(0.897092\pi\)
\(548\) 17.3069 17.3069i 0.739314 0.739314i
\(549\) 51.4705 2.19671
\(550\) 0 0
\(551\) 63.5250i 2.70626i
\(552\) −59.3475 + 59.3475i −2.52600 + 2.52600i
\(553\) −9.29745 + 3.13254i −0.395368 + 0.133209i
\(554\) 31.5623i 1.34095i
\(555\) 0 0
\(556\) 10.0812i 0.427539i
\(557\) 16.6667 + 16.6667i 0.706192 + 0.706192i 0.965732 0.259541i \(-0.0835711\pi\)
−0.259541 + 0.965732i \(0.583571\pi\)
\(558\) −11.5449 11.5449i −0.488735 0.488735i
\(559\) 2.12861 0.0900305
\(560\) 0 0
\(561\) −9.47214 −0.399914
\(562\) 32.0531 + 32.0531i 1.35208 + 1.35208i
\(563\) 0.317511 + 0.317511i 0.0133815 + 0.0133815i 0.713766 0.700384i \(-0.246988\pi\)
−0.700384 + 0.713766i \(0.746988\pi\)
\(564\) 84.7214i 3.56741i
\(565\) 0 0
\(566\) 16.5630i 0.696196i
\(567\) 11.3807 + 33.7782i 0.477944 + 1.41855i
\(568\) −4.78351 + 4.78351i −0.200712 + 0.200712i
\(569\) 7.59675i 0.318472i 0.987241 + 0.159236i \(0.0509031\pi\)
−0.987241 + 0.159236i \(0.949097\pi\)
\(570\) 0 0
\(571\) −35.4721 −1.48446 −0.742231 0.670144i \(-0.766232\pi\)
−0.742231 + 0.670144i \(0.766232\pi\)
\(572\) 9.73249 9.73249i 0.406936 0.406936i
\(573\) −32.0087 32.0087i −1.33718 1.33718i
\(574\) −31.3080 15.5279i −1.30677 0.648121i
\(575\) 0 0
\(576\) −74.2492 −3.09372
\(577\) 12.5438 12.5438i 0.522204 0.522204i −0.396033 0.918236i \(-0.629613\pi\)
0.918236 + 0.396033i \(0.129613\pi\)
\(578\) −26.1760 + 26.1760i −1.08878 + 1.08878i
\(579\) −0.657776 −0.0273362
\(580\) 0 0
\(581\) −5.32624 + 10.7390i −0.220970 + 0.445529i
\(582\) −7.49535 7.49535i −0.310692 0.310692i
\(583\) −10.4517 + 10.4517i −0.432866 + 0.432866i
\(584\) −56.6367 −2.34364
\(585\) 0 0
\(586\) 32.6235i 1.34767i
\(587\) −20.1750 + 20.1750i −0.832710 + 0.832710i −0.987887 0.155177i \(-0.950405\pi\)
0.155177 + 0.987887i \(0.450405\pi\)
\(588\) 10.5248 77.2323i 0.434037 3.18501i
\(589\) 7.76393i 0.319907i
\(590\) 0 0
\(591\) 17.3761i 0.714756i
\(592\) −5.76162 5.76162i −0.236801 0.236801i
\(593\) 31.7376 + 31.7376i 1.30331 + 1.30331i 0.926150 + 0.377155i \(0.123098\pi\)
0.377155 + 0.926150i \(0.376902\pi\)
\(594\) −66.3114 −2.72079
\(595\) 0 0
\(596\) 26.5066 1.08575
\(597\) −40.1309 40.1309i −1.64245 1.64245i
\(598\) −17.3174 17.3174i −0.708159 0.708159i
\(599\) 22.7984i 0.931516i 0.884912 + 0.465758i \(0.154218\pi\)
−0.884912 + 0.465758i \(0.845782\pi\)
\(600\) 0 0
\(601\) 5.57277i 0.227318i −0.993520 0.113659i \(-0.963743\pi\)
0.993520 0.113659i \(-0.0362571\pi\)
\(602\) 2.93312 + 8.70557i 0.119545 + 0.354812i
\(603\) 4.14333 4.14333i 0.168729 0.168729i
\(604\) 17.5623i 0.714600i
\(605\) 0 0
\(606\) 53.2148 2.16170
\(607\) −9.77881 + 9.77881i −0.396910 + 0.396910i −0.877142 0.480232i \(-0.840553\pi\)
0.480232 + 0.877142i \(0.340553\pi\)
\(608\) −16.8963 16.8963i −0.685234 0.685234i
\(609\) −63.5250 31.5066i −2.57416 1.27671i
\(610\) 0 0
\(611\) 11.0557 0.447267
\(612\) 19.4650 19.4650i 0.786825 0.786825i
\(613\) 5.91274 5.91274i 0.238813 0.238813i −0.577545 0.816359i \(-0.695989\pi\)
0.816359 + 0.577545i \(0.195989\pi\)
\(614\) 57.2945 2.31222
\(615\) 0 0
\(616\) 23.7984 + 11.8033i 0.958864 + 0.475569i
\(617\) 14.3505 + 14.3505i 0.577731 + 0.577731i 0.934277 0.356547i \(-0.116046\pi\)
−0.356547 + 0.934277i \(0.616046\pi\)
\(618\) 47.6262 47.6262i 1.91581 1.91581i
\(619\) 19.5047 0.783959 0.391980 0.919974i \(-0.371790\pi\)
0.391980 + 0.919974i \(0.371790\pi\)
\(620\) 0 0
\(621\) 75.9861i 3.04922i
\(622\) −9.34003 + 9.34003i −0.374501 + 0.374501i
\(623\) 9.97094 + 29.5940i 0.399477 + 1.18566i
\(624\) 8.29180i 0.331937i
\(625\) 0 0
\(626\) 40.7314i 1.62796i
\(627\) −41.5624 41.5624i −1.65984 1.65984i
\(628\) −29.6363 29.6363i −1.18262 1.18262i
\(629\) −5.16624 −0.205991
\(630\) 0 0
\(631\) −3.23607 −0.128826 −0.0644129 0.997923i \(-0.520517\pi\)
−0.0644129 + 0.997923i \(0.520517\pi\)
\(632\) 10.0561 + 10.0561i 0.400009 + 0.400009i
\(633\) −7.67752 7.67752i −0.305154 0.305154i
\(634\) 77.3262i 3.07102i
\(635\) 0 0
\(636\) 62.8672i 2.49285i
\(637\) 10.0784 + 1.37344i 0.399322 + 0.0544177i
\(638\) 38.2104 38.2104i 1.51276 1.51276i
\(639\) 11.4164i 0.451626i
\(640\) 0 0
\(641\) 25.5066 1.00745 0.503725 0.863864i \(-0.331963\pi\)
0.503725 + 0.863864i \(0.331963\pi\)
\(642\) −53.5750 + 53.5750i −2.11444 + 2.11444i
\(643\) 18.2876 + 18.2876i 0.721192 + 0.721192i 0.968848 0.247656i \(-0.0796603\pi\)
−0.247656 + 0.968848i \(0.579660\pi\)
\(644\) 30.2437 60.9787i 1.19177 2.40290i
\(645\) 0 0
\(646\) 20.3262 0.799725
\(647\) −5.33366 + 5.33366i −0.209688 + 0.209688i −0.804135 0.594447i \(-0.797371\pi\)
0.594447 + 0.804135i \(0.297371\pi\)
\(648\) 36.5343 36.5343i 1.43520 1.43520i
\(649\) 28.1151 1.10361
\(650\) 0 0
\(651\) 7.76393 + 3.85069i 0.304292 + 0.150920i
\(652\) −6.06387 6.06387i −0.237479 0.237479i
\(653\) −16.6667 + 16.6667i −0.652219 + 0.652219i −0.953527 0.301308i \(-0.902577\pi\)
0.301308 + 0.953527i \(0.402577\pi\)
\(654\) 51.0639 1.99676
\(655\) 0 0
\(656\) 10.3325i 0.403415i
\(657\) −67.5851 + 67.5851i −2.63674 + 2.63674i
\(658\) 15.2342 + 45.2157i 0.593893 + 1.76269i
\(659\) 26.5279i 1.03338i −0.856173 0.516689i \(-0.827164\pi\)
0.856173 0.516689i \(-0.172836\pi\)
\(660\) 0 0
\(661\) 17.3761i 0.675851i 0.941173 + 0.337926i \(0.109725\pi\)
−0.941173 + 0.337926i \(0.890275\pi\)
\(662\) −50.3958 50.3958i −1.95869 1.95869i
\(663\) 3.71748 + 3.71748i 0.144375 + 0.144375i
\(664\) 17.3761 0.674323
\(665\) 0 0
\(666\) −67.4164 −2.61233
\(667\) −43.7852 43.7852i −1.69537 1.69537i
\(668\) −23.6212 23.6212i −0.913934 0.913934i
\(669\) 6.70820i 0.259354i
\(670\) 0 0
\(671\) 20.8202i 0.803756i
\(672\) 25.2763 8.51620i 0.975055 0.328520i
\(673\) 15.6309 15.6309i 0.602526 0.602526i −0.338456 0.940982i \(-0.609905\pi\)
0.940982 + 0.338456i \(0.109905\pi\)
\(674\) 62.3050i 2.39990i
\(675\) 0 0
\(676\) 39.3951 1.51520
\(677\) −5.25871 + 5.25871i −0.202109 + 0.202109i −0.800903 0.598794i \(-0.795647\pi\)
0.598794 + 0.800903i \(0.295647\pi\)
\(678\) −68.6875 68.6875i −2.63793 2.63793i
\(679\) 3.44416 + 1.70820i 0.132175 + 0.0655549i
\(680\) 0 0
\(681\) −8.29180 −0.317742
\(682\) −4.67001 + 4.67001i −0.178824 + 0.178824i
\(683\) −2.46732 + 2.46732i −0.0944093 + 0.0944093i −0.752734 0.658325i \(-0.771265\pi\)
0.658325 + 0.752734i \(0.271265\pi\)
\(684\) 170.819 6.53143
\(685\) 0 0
\(686\) 8.27051 + 43.1113i 0.315770 + 1.64600i
\(687\) 49.0577 + 49.0577i 1.87167 + 1.87167i
\(688\) 1.92054 1.92054i 0.0732199 0.0732199i
\(689\) 8.20387 0.312543
\(690\) 0 0
\(691\) 31.1527i 1.18511i 0.805532 + 0.592553i \(0.201880\pi\)
−0.805532 + 0.592553i \(0.798120\pi\)
\(692\) −23.6212 + 23.6212i −0.897945 + 0.897945i
\(693\) 42.4838 14.3138i 1.61383 0.543737i
\(694\) 16.5410i 0.627889i
\(695\) 0 0
\(696\) 102.786i 3.89608i
\(697\) 4.63238 + 4.63238i 0.175464 + 0.175464i
\(698\) 34.4739 + 34.4739i 1.30486 + 1.30486i
\(699\) −53.4438 −2.02143
\(700\) 0 0
\(701\) −25.2361 −0.953153 −0.476577 0.879133i \(-0.658122\pi\)
−0.476577 + 0.879133i \(0.658122\pi\)
\(702\) 26.0249 + 26.0249i 0.982246 + 0.982246i
\(703\) −22.6687 22.6687i −0.854967 0.854967i
\(704\) 30.0344i 1.13197i
\(705\) 0 0
\(706\) 27.4573i 1.03337i
\(707\) −18.2901 + 6.16238i −0.687871 + 0.231760i
\(708\) −84.5562 + 84.5562i −3.17782 + 3.17782i
\(709\) 31.6869i 1.19003i 0.803716 + 0.595014i \(0.202853\pi\)
−0.803716 + 0.595014i \(0.797147\pi\)
\(710\) 0 0
\(711\) 24.0000 0.900070
\(712\) 32.0087 32.0087i 1.19958 1.19958i
\(713\) 5.35136 + 5.35136i 0.200410 + 0.200410i
\(714\) −10.0812 + 20.3262i −0.377281 + 0.760690i
\(715\) 0 0
\(716\) 47.1591 1.76242
\(717\) 4.47378 4.47378i 0.167076 0.167076i
\(718\) −7.89101 + 7.89101i −0.294490 + 0.294490i
\(719\) −28.7729 −1.07305 −0.536523 0.843886i \(-0.680263\pi\)
−0.536523 + 0.843886i \(0.680263\pi\)
\(720\) 0 0
\(721\) −10.8541 + 21.8845i −0.404228 + 0.815023i
\(722\) 57.3444 + 57.3444i 2.13414 + 2.13414i
\(723\) 4.63238 4.63238i 0.172280 0.172280i
\(724\) −51.3152 −1.90711
\(725\) 0 0
\(726\) 30.2437i 1.12245i
\(727\) −2.96118 + 2.96118i −0.109824 + 0.109824i −0.759883 0.650059i \(-0.774744\pi\)
0.650059 + 0.759883i \(0.274744\pi\)
\(728\) −4.70764 13.9724i −0.174477 0.517852i
\(729\) 11.4721i 0.424894i
\(730\) 0 0
\(731\) 1.72208i 0.0636934i
\(732\) 62.6170 + 62.6170i 2.31439 + 2.31439i
\(733\) −29.7575 29.7575i −1.09912 1.09912i −0.994514 0.104606i \(-0.966642\pi\)
−0.104606 0.994514i \(-0.533358\pi\)
\(734\) 64.1828 2.36903
\(735\) 0 0
\(736\) 23.2918 0.858547
\(737\) −1.67601 1.67601i −0.0617367 0.0617367i
\(738\) 60.4499 + 60.4499i 2.22519 + 2.22519i
\(739\) 36.4164i 1.33960i 0.742542 + 0.669800i \(0.233620\pi\)
−0.742542 + 0.669800i \(0.766380\pi\)
\(740\) 0 0
\(741\) 32.6235i 1.19846i
\(742\) 11.3045 + 33.5521i 0.415002 + 1.23174i
\(743\) 7.58876 7.58876i 0.278404 0.278404i −0.554067 0.832472i \(-0.686925\pi\)
0.832472 + 0.554067i \(0.186925\pi\)
\(744\) 12.5623i 0.460556i
\(745\) 0 0
\(746\) −74.0476 −2.71108
\(747\) 20.7350 20.7350i 0.758655 0.758655i
\(748\) −7.87375 7.87375i −0.287893 0.287893i
\(749\) 12.2098 24.6180i 0.446138 0.899523i
\(750\) 0 0
\(751\) 39.0344 1.42439 0.712194 0.701983i \(-0.247702\pi\)
0.712194 + 0.701983i \(0.247702\pi\)
\(752\) 9.97505 9.97505i 0.363753 0.363753i
\(753\) 29.4346 29.4346i 1.07266 1.07266i
\(754\) −29.9924 −1.09226
\(755\) 0 0
\(756\) −45.4508 + 91.6401i −1.65303 + 3.33292i
\(757\) 23.2774 + 23.2774i 0.846030 + 0.846030i 0.989635 0.143605i \(-0.0458694\pi\)
−0.143605 + 0.989635i \(0.545869\pi\)
\(758\) 17.2492 17.2492i 0.626518 0.626518i
\(759\) 57.2945 2.07966
\(760\) 0 0
\(761\) 19.9112i 0.721781i −0.932608 0.360890i \(-0.882473\pi\)
0.932608 0.360890i \(-0.117527\pi\)
\(762\) −22.6687 + 22.6687i −0.821201 + 0.821201i
\(763\) −17.5509 + 5.91331i −0.635384 + 0.214076i
\(764\) 53.2148i 1.92524i
\(765\) 0 0
\(766\) 5.32152i 0.192274i
\(767\) −11.0342 11.0342i −0.398421 0.398421i
\(768\) −56.5362 56.5362i −2.04007 2.04007i
\(769\) 22.2911 0.803836 0.401918 0.915676i \(-0.368344\pi\)
0.401918 + 0.915676i \(0.368344\pi\)
\(770\) 0 0
\(771\) 75.7771 2.72905
\(772\) −0.546779 0.546779i −0.0196790 0.0196790i
\(773\) 12.4974 + 12.4974i 0.449502 + 0.449502i 0.895189 0.445687i \(-0.147041\pi\)
−0.445687 + 0.895189i \(0.647041\pi\)
\(774\) 22.4721i 0.807744i
\(775\) 0 0
\(776\) 5.57277i 0.200051i
\(777\) 33.9117 11.4257i 1.21658 0.409894i
\(778\) 27.0607 27.0607i 0.970174 0.970174i
\(779\) 40.6525i 1.45653i
\(780\) 0 0
\(781\) 4.61803 0.165246
\(782\) −14.0100 + 14.0100i −0.500998 + 0.500998i
\(783\) 65.8013 + 65.8013i 2.35155 + 2.35155i
\(784\) 10.3325 7.85410i 0.369017 0.280504i
\(785\) 0 0
\(786\) −101.631 −3.62506
\(787\) −4.54873 + 4.54873i −0.162145 + 0.162145i −0.783516 0.621371i \(-0.786576\pi\)
0.621371 + 0.783516i \(0.286576\pi\)
\(788\) −14.4439 + 14.4439i −0.514544 + 0.514544i
\(789\) 25.7352 0.916198
\(790\) 0 0
\(791\) 31.5623 + 15.6540i 1.12223 + 0.556592i
\(792\) −45.9502 45.9502i −1.63277 1.63277i
\(793\) −8.17121 + 8.17121i −0.290168 + 0.290168i
\(794\) 77.7082 2.75776
\(795\) 0 0
\(796\) 66.7179i 2.36475i
\(797\) −14.7200 + 14.7200i −0.521410 + 0.521410i −0.917997 0.396587i \(-0.870194\pi\)
0.396587 + 0.917997i \(0.370194\pi\)
\(798\) −133.424 + 44.9536i −4.72314 + 1.59134i
\(799\) 8.94427i 0.316426i
\(800\) 0 0
\(801\) 76.3926i 2.69920i
\(802\) −13.4658 13.4658i −0.475495 0.475495i
\(803\) 27.3387 + 27.3387i 0.964763 + 0.964763i
\(804\) 10.0812 0.355538
\(805\) 0 0
\(806\) 3.66563 0.129116
\(807\) 21.0546 + 21.0546i 0.741156 + 0.741156i
\(808\) 19.7825 + 19.7825i 0.695946 + 0.695946i
\(809\) 28.3050i 0.995149i −0.867421 0.497575i \(-0.834224\pi\)
0.867421 0.497575i \(-0.165776\pi\)
\(810\) 0 0
\(811\) 7.04360i 0.247334i 0.992324 + 0.123667i \(0.0394655\pi\)
−0.992324 + 0.123667i \(0.960535\pi\)
\(812\) −26.6154 78.9954i −0.934019 2.77219i
\(813\) 33.1823 33.1823i 1.16375 1.16375i
\(814\) 27.2705i 0.955831i
\(815\) 0 0
\(816\) 6.70820 0.234834
\(817\) 7.55624 7.55624i 0.264359 0.264359i
\(818\) 25.5549 + 25.5549i 0.893508 + 0.893508i
\(819\) −22.2911 11.0557i −0.778913 0.386318i
\(820\) 0 0
\(821\) 51.9230 1.81212 0.906062 0.423144i \(-0.139074\pi\)
0.906062 + 0.423144i \(0.139074\pi\)
\(822\) 34.8950 34.8950i 1.21710 1.21710i
\(823\) 28.3988 28.3988i 0.989920 0.989920i −0.0100295 0.999950i \(-0.503193\pi\)
0.999950 + 0.0100295i \(0.00319255\pi\)
\(824\) 35.4099 1.23356
\(825\) 0 0
\(826\) 29.9230 60.3321i 1.04115 2.09922i
\(827\) −2.95637 2.95637i −0.102803 0.102803i 0.653834 0.756638i \(-0.273159\pi\)
−0.756638 + 0.653834i \(0.773159\pi\)
\(828\) −117.739 + 117.739i −4.09170 + 4.09170i
\(829\) −25.3287 −0.879702 −0.439851 0.898071i \(-0.644969\pi\)
−0.439851 + 0.898071i \(0.644969\pi\)
\(830\) 0 0
\(831\) 40.9827i 1.42167i
\(832\) 11.7875 11.7875i 0.408657 0.408657i
\(833\) 1.11114 8.15363i 0.0384986 0.282507i
\(834\) 20.3262i 0.703840i
\(835\) 0 0
\(836\) 69.0978i 2.38980i
\(837\) −8.04213 8.04213i −0.277977 0.277977i
\(838\) −10.4425 10.4425i −0.360729 0.360729i
\(839\) 4.25721 0.146975 0.0734877 0.997296i \(-0.476587\pi\)
0.0734877 + 0.997296i \(0.476587\pi\)
\(840\) 0 0
\(841\) −46.8328 −1.61492
\(842\) −15.5732 15.5732i −0.536687 0.536687i
\(843\) 41.6200 + 41.6200i 1.43347 + 1.43347i
\(844\) 12.7639i 0.439353i
\(845\) 0 0
\(846\) 116.718i 4.01283i
\(847\) 3.50228 + 10.3949i 0.120340 + 0.357172i
\(848\) 7.40195 7.40195i 0.254184 0.254184i
\(849\) 21.5066i 0.738104i
\(850\) 0 0
\(851\) 31.2492 1.07121
\(852\) −13.8888 + 13.8888i −0.475821 + 0.475821i
\(853\) 37.0712 + 37.0712i 1.26929 + 1.26929i 0.946453 + 0.322841i \(0.104638\pi\)
0.322841 + 0.946453i \(0.395362\pi\)
\(854\) −44.6781 22.1591i −1.52885 0.758267i
\(855\) 0 0
\(856\) −39.8328 −1.36146
\(857\) 4.59506 4.59506i 0.156964 0.156964i −0.624256 0.781220i \(-0.714598\pi\)
0.781220 + 0.624256i \(0.214598\pi\)
\(858\) 19.6231 19.6231i 0.669921 0.669921i
\(859\) 5.82401 0.198713 0.0993564 0.995052i \(-0.468322\pi\)
0.0993564 + 0.995052i \(0.468322\pi\)
\(860\) 0 0
\(861\) −40.6525 20.1625i −1.38543 0.687135i
\(862\) −24.8600 24.8600i −0.846734 0.846734i
\(863\) 1.28036 1.28036i 0.0435839 0.0435839i −0.684979 0.728563i \(-0.740189\pi\)
0.728563 + 0.684979i \(0.240189\pi\)
\(864\) −35.0034 −1.19084
\(865\) 0 0
\(866\) 38.4476i 1.30650i
\(867\) −33.9888 + 33.9888i −1.15432 + 1.15432i
\(868\) 3.25290 + 9.65470i 0.110411 + 0.327702i
\(869\) 9.70820i 0.329328i
\(870\) 0 0
\(871\) 1.31555i 0.0445758i
\(872\) 18.9829 + 18.9829i 0.642843 + 0.642843i
\(873\) −6.65003 6.65003i −0.225069 0.225069i
\(874\) −122.948 −4.15878
\(875\) 0 0
\(876\) −164.443 −5.55600
\(877\) 2.71184 + 2.71184i 0.0915725 + 0.0915725i 0.751409 0.659837i \(-0.229375\pi\)
−0.659837 + 0.751409i \(0.729375\pi\)
\(878\) 52.8937 + 52.8937i 1.78508 + 1.78508i
\(879\) 42.3607i 1.42879i
\(880\) 0 0
\(881\) 36.7255i 1.23731i −0.785662 0.618656i \(-0.787677\pi\)
0.785662 0.618656i \(-0.212323\pi\)
\(882\) 14.4997 106.400i 0.488230 3.58268i
\(883\) −38.3038 + 38.3038i −1.28902 + 1.28902i −0.353644 + 0.935380i \(0.615057\pi\)
−0.935380 + 0.353644i \(0.884943\pi\)
\(884\) 6.18034i 0.207867i
\(885\) 0 0
\(886\) −28.9098 −0.971245
\(887\) 8.67637 8.67637i 0.291324 0.291324i −0.546279 0.837603i \(-0.683956\pi\)
0.837603 + 0.546279i \(0.183956\pi\)
\(888\) −36.6788 36.6788i −1.23086 1.23086i
\(889\) 5.16624 10.4164i 0.173270 0.349355i
\(890\) 0 0
\(891\) −35.2705 −1.18161
\(892\) −5.57622 + 5.57622i −0.186706 + 0.186706i
\(893\) 39.2462 39.2462i 1.31332 1.31332i
\(894\) 53.4438 1.78743
\(895\) 0 0
\(896\) 48.9230 + 24.2644i 1.63440 + 0.810617i
\(897\) −22.4861 22.4861i −0.750788 0.750788i
\(898\) −43.1807 + 43.1807i −1.44096 + 1.44096i
\(899\) 9.26817 0.309111
\(900\) 0 0
\(901\) 6.63707i 0.221113i
\(902\) 24.4525 24.4525i 0.814179 0.814179i
\(903\) 3.80856 + 11.3039i 0.126741 + 0.376171i
\(904\) 51.0689i 1.69853i
\(905\) 0 0
\(906\) 35.4099i 1.17642i
\(907\) −29.3769 29.3769i −0.975444 0.975444i 0.0242612 0.999706i \(-0.492277\pi\)
−0.999706 + 0.0242612i \(0.992277\pi\)
\(908\) −6.89259 6.89259i −0.228739 0.228739i
\(909\) 47.2132 1.56596
\(910\) 0 0
\(911\) −27.8328 −0.922142 −0.461071 0.887363i \(-0.652535\pi\)
−0.461071 + 0.887363i \(0.652535\pi\)
\(912\) 29.4346 + 29.4346i 0.974678 + 0.974678i
\(913\) −8.38749 8.38749i −0.277585 0.277585i
\(914\) 80.4853i 2.66222i
\(915\) 0 0
\(916\) 81.5589i 2.69478i
\(917\) 34.9310 11.7691i 1.15352 0.388650i
\(918\) 21.0546 21.0546i 0.694905 0.694905i
\(919\) 3.72949i 0.123025i 0.998106 + 0.0615123i \(0.0195923\pi\)
−0.998106 + 0.0615123i \(0.980408\pi\)
\(920\) 0 0
\(921\) 74.3951 2.45140
\(922\) −53.5750 + 53.5750i −1.76440 + 1.76440i
\(923\) −1.81242 1.81242i −0.0596564 0.0596564i
\(924\) 69.0978 + 34.2705i 2.27315 + 1.12742i
\(925\) 0 0
\(926\) −63.6312 −2.09105
\(927\) 42.2550 42.2550i 1.38784 1.38784i
\(928\) 20.1699 20.1699i 0.662108 0.662108i
\(929\) 46.9620 1.54077 0.770386 0.637577i \(-0.220063\pi\)
0.770386 + 0.637577i \(0.220063\pi\)
\(930\) 0 0
\(931\) 40.6525 30.9015i 1.33233 1.01275i
\(932\) −44.4253 44.4253i −1.45520 1.45520i
\(933\) −12.1277 + 12.1277i −0.397044 + 0.397044i
\(934\) −65.9049 −2.15647
\(935\) 0 0
\(936\) 36.0677i 1.17891i
\(937\) 20.9313 20.9313i 0.683794 0.683794i −0.277059 0.960853i \(-0.589360\pi\)
0.960853 + 0.277059i \(0.0893596\pi\)
\(938\) −5.38034 + 1.81277i −0.175674 + 0.0591889i
\(939\) 52.8885i 1.72595i
\(940\) 0 0
\(941\) 48.6841i 1.58706i −0.608534 0.793528i \(-0.708242\pi\)
0.608534 0.793528i \(-0.291758\pi\)
\(942\) −59.7540 59.7540i −1.94689 1.94689i
\(943\) −28.0201 28.0201i −0.912459 0.912459i
\(944\) −19.9112 −0.648055
\(945\) 0 0
\(946\) −9.09017 −0.295547
\(947\) −33.1246 33.1246i −1.07640 1.07640i −0.996829 0.0795758i \(-0.974643\pi\)
−0.0795758 0.996829i \(-0.525357\pi\)
\(948\) 29.1975 + 29.1975i 0.948290 + 0.948290i
\(949\) 21.4590i 0.696588i
\(950\) 0 0
\(951\) 100.406i 3.25588i
\(952\) −11.3039 + 3.80856i −0.366362 + 0.123436i
\(953\) −8.86911 + 8.86911i −0.287299 + 0.287299i −0.836011 0.548712i \(-0.815118\pi\)
0.548712 + 0.836011i \(0.315118\pi\)
\(954\) 86.6099i 2.80410i
\(955\) 0 0
\(956\) 7.43769 0.240552
\(957\) 49.6150 49.6150i 1.60382 1.60382i
\(958\) −43.1326 43.1326i −1.39355 1.39355i
\(959\) −7.95262 + 16.0344i −0.256804 + 0.517779i
\(960\) 0 0
\(961\) 29.8673 0.963460
\(962\) 10.7027 10.7027i 0.345069 0.345069i
\(963\) −47.5328 + 47.5328i −1.53172 + 1.53172i
\(964\) 7.70137 0.248045
\(965\) 0 0
\(966\) 60.9787 122.948i 1.96196 3.95579i
\(967\) 25.5358 + 25.5358i 0.821177 + 0.821177i 0.986277 0.165100i \(-0.0527946\pi\)
−0.165100 + 0.986277i \(0.552795\pi\)
\(968\) 11.2430 11.2430i 0.361365 0.361365i
\(969\) 26.3930 0.847865
\(970\) 0 0
\(971\) 5.82401i 0.186902i −0.995624 0.0934508i \(-0.970210\pi\)
0.995624 0.0934508i \(-0.0297898\pi\)
\(972\) 24.0600 24.0600i 0.771726 0.771726i
\(973\) 2.35382 + 6.98620i 0.0754600 + 0.223967i
\(974\) 3.78522i 0.121286i
\(975\) 0 0
\(976\) 14.7450i 0.471975i
\(977\) 35.4051 + 35.4051i 1.13271 + 1.13271i 0.989725 + 0.142985i \(0.0456700\pi\)
0.142985 + 0.989725i \(0.454330\pi\)
\(978\) −12.2263 12.2263i −0.390952 0.390952i
\(979\) −30.9015 −0.987615
\(980\) 0 0
\(981\) 45.3050 1.44648
\(982\) 27.2118 + 27.2118i 0.868365 + 0.868365i
\(983\) 4.18490 + 4.18490i 0.133478 + 0.133478i 0.770689 0.637211i \(-0.219912\pi\)
−0.637211 + 0.770689i \(0.719912\pi\)
\(984\) 65.7771i 2.09690i
\(985\) 0 0
\(986\) 24.2644i 0.772736i
\(987\) 19.7812 + 58.7112i 0.629643 + 1.86880i
\(988\) −27.1184 + 27.1184i −0.862753 + 0.862753i
\(989\) 10.4164i 0.331223i
\(990\) 0 0
\(991\) −33.1591 −1.05333 −0.526666 0.850072i \(-0.676558\pi\)
−0.526666 + 0.850072i \(0.676558\pi\)
\(992\) −2.46513 + 2.46513i −0.0782680 + 0.0782680i
\(993\) −65.4374 65.4374i −2.07659 2.07659i
\(994\) 4.91499 9.90983i 0.155894 0.314321i
\(995\) 0 0
\(996\) 50.4508 1.59860
\(997\) 29.7575 29.7575i 0.942431 0.942431i −0.0560001 0.998431i \(-0.517835\pi\)
0.998431 + 0.0560001i \(0.0178347\pi\)
\(998\) 45.2167 45.2167i 1.43131 1.43131i
\(999\) −46.9620 −1.48581
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 875.2.f.b.307.8 yes 16
5.2 odd 4 inner 875.2.f.b.818.2 yes 16
5.3 odd 4 inner 875.2.f.b.818.7 yes 16
5.4 even 2 inner 875.2.f.b.307.1 16
7.6 odd 2 inner 875.2.f.b.307.7 yes 16
35.13 even 4 inner 875.2.f.b.818.8 yes 16
35.27 even 4 inner 875.2.f.b.818.1 yes 16
35.34 odd 2 inner 875.2.f.b.307.2 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
875.2.f.b.307.1 16 5.4 even 2 inner
875.2.f.b.307.2 yes 16 35.34 odd 2 inner
875.2.f.b.307.7 yes 16 7.6 odd 2 inner
875.2.f.b.307.8 yes 16 1.1 even 1 trivial
875.2.f.b.818.1 yes 16 35.27 even 4 inner
875.2.f.b.818.2 yes 16 5.2 odd 4 inner
875.2.f.b.818.7 yes 16 5.3 odd 4 inner
875.2.f.b.818.8 yes 16 35.13 even 4 inner