Properties

Label 875.2.bb.a.82.11
Level $875$
Weight $2$
Character 875.82
Analytic conductor $6.987$
Analytic rank $0$
Dimension $288$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [875,2,Mod(82,875)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("875.82"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(875, base_ring=CyclotomicField(60)) chi = DirichletCharacter(H, H._module([27, 50])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 875 = 5^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 875.bb (of order \(60\), degree \(16\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [288,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.98691017686\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(18\) over \(\Q(\zeta_{60})\)
Twist minimal: no (minimal twist has level 175)
Sato-Tate group: $\mathrm{SU}(2)[C_{60}]$

Embedding invariants

Embedding label 82.11
Character \(\chi\) \(=\) 875.82
Dual form 875.2.bb.a.843.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.766047 + 0.294058i) q^{2} +(-0.140222 + 0.00734873i) q^{3} +(-0.985932 - 0.887737i) q^{4} +(-0.109578 - 0.0356039i) q^{6} +(1.23154 - 2.34165i) q^{7} +(-1.23927 - 2.43220i) q^{8} +(-2.96396 + 0.311524i) q^{9} +(-0.0483934 + 0.460432i) q^{11} +(0.144773 + 0.117235i) q^{12} +(-2.81849 - 0.446405i) q^{13} +(1.63200 - 1.43167i) q^{14} +(0.0432270 + 0.411277i) q^{16} +(-3.63317 + 5.59459i) q^{17} +(-2.36214 - 0.632933i) q^{18} +(-0.835637 - 0.928069i) q^{19} +(-0.155481 + 0.337401i) q^{21} +(-0.172465 + 0.338482i) q^{22} +(-1.88101 + 4.90021i) q^{23} +(0.191646 + 0.331940i) q^{24} +(-2.02783 - 1.17077i) q^{26} +(0.829380 - 0.131361i) q^{27} +(-3.29298 + 1.21542i) q^{28} +(-2.85581 + 0.927907i) q^{29} +(-2.24299 - 10.5524i) q^{31} +(-1.50083 + 5.60118i) q^{32} +(0.00340223 - 0.0649184i) q^{33} +(-4.42831 + 3.21736i) q^{34} +(3.19881 + 2.32407i) q^{36} +(-3.55947 + 4.39558i) q^{37} +(-0.367231 - 0.956670i) q^{38} +(0.398495 + 0.0418835i) q^{39} +(-1.91768 - 2.63945i) q^{41} +(-0.218321 + 0.212744i) q^{42} +(6.03422 - 6.03422i) q^{43} +(0.456455 - 0.410994i) q^{44} +(-2.88189 + 3.20066i) q^{46} +(1.38828 - 0.901557i) q^{47} +(-0.00908374 - 0.0573524i) q^{48} +(-3.96662 - 5.76766i) q^{49} +(0.468337 - 0.811184i) q^{51} +(2.38255 + 2.94221i) q^{52} +(-0.375223 - 7.15968i) q^{53} +(0.673972 + 0.143257i) q^{54} +(-7.22155 - 0.0934236i) q^{56} +(0.123995 + 0.123995i) q^{57} +(-2.46054 - 0.128951i) q^{58} +(-2.23160 - 0.993572i) q^{59} +(0.307313 + 0.690235i) q^{61} +(1.38479 - 8.74324i) q^{62} +(-2.92075 + 7.32420i) q^{63} +(-2.31063 + 3.18031i) q^{64} +(0.0216960 - 0.0487301i) q^{66} +(1.99402 + 1.29493i) q^{67} +(8.54858 - 2.29059i) q^{68} +(0.227749 - 0.700940i) q^{69} +(-2.47456 - 7.61592i) q^{71} +(4.43082 + 6.82286i) q^{72} +(-4.93803 + 3.99874i) q^{73} +(-4.01928 + 2.32053i) q^{74} +1.65684i q^{76} +(1.01857 + 0.680361i) q^{77} +(0.292950 + 0.149265i) q^{78} +(2.07461 - 9.76028i) q^{79} +(8.63014 - 1.83439i) q^{81} +(-0.692877 - 2.58585i) q^{82} +(-8.96119 + 4.56596i) q^{83} +(0.452817 - 0.194628i) q^{84} +(6.39691 - 2.84809i) q^{86} +(0.393628 - 0.151100i) q^{87} +(1.17983 - 0.452896i) q^{88} +(8.48635 - 3.77837i) q^{89} +(-4.51641 + 6.05015i) q^{91} +(6.20465 - 3.16143i) q^{92} +(0.392064 + 1.46320i) q^{93} +(1.32859 - 0.282401i) q^{94} +(0.169288 - 0.796437i) q^{96} +(-7.70801 - 3.92743i) q^{97} +(-1.34259 - 5.58472i) q^{98} -1.37978i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 288 q - 2 q^{2} - 6 q^{3} + 10 q^{4} + 10 q^{7} - 64 q^{8} + 10 q^{9} - 6 q^{11} + 6 q^{12} + 20 q^{14} - 30 q^{16} + 12 q^{17} + 14 q^{18} + 30 q^{19} - 12 q^{21} + 8 q^{22} - 30 q^{23} - 48 q^{26} + 58 q^{28}+ \cdots - 62 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/875\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(626\)
\(\chi(n)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.766047 + 0.294058i 0.541677 + 0.207930i 0.613795 0.789466i \(-0.289642\pi\)
−0.0721175 + 0.997396i \(0.522976\pi\)
\(3\) −0.140222 + 0.00734873i −0.0809572 + 0.00424279i −0.0927716 0.995687i \(-0.529573\pi\)
0.0118143 + 0.999930i \(0.496239\pi\)
\(4\) −0.985932 0.887737i −0.492966 0.443868i
\(5\) 0 0
\(6\) −0.109578 0.0356039i −0.0447349 0.0145352i
\(7\) 1.23154 2.34165i 0.465478 0.885059i
\(8\) −1.23927 2.43220i −0.438146 0.859911i
\(9\) −2.96396 + 0.311524i −0.987986 + 0.103841i
\(10\) 0 0
\(11\) −0.0483934 + 0.460432i −0.0145912 + 0.138826i −0.999392 0.0348608i \(-0.988901\pi\)
0.984801 + 0.173686i \(0.0555679\pi\)
\(12\) 0.144773 + 0.117235i 0.0417924 + 0.0338428i
\(13\) −2.81849 0.446405i −0.781709 0.123811i −0.247190 0.968967i \(-0.579507\pi\)
−0.534519 + 0.845156i \(0.679507\pi\)
\(14\) 1.63200 1.43167i 0.436170 0.382629i
\(15\) 0 0
\(16\) 0.0432270 + 0.411277i 0.0108067 + 0.102819i
\(17\) −3.63317 + 5.59459i −0.881173 + 1.35689i 0.0524474 + 0.998624i \(0.483298\pi\)
−0.933620 + 0.358264i \(0.883369\pi\)
\(18\) −2.36214 0.632933i −0.556761 0.149184i
\(19\) −0.835637 0.928069i −0.191708 0.212914i 0.639626 0.768686i \(-0.279089\pi\)
−0.831334 + 0.555773i \(0.812423\pi\)
\(20\) 0 0
\(21\) −0.155481 + 0.337401i −0.0339287 + 0.0736269i
\(22\) −0.172465 + 0.338482i −0.0367697 + 0.0721647i
\(23\) −1.88101 + 4.90021i −0.392218 + 1.02176i 0.585282 + 0.810830i \(0.300984\pi\)
−0.977500 + 0.210934i \(0.932349\pi\)
\(24\) 0.191646 + 0.331940i 0.0391195 + 0.0677570i
\(25\) 0 0
\(26\) −2.02783 1.17077i −0.397690 0.229606i
\(27\) 0.829380 0.131361i 0.159614 0.0252804i
\(28\) −3.29298 + 1.21542i −0.622315 + 0.229693i
\(29\) −2.85581 + 0.927907i −0.530310 + 0.172308i −0.561919 0.827192i \(-0.689937\pi\)
0.0316093 + 0.999500i \(0.489937\pi\)
\(30\) 0 0
\(31\) −2.24299 10.5524i −0.402853 1.89527i −0.443824 0.896114i \(-0.646378\pi\)
0.0409705 0.999160i \(-0.486955\pi\)
\(32\) −1.50083 + 5.60118i −0.265312 + 0.990157i
\(33\) 0.00340223 0.0649184i 0.000592252 0.0113008i
\(34\) −4.42831 + 3.21736i −0.759449 + 0.551772i
\(35\) 0 0
\(36\) 3.19881 + 2.32407i 0.533135 + 0.387345i
\(37\) −3.55947 + 4.39558i −0.585173 + 0.722629i −0.980633 0.195854i \(-0.937252\pi\)
0.395460 + 0.918483i \(0.370585\pi\)
\(38\) −0.367231 0.956670i −0.0595728 0.155192i
\(39\) 0.398495 + 0.0418835i 0.0638103 + 0.00670673i
\(40\) 0 0
\(41\) −1.91768 2.63945i −0.299491 0.412213i 0.632577 0.774497i \(-0.281997\pi\)
−0.932068 + 0.362284i \(0.881997\pi\)
\(42\) −0.218321 + 0.212744i −0.0336877 + 0.0328272i
\(43\) 6.03422 6.03422i 0.920211 0.920211i −0.0768333 0.997044i \(-0.524481\pi\)
0.997044 + 0.0768333i \(0.0244809\pi\)
\(44\) 0.456455 0.410994i 0.0688132 0.0619597i
\(45\) 0 0
\(46\) −2.88189 + 3.20066i −0.424911 + 0.471912i
\(47\) 1.38828 0.901557i 0.202501 0.131506i −0.439405 0.898289i \(-0.644811\pi\)
0.641906 + 0.766784i \(0.278144\pi\)
\(48\) −0.00908374 0.0573524i −0.00131112 0.00827811i
\(49\) −3.96662 5.76766i −0.566660 0.823952i
\(50\) 0 0
\(51\) 0.468337 0.811184i 0.0655803 0.113588i
\(52\) 2.38255 + 2.94221i 0.330400 + 0.408011i
\(53\) −0.375223 7.15968i −0.0515409 0.983458i −0.894944 0.446178i \(-0.852785\pi\)
0.843404 0.537281i \(-0.180548\pi\)
\(54\) 0.673972 + 0.143257i 0.0917159 + 0.0194948i
\(55\) 0 0
\(56\) −7.22155 0.0934236i −0.965020 0.0124842i
\(57\) 0.123995 + 0.123995i 0.0164235 + 0.0164235i
\(58\) −2.46054 0.128951i −0.323085 0.0169321i
\(59\) −2.23160 0.993572i −0.290529 0.129352i 0.256297 0.966598i \(-0.417498\pi\)
−0.546826 + 0.837246i \(0.684164\pi\)
\(60\) 0 0
\(61\) 0.307313 + 0.690235i 0.0393473 + 0.0883756i 0.932150 0.362073i \(-0.117931\pi\)
−0.892802 + 0.450448i \(0.851264\pi\)
\(62\) 1.38479 8.74324i 0.175869 1.11039i
\(63\) −2.92075 + 7.32420i −0.367980 + 0.922762i
\(64\) −2.31063 + 3.18031i −0.288829 + 0.397538i
\(65\) 0 0
\(66\) 0.0216960 0.0487301i 0.00267060 0.00599826i
\(67\) 1.99402 + 1.29493i 0.243608 + 0.158201i 0.660668 0.750678i \(-0.270273\pi\)
−0.417060 + 0.908879i \(0.636940\pi\)
\(68\) 8.54858 2.29059i 1.03667 0.277774i
\(69\) 0.227749 0.700940i 0.0274178 0.0843833i
\(70\) 0 0
\(71\) −2.47456 7.61592i −0.293676 0.903843i −0.983663 0.180021i \(-0.942383\pi\)
0.689986 0.723822i \(-0.257617\pi\)
\(72\) 4.43082 + 6.82286i 0.522177 + 0.804082i
\(73\) −4.93803 + 3.99874i −0.577953 + 0.468017i −0.873172 0.487413i \(-0.837941\pi\)
0.295219 + 0.955430i \(0.404607\pi\)
\(74\) −4.01928 + 2.32053i −0.467231 + 0.269756i
\(75\) 0 0
\(76\) 1.65684i 0.190052i
\(77\) 1.01857 + 0.680361i 0.116077 + 0.0775343i
\(78\) 0.292950 + 0.149265i 0.0331700 + 0.0169010i
\(79\) 2.07461 9.76028i 0.233412 1.09812i −0.692805 0.721125i \(-0.743625\pi\)
0.926217 0.376992i \(-0.123041\pi\)
\(80\) 0 0
\(81\) 8.63014 1.83439i 0.958904 0.203821i
\(82\) −0.692877 2.58585i −0.0765155 0.285560i
\(83\) −8.96119 + 4.56596i −0.983619 + 0.501179i −0.870375 0.492389i \(-0.836124\pi\)
−0.113243 + 0.993567i \(0.536124\pi\)
\(84\) 0.452817 0.194628i 0.0494063 0.0212357i
\(85\) 0 0
\(86\) 6.39691 2.84809i 0.689797 0.307117i
\(87\) 0.393628 0.151100i 0.0422013 0.0161996i
\(88\) 1.17983 0.452896i 0.125771 0.0482788i
\(89\) 8.48635 3.77837i 0.899551 0.400506i 0.0957511 0.995405i \(-0.469475\pi\)
0.803800 + 0.594899i \(0.202808\pi\)
\(90\) 0 0
\(91\) −4.51641 + 6.05015i −0.473448 + 0.634228i
\(92\) 6.20465 3.16143i 0.646879 0.329601i
\(93\) 0.392064 + 1.46320i 0.0406551 + 0.151727i
\(94\) 1.32859 0.282401i 0.137034 0.0291275i
\(95\) 0 0
\(96\) 0.169288 0.796437i 0.0172779 0.0812861i
\(97\) −7.70801 3.92743i −0.782630 0.398770i 0.0165492 0.999863i \(-0.494732\pi\)
−0.799179 + 0.601093i \(0.794732\pi\)
\(98\) −1.34259 5.58472i −0.135622 0.564141i
\(99\) 1.37978i 0.138673i
\(100\) 0 0
\(101\) −15.3672 + 8.87223i −1.52909 + 0.882820i −0.529688 + 0.848192i \(0.677691\pi\)
−0.999400 + 0.0346276i \(0.988975\pi\)
\(102\) 0.597303 0.483687i 0.0591418 0.0478921i
\(103\) 6.05199 + 9.31925i 0.596320 + 0.918253i 0.999994 + 0.00334975i \(0.00106626\pi\)
−0.403674 + 0.914903i \(0.632267\pi\)
\(104\) 2.40712 + 7.40834i 0.236037 + 0.726448i
\(105\) 0 0
\(106\) 1.81792 5.59499i 0.176572 0.543434i
\(107\) −2.32486 + 0.622945i −0.224753 + 0.0602223i −0.369438 0.929255i \(-0.620450\pi\)
0.144685 + 0.989478i \(0.453783\pi\)
\(108\) −0.934326 0.606758i −0.0899056 0.0583854i
\(109\) 7.52976 16.9121i 0.721221 1.61989i −0.0619487 0.998079i \(-0.519732\pi\)
0.783169 0.621809i \(-0.213602\pi\)
\(110\) 0 0
\(111\) 0.466814 0.642515i 0.0443081 0.0609848i
\(112\) 1.01630 + 0.405282i 0.0960315 + 0.0382955i
\(113\) −1.54166 + 9.73363i −0.145027 + 0.915663i 0.802654 + 0.596444i \(0.203420\pi\)
−0.947681 + 0.319219i \(0.896580\pi\)
\(114\) 0.0585242 + 0.131448i 0.00548130 + 0.0123112i
\(115\) 0 0
\(116\) 3.63937 + 1.62035i 0.337907 + 0.150446i
\(117\) 8.49296 + 0.445097i 0.785174 + 0.0411492i
\(118\) −1.41734 1.41734i −0.130477 0.130477i
\(119\) 8.62616 + 15.3976i 0.790759 + 1.41149i
\(120\) 0 0
\(121\) 10.5500 + 2.24246i 0.959088 + 0.203860i
\(122\) 0.0324467 + 0.619120i 0.00293759 + 0.0560525i
\(123\) 0.288297 + 0.356017i 0.0259949 + 0.0321010i
\(124\) −7.15636 + 12.3952i −0.642660 + 1.11312i
\(125\) 0 0
\(126\) −4.39117 + 4.75181i −0.391197 + 0.423325i
\(127\) −1.02863 6.49451i −0.0912761 0.576294i −0.990360 0.138518i \(-0.955766\pi\)
0.899084 0.437776i \(-0.144234\pi\)
\(128\) 7.02126 4.55966i 0.620598 0.403021i
\(129\) −0.801787 + 0.890475i −0.0705934 + 0.0784020i
\(130\) 0 0
\(131\) 8.20597 7.38869i 0.716959 0.645553i −0.227653 0.973742i \(-0.573105\pi\)
0.944612 + 0.328189i \(0.106438\pi\)
\(132\) −0.0609848 + 0.0609848i −0.00530805 + 0.00530805i
\(133\) −3.20233 + 0.813813i −0.277677 + 0.0705666i
\(134\) 1.14673 + 1.57833i 0.0990621 + 0.136347i
\(135\) 0 0
\(136\) 18.1096 + 1.90340i 1.55289 + 0.163215i
\(137\) 0.492457 + 1.28289i 0.0420734 + 0.109605i 0.953007 0.302947i \(-0.0979707\pi\)
−0.910934 + 0.412552i \(0.864637\pi\)
\(138\) 0.380584 0.469982i 0.0323974 0.0400075i
\(139\) 2.70776 + 1.96730i 0.229669 + 0.166865i 0.696668 0.717393i \(-0.254665\pi\)
−0.466999 + 0.884258i \(0.654665\pi\)
\(140\) 0 0
\(141\) −0.188041 + 0.136620i −0.0158360 + 0.0115055i
\(142\) 0.343890 6.56182i 0.0288586 0.550655i
\(143\) 0.341936 1.27612i 0.0285941 0.106715i
\(144\) −0.256246 1.20554i −0.0213538 0.100462i
\(145\) 0 0
\(146\) −4.95862 + 1.61115i −0.410378 + 0.133340i
\(147\) 0.598592 + 0.779604i 0.0493711 + 0.0643006i
\(148\) 7.41151 1.17387i 0.609223 0.0964914i
\(149\) 16.1916 + 9.34825i 1.32647 + 0.765838i 0.984752 0.173964i \(-0.0556577\pi\)
0.341719 + 0.939802i \(0.388991\pi\)
\(150\) 0 0
\(151\) −5.55298 9.61804i −0.451895 0.782705i 0.546609 0.837388i \(-0.315919\pi\)
−0.998504 + 0.0546830i \(0.982585\pi\)
\(152\) −1.22167 + 3.18256i −0.0990905 + 0.258139i
\(153\) 9.02571 17.7139i 0.729685 1.43209i
\(154\) 0.580208 + 0.820707i 0.0467545 + 0.0661345i
\(155\) 0 0
\(156\) −0.355708 0.395053i −0.0284794 0.0316296i
\(157\) −0.753908 0.202009i −0.0601684 0.0161221i 0.228609 0.973518i \(-0.426582\pi\)
−0.288778 + 0.957396i \(0.593249\pi\)
\(158\) 4.45934 6.86678i 0.354766 0.546291i
\(159\) 0.105229 + 1.00119i 0.00834521 + 0.0793994i
\(160\) 0 0
\(161\) 9.15801 + 10.4395i 0.721752 + 0.822745i
\(162\) 7.15051 + 1.13253i 0.561797 + 0.0889799i
\(163\) 16.8235 + 13.6234i 1.31772 + 1.06707i 0.992604 + 0.121396i \(0.0387370\pi\)
0.325117 + 0.945674i \(0.394596\pi\)
\(164\) −0.452443 + 4.30471i −0.0353299 + 0.336142i
\(165\) 0 0
\(166\) −8.20735 + 0.862627i −0.637014 + 0.0669528i
\(167\) −4.06888 7.98564i −0.314860 0.617947i 0.678290 0.734794i \(-0.262721\pi\)
−0.993150 + 0.116847i \(0.962721\pi\)
\(168\) 1.01331 0.0399691i 0.0781783 0.00308368i
\(169\) −4.61911 1.50084i −0.355316 0.115449i
\(170\) 0 0
\(171\) 2.76591 + 2.49044i 0.211514 + 0.190448i
\(172\) −11.3061 + 0.592530i −0.862085 + 0.0451800i
\(173\) −13.5676 5.20812i −1.03153 0.395966i −0.217049 0.976161i \(-0.569643\pi\)
−0.814478 + 0.580195i \(0.802976\pi\)
\(174\) 0.345969 0.0262279
\(175\) 0 0
\(176\) −0.191457 −0.0144316
\(177\) 0.320221 + 0.122921i 0.0240693 + 0.00923932i
\(178\) 7.61200 0.398928i 0.570544 0.0299009i
\(179\) −7.18553 6.46988i −0.537072 0.483582i 0.355382 0.934721i \(-0.384351\pi\)
−0.892453 + 0.451140i \(0.851018\pi\)
\(180\) 0 0
\(181\) −19.1189 6.21211i −1.42110 0.461742i −0.505146 0.863034i \(-0.668561\pi\)
−0.915950 + 0.401292i \(0.868561\pi\)
\(182\) −5.23888 + 3.30661i −0.388331 + 0.245102i
\(183\) −0.0481643 0.0945278i −0.00356041 0.00698770i
\(184\) 14.2493 1.49767i 1.05047 0.110409i
\(185\) 0 0
\(186\) −0.129927 + 1.23617i −0.00952669 + 0.0906404i
\(187\) −2.40011 1.94357i −0.175513 0.142128i
\(188\) −2.16909 0.343550i −0.158197 0.0250560i
\(189\) 0.713814 2.10389i 0.0519223 0.153036i
\(190\) 0 0
\(191\) 2.59494 + 24.6892i 0.187763 + 1.78645i 0.531172 + 0.847264i \(0.321752\pi\)
−0.343409 + 0.939186i \(0.611582\pi\)
\(192\) 0.300630 0.462929i 0.0216961 0.0334090i
\(193\) 13.6684 + 3.66243i 0.983870 + 0.263627i 0.714674 0.699458i \(-0.246575\pi\)
0.269196 + 0.963085i \(0.413242\pi\)
\(194\) −4.74981 5.27519i −0.341016 0.378737i
\(195\) 0 0
\(196\) −1.20935 + 9.20784i −0.0863822 + 0.657703i
\(197\) 9.45216 18.5509i 0.673439 1.32170i −0.260919 0.965361i \(-0.584025\pi\)
0.934357 0.356337i \(-0.115975\pi\)
\(198\) 0.405734 1.05697i 0.0288343 0.0751159i
\(199\) −7.89655 13.6772i −0.559772 0.969553i −0.997515 0.0704529i \(-0.977556\pi\)
0.437744 0.899100i \(-0.355778\pi\)
\(200\) 0 0
\(201\) −0.289121 0.166924i −0.0203930 0.0117739i
\(202\) −14.3809 + 2.27771i −1.01184 + 0.160259i
\(203\) −1.34421 + 7.83004i −0.0943448 + 0.549561i
\(204\) −1.18187 + 0.384012i −0.0827472 + 0.0268862i
\(205\) 0 0
\(206\) 1.89571 + 8.91861i 0.132080 + 0.621389i
\(207\) 4.04871 15.1100i 0.281405 1.05022i
\(208\) 0.0617614 1.17848i 0.00428239 0.0817128i
\(209\) 0.467752 0.339842i 0.0323551 0.0235074i
\(210\) 0 0
\(211\) 3.76604 + 2.73619i 0.259265 + 0.188367i 0.709823 0.704380i \(-0.248775\pi\)
−0.450558 + 0.892747i \(0.648775\pi\)
\(212\) −5.98597 + 7.39206i −0.411118 + 0.507689i
\(213\) 0.402955 + 1.04973i 0.0276101 + 0.0719266i
\(214\) −1.96413 0.206439i −0.134265 0.0141119i
\(215\) 0 0
\(216\) −1.34732 1.85442i −0.0916733 0.126178i
\(217\) −27.4724 7.74346i −1.86495 0.525660i
\(218\) 10.7413 10.7413i 0.727492 0.727492i
\(219\) 0.663035 0.596999i 0.0448037 0.0403415i
\(220\) 0 0
\(221\) 12.7375 14.1464i 0.856818 0.951593i
\(222\) 0.546538 0.354926i 0.0366812 0.0238211i
\(223\) −0.346137 2.18542i −0.0231790 0.146347i 0.973385 0.229178i \(-0.0736038\pi\)
−0.996564 + 0.0828312i \(0.973604\pi\)
\(224\) 11.2676 + 10.4125i 0.752851 + 0.695714i
\(225\) 0 0
\(226\) −4.04323 + 7.00308i −0.268952 + 0.465838i
\(227\) −4.20139 5.18829i −0.278856 0.344359i 0.618404 0.785860i \(-0.287779\pi\)
−0.897261 + 0.441501i \(0.854446\pi\)
\(228\) −0.0121757 0.232325i −0.000806353 0.0153861i
\(229\) −11.0952 2.35835i −0.733188 0.155844i −0.173837 0.984774i \(-0.555616\pi\)
−0.559352 + 0.828931i \(0.688950\pi\)
\(230\) 0 0
\(231\) −0.147826 0.0879164i −0.00972623 0.00578447i
\(232\) 5.79595 + 5.79595i 0.380523 + 0.380523i
\(233\) 2.58663 + 0.135559i 0.169455 + 0.00888078i 0.136875 0.990588i \(-0.456294\pi\)
0.0325805 + 0.999469i \(0.489627\pi\)
\(234\) 6.37512 + 2.83839i 0.416755 + 0.185551i
\(235\) 0 0
\(236\) 1.31817 + 2.96067i 0.0858058 + 0.192723i
\(237\) −0.219181 + 1.38385i −0.0142373 + 0.0898908i
\(238\) 2.08027 + 14.3318i 0.134844 + 0.928996i
\(239\) −9.58977 + 13.1992i −0.620311 + 0.853784i −0.997375 0.0724026i \(-0.976933\pi\)
0.377065 + 0.926187i \(0.376933\pi\)
\(240\) 0 0
\(241\) −3.22286 + 7.23866i −0.207603 + 0.466283i −0.987096 0.160127i \(-0.948810\pi\)
0.779494 + 0.626410i \(0.215476\pi\)
\(242\) 7.42236 + 4.82013i 0.477127 + 0.309850i
\(243\) −3.62997 + 0.972648i −0.232863 + 0.0623954i
\(244\) 0.309758 0.953338i 0.0198302 0.0610312i
\(245\) 0 0
\(246\) 0.116159 + 0.357502i 0.00740605 + 0.0227935i
\(247\) 1.94094 + 2.98879i 0.123499 + 0.190172i
\(248\) −22.8859 + 18.5327i −1.45326 + 1.17683i
\(249\) 1.22300 0.706101i 0.0775046 0.0447473i
\(250\) 0 0
\(251\) 13.1248i 0.828427i 0.910180 + 0.414214i \(0.135943\pi\)
−0.910180 + 0.414214i \(0.864057\pi\)
\(252\) 9.38162 4.62830i 0.590987 0.291555i
\(253\) −2.16519 1.10322i −0.136124 0.0693587i
\(254\) 1.12178 5.27757i 0.0703869 0.331144i
\(255\) 0 0
\(256\) 14.4098 3.06289i 0.900610 0.191431i
\(257\) 0.511448 + 1.90875i 0.0319033 + 0.119065i 0.980041 0.198795i \(-0.0637027\pi\)
−0.948138 + 0.317859i \(0.897036\pi\)
\(258\) −0.876058 + 0.446374i −0.0545410 + 0.0277900i
\(259\) 5.90927 + 13.7484i 0.367184 + 0.854281i
\(260\) 0 0
\(261\) 8.17542 3.63993i 0.506046 0.225306i
\(262\) 8.45886 3.24705i 0.522590 0.200604i
\(263\) −10.2674 + 3.94129i −0.633116 + 0.243030i −0.653695 0.756758i \(-0.726782\pi\)
0.0205794 + 0.999788i \(0.493449\pi\)
\(264\) −0.162110 + 0.0721762i −0.00997721 + 0.00444214i
\(265\) 0 0
\(266\) −2.69244 0.318252i −0.165084 0.0195133i
\(267\) −1.16221 + 0.592174i −0.0711259 + 0.0362405i
\(268\) −0.816408 3.04688i −0.0498700 0.186118i
\(269\) 5.51256 1.17173i 0.336107 0.0714417i −0.0367668 0.999324i \(-0.511706\pi\)
0.372873 + 0.927882i \(0.378373\pi\)
\(270\) 0 0
\(271\) −5.70901 + 26.8588i −0.346797 + 1.63155i 0.366306 + 0.930495i \(0.380622\pi\)
−0.713103 + 0.701059i \(0.752711\pi\)
\(272\) −2.45798 1.25240i −0.149037 0.0759380i
\(273\) 0.588839 0.881554i 0.0356382 0.0533541i
\(274\) 1.12757i 0.0681188i
\(275\) 0 0
\(276\) −0.846796 + 0.488898i −0.0509711 + 0.0294282i
\(277\) −10.1358 + 8.20778i −0.608999 + 0.493157i −0.883501 0.468429i \(-0.844820\pi\)
0.274502 + 0.961586i \(0.411487\pi\)
\(278\) 1.49577 + 2.30329i 0.0897104 + 0.138142i
\(279\) 9.93547 + 30.5782i 0.594821 + 1.83067i
\(280\) 0 0
\(281\) 7.07687 21.7804i 0.422171 1.29931i −0.483506 0.875341i \(-0.660637\pi\)
0.905677 0.423968i \(-0.139363\pi\)
\(282\) −0.184223 + 0.0493624i −0.0109703 + 0.00293949i
\(283\) 0.570558 + 0.370525i 0.0339162 + 0.0220254i 0.561486 0.827486i \(-0.310230\pi\)
−0.527570 + 0.849512i \(0.676897\pi\)
\(284\) −4.32118 + 9.70554i −0.256415 + 0.575918i
\(285\) 0 0
\(286\) 0.637193 0.877020i 0.0376780 0.0518593i
\(287\) −8.54236 + 1.23993i −0.504240 + 0.0731905i
\(288\) 2.70349 17.0692i 0.159305 1.00581i
\(289\) −11.1850 25.1219i −0.657941 1.47776i
\(290\) 0 0
\(291\) 1.10969 + 0.494068i 0.0650514 + 0.0289628i
\(292\) 8.41839 + 0.441189i 0.492649 + 0.0258186i
\(293\) −17.9628 17.9628i −1.04940 1.04940i −0.998715 0.0506858i \(-0.983859\pi\)
−0.0506858 0.998715i \(-0.516141\pi\)
\(294\) 0.229301 + 0.773234i 0.0133731 + 0.0450959i
\(295\) 0 0
\(296\) 15.1020 + 3.21004i 0.877788 + 0.186580i
\(297\) 0.0203463 + 0.388230i 0.00118061 + 0.0225274i
\(298\) 9.65463 + 11.9225i 0.559278 + 0.690650i
\(299\) 7.48910 12.9715i 0.433106 0.750162i
\(300\) 0 0
\(301\) −6.69863 21.5614i −0.386103 1.24278i
\(302\) −1.42558 9.00077i −0.0820330 0.517936i
\(303\) 2.08961 1.35701i 0.120045 0.0779582i
\(304\) 0.345572 0.383796i 0.0198199 0.0220122i
\(305\) 0 0
\(306\) 12.1230 10.9156i 0.693028 0.624005i
\(307\) 10.5853 10.5853i 0.604135 0.604135i −0.337272 0.941407i \(-0.609504\pi\)
0.941407 + 0.337272i \(0.109504\pi\)
\(308\) −0.400260 1.57501i −0.0228070 0.0897447i
\(309\) −0.917107 1.26229i −0.0521724 0.0718091i
\(310\) 0 0
\(311\) 0.410155 + 0.0431090i 0.0232577 + 0.00244449i 0.116150 0.993232i \(-0.462945\pi\)
−0.0928925 + 0.995676i \(0.529611\pi\)
\(312\) −0.391972 1.02112i −0.0221911 0.0578097i
\(313\) 1.35166 1.66916i 0.0764003 0.0943465i −0.737513 0.675333i \(-0.764000\pi\)
0.813913 + 0.580987i \(0.197333\pi\)
\(314\) −0.518126 0.376441i −0.0292396 0.0212438i
\(315\) 0 0
\(316\) −10.7100 + 7.78126i −0.602484 + 0.437730i
\(317\) 0.319105 6.08889i 0.0179227 0.341986i −0.974920 0.222556i \(-0.928560\pi\)
0.992843 0.119430i \(-0.0381067\pi\)
\(318\) −0.213797 + 0.797901i −0.0119891 + 0.0447440i
\(319\) −0.289036 1.35981i −0.0161829 0.0761347i
\(320\) 0 0
\(321\) 0.321419 0.104435i 0.0179399 0.00582901i
\(322\) 3.94566 + 10.6901i 0.219883 + 0.595737i
\(323\) 8.22818 1.30322i 0.457828 0.0725129i
\(324\) −10.1372 5.85271i −0.563177 0.325150i
\(325\) 0 0
\(326\) 8.88154 + 15.3833i 0.491903 + 0.852001i
\(327\) −0.931556 + 2.42679i −0.0515152 + 0.134202i
\(328\) −4.04316 + 7.93514i −0.223246 + 0.438145i
\(329\) −0.401411 4.36115i −0.0221305 0.240438i
\(330\) 0 0
\(331\) −11.3685 12.6260i −0.624869 0.693988i 0.344725 0.938704i \(-0.387972\pi\)
−0.969595 + 0.244716i \(0.921305\pi\)
\(332\) 12.8885 + 3.45346i 0.707348 + 0.189533i
\(333\) 9.18079 14.1372i 0.503104 0.774712i
\(334\) −0.768718 7.31386i −0.0420624 0.400197i
\(335\) 0 0
\(336\) −0.145486 0.0493609i −0.00793692 0.00269286i
\(337\) 19.0087 + 3.01068i 1.03547 + 0.164002i 0.650955 0.759116i \(-0.274369\pi\)
0.384515 + 0.923119i \(0.374369\pi\)
\(338\) −3.09712 2.50800i −0.168461 0.136417i
\(339\) 0.144644 1.37620i 0.00785600 0.0747449i
\(340\) 0 0
\(341\) 4.96723 0.522077i 0.268991 0.0282721i
\(342\) 1.38648 + 2.72113i 0.0749725 + 0.147142i
\(343\) −18.3909 + 2.18531i −0.993014 + 0.117996i
\(344\) −22.1544 7.19841i −1.19449 0.388112i
\(345\) 0 0
\(346\) −8.86194 7.97933i −0.476421 0.428971i
\(347\) 22.1420 1.16042i 1.18865 0.0622944i 0.552265 0.833668i \(-0.313764\pi\)
0.636382 + 0.771374i \(0.280430\pi\)
\(348\) −0.522227 0.200464i −0.0279943 0.0107460i
\(349\) 17.0829 0.914426 0.457213 0.889357i \(-0.348848\pi\)
0.457213 + 0.889357i \(0.348848\pi\)
\(350\) 0 0
\(351\) −2.39624 −0.127902
\(352\) −2.50633 0.962091i −0.133588 0.0512796i
\(353\) 17.7920 0.932442i 0.946975 0.0496289i 0.427408 0.904059i \(-0.359427\pi\)
0.519567 + 0.854430i \(0.326093\pi\)
\(354\) 0.209158 + 0.188327i 0.0111166 + 0.0100095i
\(355\) 0 0
\(356\) −11.7212 3.80844i −0.621220 0.201847i
\(357\) −1.32273 2.09569i −0.0700063 0.110915i
\(358\) −3.60193 7.06919i −0.190368 0.373619i
\(359\) −14.0809 + 1.47996i −0.743159 + 0.0781092i −0.468538 0.883443i \(-0.655219\pi\)
−0.274621 + 0.961553i \(0.588552\pi\)
\(360\) 0 0
\(361\) 1.82302 17.3449i 0.0959483 0.912887i
\(362\) −12.8193 10.3808i −0.673765 0.545604i
\(363\) −1.49582 0.236914i −0.0785100 0.0124348i
\(364\) 9.82381 1.95565i 0.514908 0.102504i
\(365\) 0 0
\(366\) −0.00909949 0.0865759i −0.000475638 0.00452539i
\(367\) −11.1432 + 17.1591i −0.581672 + 0.895697i −0.999920 0.0126360i \(-0.995978\pi\)
0.418248 + 0.908333i \(0.362644\pi\)
\(368\) −2.09665 0.561797i −0.109296 0.0292857i
\(369\) 6.50616 + 7.22582i 0.338697 + 0.376161i
\(370\) 0 0
\(371\) −17.2276 7.93880i −0.894410 0.412162i
\(372\) 0.912390 1.79067i 0.0473052 0.0928417i
\(373\) −2.61067 + 6.80102i −0.135175 + 0.352144i −0.984414 0.175865i \(-0.943728\pi\)
0.849239 + 0.528009i \(0.177061\pi\)
\(374\) −1.26707 2.19464i −0.0655188 0.113482i
\(375\) 0 0
\(376\) −3.91320 2.25929i −0.201808 0.116514i
\(377\) 8.46329 1.34045i 0.435882 0.0690369i
\(378\) 1.16548 1.40178i 0.0599459 0.0720996i
\(379\) −3.99729 + 1.29880i −0.205327 + 0.0667147i −0.409875 0.912142i \(-0.634428\pi\)
0.204548 + 0.978857i \(0.434428\pi\)
\(380\) 0 0
\(381\) 0.191963 + 0.903114i 0.00983455 + 0.0462679i
\(382\) −5.27221 + 19.6762i −0.269750 + 1.00672i
\(383\) 1.16834 22.2933i 0.0596996 1.13914i −0.790427 0.612557i \(-0.790141\pi\)
0.850126 0.526579i \(-0.176526\pi\)
\(384\) −0.951028 + 0.690962i −0.0485319 + 0.0352605i
\(385\) 0 0
\(386\) 9.39364 + 6.82488i 0.478124 + 0.347377i
\(387\) −16.0054 + 19.7650i −0.813599 + 1.00471i
\(388\) 4.11305 + 10.7149i 0.208808 + 0.543965i
\(389\) 6.69321 + 0.703485i 0.339359 + 0.0356681i 0.272676 0.962106i \(-0.412091\pi\)
0.0666839 + 0.997774i \(0.478758\pi\)
\(390\) 0 0
\(391\) −20.5806 28.3268i −1.04081 1.43255i
\(392\) −9.11239 + 16.7953i −0.460245 + 0.848289i
\(393\) −1.09636 + 1.09636i −0.0553041 + 0.0553041i
\(394\) 12.6958 11.4314i 0.639607 0.575905i
\(395\) 0 0
\(396\) −1.22488 + 1.36037i −0.0615525 + 0.0683610i
\(397\) −13.7203 + 8.91007i −0.688603 + 0.447184i −0.840928 0.541147i \(-0.817990\pi\)
0.152326 + 0.988330i \(0.451324\pi\)
\(398\) −2.02723 12.7994i −0.101616 0.641578i
\(399\) 0.443057 0.137648i 0.0221806 0.00689100i
\(400\) 0 0
\(401\) −3.19866 + 5.54023i −0.159733 + 0.276666i −0.934772 0.355247i \(-0.884397\pi\)
0.775039 + 0.631913i \(0.217730\pi\)
\(402\) −0.172395 0.212890i −0.00859828 0.0106180i
\(403\) 1.61119 + 30.7433i 0.0802589 + 1.53143i
\(404\) 23.0272 + 4.89458i 1.14564 + 0.243514i
\(405\) 0 0
\(406\) −3.33221 + 5.60291i −0.165375 + 0.278068i
\(407\) −1.85161 1.85161i −0.0917810 0.0917810i
\(408\) −2.55335 0.133816i −0.126410 0.00662485i
\(409\) −4.31339 1.92044i −0.213283 0.0949598i 0.297314 0.954780i \(-0.403909\pi\)
−0.510597 + 0.859820i \(0.670576\pi\)
\(410\) 0 0
\(411\) −0.0784809 0.176271i −0.00387118 0.00869481i
\(412\) 2.30619 14.5607i 0.113618 0.717355i
\(413\) −5.07490 + 4.00199i −0.249719 + 0.196925i
\(414\) 7.54471 10.3844i 0.370802 0.510366i
\(415\) 0 0
\(416\) 6.73048 15.1169i 0.329989 0.741167i
\(417\) −0.394145 0.255961i −0.0193014 0.0125345i
\(418\) 0.458253 0.122789i 0.0224139 0.00600579i
\(419\) −4.91344 + 15.1220i −0.240037 + 0.738759i 0.756376 + 0.654137i \(0.226968\pi\)
−0.996413 + 0.0846218i \(0.973032\pi\)
\(420\) 0 0
\(421\) −8.87472 27.3136i −0.432527 1.33118i −0.895599 0.444862i \(-0.853253\pi\)
0.463072 0.886321i \(-0.346747\pi\)
\(422\) 2.08037 + 3.20349i 0.101271 + 0.155943i
\(423\) −3.83393 + 3.10466i −0.186412 + 0.150954i
\(424\) −16.9487 + 9.78537i −0.823104 + 0.475219i
\(425\) 0 0
\(426\) 0.922638i 0.0447020i
\(427\) 1.99476 + 0.130435i 0.0965330 + 0.00631218i
\(428\) 2.84517 + 1.44968i 0.137526 + 0.0700731i
\(429\) −0.0385691 + 0.181453i −0.00186213 + 0.00876064i
\(430\) 0 0
\(431\) −25.2825 + 5.37396i −1.21782 + 0.258855i −0.771622 0.636082i \(-0.780554\pi\)
−0.446194 + 0.894936i \(0.647221\pi\)
\(432\) 0.0898773 + 0.335427i 0.00432422 + 0.0161382i
\(433\) −23.4750 + 11.9611i −1.12814 + 0.574815i −0.915501 0.402316i \(-0.868205\pi\)
−0.212638 + 0.977131i \(0.568205\pi\)
\(434\) −18.7681 14.0103i −0.900900 0.672518i
\(435\) 0 0
\(436\) −22.4374 + 9.98975i −1.07455 + 0.478422i
\(437\) 6.11958 2.34909i 0.292739 0.112372i
\(438\) 0.683468 0.262359i 0.0326574 0.0125360i
\(439\) −33.2307 + 14.7952i −1.58601 + 0.706138i −0.994939 0.100479i \(-0.967962\pi\)
−0.591074 + 0.806618i \(0.701296\pi\)
\(440\) 0 0
\(441\) 13.5537 + 15.8594i 0.645412 + 0.755210i
\(442\) 13.9174 7.09128i 0.661984 0.337298i
\(443\) 4.61086 + 17.2080i 0.219069 + 0.817575i 0.984695 + 0.174289i \(0.0557627\pi\)
−0.765626 + 0.643286i \(0.777571\pi\)
\(444\) −1.03063 + 0.219067i −0.0489116 + 0.0103965i
\(445\) 0 0
\(446\) 0.377484 1.77592i 0.0178744 0.0840923i
\(447\) −2.33912 1.19184i −0.110637 0.0563722i
\(448\) 4.60152 + 9.32735i 0.217402 + 0.440676i
\(449\) 8.68138i 0.409699i −0.978793 0.204850i \(-0.934329\pi\)
0.978793 0.204850i \(-0.0656706\pi\)
\(450\) 0 0
\(451\) 1.30809 0.755227i 0.0615957 0.0355623i
\(452\) 10.1609 8.22811i 0.477927 0.387018i
\(453\) 0.849330 + 1.30785i 0.0399050 + 0.0614483i
\(454\) −1.69281 5.20992i −0.0794473 0.244514i
\(455\) 0 0
\(456\) 0.147917 0.455242i 0.00692686 0.0213187i
\(457\) −25.8197 + 6.91837i −1.20780 + 0.323628i −0.805896 0.592056i \(-0.798316\pi\)
−0.401899 + 0.915684i \(0.631650\pi\)
\(458\) −7.80592 5.06922i −0.364747 0.236869i
\(459\) −2.27837 + 5.11730i −0.106345 + 0.238855i
\(460\) 0 0
\(461\) −0.325458 + 0.447954i −0.0151581 + 0.0208633i −0.816529 0.577305i \(-0.804104\pi\)
0.801371 + 0.598168i \(0.204104\pi\)
\(462\) −0.0873891 0.110817i −0.00406571 0.00515569i
\(463\) 5.44624 34.3862i 0.253108 1.59806i −0.454030 0.890986i \(-0.650014\pi\)
0.707138 0.707075i \(-0.249986\pi\)
\(464\) −0.505075 1.13442i −0.0234475 0.0526640i
\(465\) 0 0
\(466\) 1.94161 + 0.864462i 0.0899435 + 0.0400454i
\(467\) 31.6053 + 1.65636i 1.46252 + 0.0766474i 0.766902 0.641765i \(-0.221797\pi\)
0.695618 + 0.718412i \(0.255131\pi\)
\(468\) −7.97835 7.97835i −0.368799 0.368799i
\(469\) 5.48798 3.07453i 0.253411 0.141968i
\(470\) 0 0
\(471\) 0.107199 + 0.0227858i 0.00493947 + 0.00104992i
\(472\) 0.348982 + 6.65898i 0.0160632 + 0.306504i
\(473\) 2.48634 + 3.07037i 0.114322 + 0.141176i
\(474\) −0.574835 + 0.995644i −0.0264031 + 0.0457314i
\(475\) 0 0
\(476\) 5.16418 22.8387i 0.236700 1.04681i
\(477\) 3.34256 + 21.1041i 0.153045 + 0.966291i
\(478\) −11.2275 + 7.29125i −0.513536 + 0.333494i
\(479\) 14.4233 16.0187i 0.659019 0.731915i −0.317282 0.948331i \(-0.602770\pi\)
0.976301 + 0.216416i \(0.0694369\pi\)
\(480\) 0 0
\(481\) 11.9946 10.7999i 0.546905 0.492435i
\(482\) −4.59744 + 4.59744i −0.209408 + 0.209408i
\(483\) −1.36087 1.39654i −0.0619218 0.0635449i
\(484\) −8.41083 11.5765i −0.382310 0.526205i
\(485\) 0 0
\(486\) −3.06674 0.322328i −0.139110 0.0146211i
\(487\) 6.36974 + 16.5937i 0.288640 + 0.751934i 0.998850 + 0.0479438i \(0.0152668\pi\)
−0.710210 + 0.703990i \(0.751400\pi\)
\(488\) 1.29795 1.60283i 0.0587552 0.0725567i
\(489\) −2.45915 1.78667i −0.111206 0.0807962i
\(490\) 0 0
\(491\) 16.3613 11.8872i 0.738374 0.536460i −0.153828 0.988098i \(-0.549160\pi\)
0.892201 + 0.451638i \(0.149160\pi\)
\(492\) 0.0318084 0.606940i 0.00143403 0.0273630i
\(493\) 5.18436 19.3483i 0.233492 0.871404i
\(494\) 0.607976 + 2.86030i 0.0273541 + 0.128691i
\(495\) 0 0
\(496\) 4.24302 1.37864i 0.190517 0.0619028i
\(497\) −20.8813 3.58476i −0.936655 0.160798i
\(498\) 1.14451 0.181273i 0.0512868 0.00812303i
\(499\) −20.1816 11.6518i −0.903450 0.521607i −0.0251324 0.999684i \(-0.508001\pi\)
−0.878318 + 0.478077i \(0.841334\pi\)
\(500\) 0 0
\(501\) 0.629232 + 1.08986i 0.0281120 + 0.0486914i
\(502\) −3.85944 + 10.0542i −0.172255 + 0.448740i
\(503\) −12.9561 + 25.4278i −0.577684 + 1.13377i 0.398569 + 0.917138i \(0.369507\pi\)
−0.976254 + 0.216631i \(0.930493\pi\)
\(504\) 21.4335 1.97279i 0.954722 0.0878748i
\(505\) 0 0
\(506\) −1.33422 1.48181i −0.0593135 0.0658743i
\(507\) 0.658730 + 0.176506i 0.0292552 + 0.00783892i
\(508\) −4.75126 + 7.31629i −0.210803 + 0.324608i
\(509\) 1.59286 + 15.1551i 0.0706025 + 0.671738i 0.971392 + 0.237482i \(0.0763220\pi\)
−0.900790 + 0.434256i \(0.857011\pi\)
\(510\) 0 0
\(511\) 3.28225 + 16.4877i 0.145198 + 0.729374i
\(512\) −4.59842 0.728319i −0.203224 0.0321874i
\(513\) −0.814973 0.659952i −0.0359819 0.0291376i
\(514\) −0.169490 + 1.61259i −0.00747587 + 0.0711282i
\(515\) 0 0
\(516\) 1.58102 0.166171i 0.0696003 0.00731529i
\(517\) 0.347922 + 0.682836i 0.0153016 + 0.0300311i
\(518\) 0.483963 + 12.2696i 0.0212641 + 0.539093i
\(519\) 1.94075 + 0.630588i 0.0851895 + 0.0276798i
\(520\) 0 0
\(521\) 9.33285 + 8.40334i 0.408880 + 0.368157i 0.847752 0.530392i \(-0.177955\pi\)
−0.438873 + 0.898549i \(0.644622\pi\)
\(522\) 7.33311 0.384312i 0.320961 0.0168209i
\(523\) −9.41934 3.61574i −0.411879 0.158105i 0.143601 0.989636i \(-0.454132\pi\)
−0.555479 + 0.831530i \(0.687465\pi\)
\(524\) −14.6497 −0.639977
\(525\) 0 0
\(526\) −9.02429 −0.393478
\(527\) 67.1858 + 25.7902i 2.92666 + 1.12344i
\(528\) 0.0268465 0.00140697i 0.00116834 6.12303e-5i
\(529\) −3.38149 3.04471i −0.147021 0.132379i
\(530\) 0 0
\(531\) 6.92388 + 2.24971i 0.300471 + 0.0976289i
\(532\) 3.87973 + 2.04046i 0.168208 + 0.0884653i
\(533\) 4.22669 + 8.29534i 0.183078 + 0.359311i
\(534\) −1.06444 + 0.111877i −0.0460628 + 0.00484139i
\(535\) 0 0
\(536\) 0.678406 6.45460i 0.0293027 0.278796i
\(537\) 1.05512 + 0.854415i 0.0455316 + 0.0368707i
\(538\) 4.56744 + 0.723411i 0.196916 + 0.0311884i
\(539\) 2.84758 1.54724i 0.122654 0.0666445i
\(540\) 0 0
\(541\) −0.767143 7.29888i −0.0329821 0.313803i −0.998558 0.0536823i \(-0.982904\pi\)
0.965576 0.260121i \(-0.0837625\pi\)
\(542\) −12.2714 + 18.8963i −0.527102 + 0.811665i
\(543\) 2.72654 + 0.730575i 0.117007 + 0.0313520i
\(544\) −25.8835 28.7466i −1.10975 1.23250i
\(545\) 0 0
\(546\) 0.710306 0.502159i 0.0303983 0.0214904i
\(547\) −14.3950 + 28.2518i −0.615487 + 1.20796i 0.347314 + 0.937749i \(0.387094\pi\)
−0.962801 + 0.270212i \(0.912906\pi\)
\(548\) 0.653343 1.70202i 0.0279094 0.0727066i
\(549\) −1.12589 1.95009i −0.0480517 0.0832279i
\(550\) 0 0
\(551\) 3.24758 + 1.87499i 0.138352 + 0.0798773i
\(552\) −1.98706 + 0.314720i −0.0845751 + 0.0133954i
\(553\) −20.3002 16.8782i −0.863250 0.717733i
\(554\) −10.1780 + 3.30704i −0.432423 + 0.140503i
\(555\) 0 0
\(556\) −0.923220 4.34341i −0.0391532 0.184201i
\(557\) 4.81653 17.9755i 0.204083 0.761648i −0.785644 0.618679i \(-0.787668\pi\)
0.989727 0.142970i \(-0.0456651\pi\)
\(558\) −1.38073 + 26.3460i −0.0584511 + 1.11531i
\(559\) −19.7011 + 14.3137i −0.833269 + 0.605405i
\(560\) 0 0
\(561\) 0.350831 + 0.254894i 0.0148121 + 0.0107616i
\(562\) 11.8259 14.6038i 0.498846 0.616023i
\(563\) −6.39510 16.6598i −0.269521 0.702127i −0.999820 0.0189983i \(-0.993952\pi\)
0.730298 0.683128i \(-0.239381\pi\)
\(564\) 0.306679 + 0.0322332i 0.0129135 + 0.00135726i
\(565\) 0 0
\(566\) 0.328119 + 0.451617i 0.0137919 + 0.0189829i
\(567\) 6.33286 22.4679i 0.265955 0.943562i
\(568\) −15.4568 + 15.4568i −0.648551 + 0.648551i
\(569\) −8.68699 + 7.82180i −0.364177 + 0.327907i −0.830822 0.556538i \(-0.812129\pi\)
0.466645 + 0.884445i \(0.345463\pi\)
\(570\) 0 0
\(571\) −22.2630 + 24.7255i −0.931676 + 1.03473i 0.0676381 + 0.997710i \(0.478454\pi\)
−0.999314 + 0.0370215i \(0.988213\pi\)
\(572\) −1.46999 + 0.954620i −0.0614632 + 0.0399147i
\(573\) −0.545303 3.44290i −0.0227803 0.143829i
\(574\) −6.90846 1.56211i −0.288354 0.0652011i
\(575\) 0 0
\(576\) 5.85786 10.1461i 0.244078 0.422755i
\(577\) −26.5071 32.7336i −1.10351 1.36272i −0.925527 0.378682i \(-0.876378\pi\)
−0.177979 0.984034i \(-0.556956\pi\)
\(578\) −1.18094 22.5336i −0.0491205 0.937274i
\(579\) −1.94352 0.413108i −0.0807699 0.0171682i
\(580\) 0 0
\(581\) −0.344210 + 26.6071i −0.0142802 + 1.10385i
\(582\) 0.704793 + 0.704793i 0.0292146 + 0.0292146i
\(583\) 3.31471 + 0.173716i 0.137281 + 0.00719460i
\(584\) 15.8452 + 7.05475i 0.655681 + 0.291928i
\(585\) 0 0
\(586\) −8.47827 19.0425i −0.350234 0.786638i
\(587\) 1.86295 11.7622i 0.0768923 0.485479i −0.918949 0.394376i \(-0.870961\pi\)
0.995841 0.0911028i \(-0.0290392\pi\)
\(588\) 0.101912 1.30003i 0.00420277 0.0536123i
\(589\) −7.91907 + 10.8997i −0.326300 + 0.449113i
\(590\) 0 0
\(591\) −1.18908 + 2.67071i −0.0489121 + 0.109858i
\(592\) −1.96167 1.27392i −0.0806240 0.0523578i
\(593\) 8.14227 2.18171i 0.334363 0.0895922i −0.0877316 0.996144i \(-0.527962\pi\)
0.422094 + 0.906552i \(0.361295\pi\)
\(594\) −0.0985760 + 0.303386i −0.00404462 + 0.0124481i
\(595\) 0 0
\(596\) −7.66507 23.5906i −0.313973 0.966311i
\(597\) 1.20778 + 1.85982i 0.0494312 + 0.0761173i
\(598\) 9.55138 7.73455i 0.390585 0.316289i
\(599\) 31.0038 17.9000i 1.26678 0.731376i 0.292403 0.956295i \(-0.405545\pi\)
0.974377 + 0.224919i \(0.0722118\pi\)
\(600\) 0 0
\(601\) 12.5021i 0.509971i 0.966945 + 0.254985i \(0.0820706\pi\)
−0.966945 + 0.254985i \(0.917929\pi\)
\(602\) 1.20883 18.4868i 0.0492684 0.753467i
\(603\) −6.31358 3.21693i −0.257109 0.131004i
\(604\) −3.06343 + 14.4123i −0.124649 + 0.586429i
\(605\) 0 0
\(606\) 1.99978 0.425067i 0.0812356 0.0172672i
\(607\) −8.04810 30.0359i −0.326662 1.21912i −0.912630 0.408786i \(-0.865952\pi\)
0.585968 0.810334i \(-0.300715\pi\)
\(608\) 6.45243 3.28768i 0.261681 0.133333i
\(609\) 0.130947 1.10782i 0.00530622 0.0448912i
\(610\) 0 0
\(611\) −4.31530 + 1.92130i −0.174579 + 0.0777274i
\(612\) −24.6241 + 9.45229i −0.995369 + 0.382086i
\(613\) 4.34940 1.66958i 0.175671 0.0674336i −0.268943 0.963156i \(-0.586674\pi\)
0.444614 + 0.895722i \(0.353341\pi\)
\(614\) 11.2215 4.99615i 0.452864 0.201628i
\(615\) 0 0
\(616\) 0.392490 3.32051i 0.0158139 0.133787i
\(617\) −22.0504 + 11.2353i −0.887717 + 0.452314i −0.837508 0.546424i \(-0.815989\pi\)
−0.0502084 + 0.998739i \(0.515989\pi\)
\(618\) −0.331361 1.23666i −0.0133293 0.0497456i
\(619\) −4.53636 + 0.964233i −0.182332 + 0.0387558i −0.298173 0.954512i \(-0.596377\pi\)
0.115841 + 0.993268i \(0.463044\pi\)
\(620\) 0 0
\(621\) −0.916379 + 4.31123i −0.0367730 + 0.173004i
\(622\) 0.301521 + 0.153633i 0.0120899 + 0.00616011i
\(623\) 1.60368 24.5252i 0.0642500 0.982583i
\(624\) 0.165703i 0.00663341i
\(625\) 0 0
\(626\) 1.52626 0.881189i 0.0610018 0.0352194i
\(627\) −0.0630918 + 0.0510907i −0.00251964 + 0.00204037i
\(628\) 0.563971 + 0.868439i 0.0225049 + 0.0346545i
\(629\) −11.6593 35.8837i −0.464887 1.43078i
\(630\) 0 0
\(631\) −8.92894 + 27.4805i −0.355456 + 1.09398i 0.600289 + 0.799783i \(0.295052\pi\)
−0.955745 + 0.294197i \(0.904948\pi\)
\(632\) −26.3099 + 7.04972i −1.04655 + 0.280423i
\(633\) −0.548190 0.355999i −0.0217886 0.0141497i
\(634\) 2.03494 4.57054i 0.0808176 0.181519i
\(635\) 0 0
\(636\) 0.785043 1.08052i 0.0311290 0.0428454i
\(637\) 8.60517 + 18.0268i 0.340949 + 0.714249i
\(638\) 0.178447 1.12667i 0.00706479 0.0446053i
\(639\) 9.70704 + 21.8024i 0.384005 + 0.862489i
\(640\) 0 0
\(641\) −12.1074 5.39056i −0.478213 0.212914i 0.153451 0.988156i \(-0.450961\pi\)
−0.631664 + 0.775242i \(0.717628\pi\)
\(642\) 0.276932 + 0.0145134i 0.0109296 + 0.000572798i
\(643\) 11.0712 + 11.0712i 0.436605 + 0.436605i 0.890868 0.454263i \(-0.150097\pi\)
−0.454263 + 0.890868i \(0.650097\pi\)
\(644\) 0.238328 18.4225i 0.00939144 0.725949i
\(645\) 0 0
\(646\) 6.68639 + 1.42124i 0.263073 + 0.0559178i
\(647\) −1.03247 19.7007i −0.0405905 0.774514i −0.940781 0.339016i \(-0.889906\pi\)
0.900190 0.435497i \(-0.143427\pi\)
\(648\) −15.1566 18.7169i −0.595409 0.735269i
\(649\) 0.565467 0.979418i 0.0221965 0.0384455i
\(650\) 0 0
\(651\) 3.90914 + 0.883916i 0.153211 + 0.0346434i
\(652\) −4.49284 28.3666i −0.175953 1.11092i
\(653\) −2.02366 + 1.31418i −0.0791920 + 0.0514279i −0.583628 0.812021i \(-0.698367\pi\)
0.504436 + 0.863449i \(0.331701\pi\)
\(654\) −1.42723 + 1.58510i −0.0558092 + 0.0619824i
\(655\) 0 0
\(656\) 1.00265 0.902791i 0.0391470 0.0352481i
\(657\) 13.3904 13.3904i 0.522409 0.522409i
\(658\) 0.974932 3.45889i 0.0380068 0.134841i
\(659\) 8.37171 + 11.5227i 0.326116 + 0.448859i 0.940322 0.340286i \(-0.110524\pi\)
−0.614207 + 0.789145i \(0.710524\pi\)
\(660\) 0 0
\(661\) 7.11319 + 0.747626i 0.276671 + 0.0290793i 0.241848 0.970314i \(-0.422247\pi\)
0.0348231 + 0.999393i \(0.488913\pi\)
\(662\) −4.99603 13.0151i −0.194176 0.505847i
\(663\) −1.68212 + 2.07725i −0.0653282 + 0.0806736i
\(664\) 22.2106 + 16.1369i 0.861938 + 0.626235i
\(665\) 0 0
\(666\) 11.1901 8.13006i 0.433606 0.315033i
\(667\) 0.824869 15.7394i 0.0319391 0.609434i
\(668\) −3.07750 + 11.4854i −0.119072 + 0.444383i
\(669\) 0.0645961 + 0.303901i 0.00249743 + 0.0117495i
\(670\) 0 0
\(671\) −0.332679 + 0.108094i −0.0128429 + 0.00417292i
\(672\) −1.65649 1.37726i −0.0639005 0.0531289i
\(673\) −11.9953 + 1.89988i −0.462386 + 0.0732348i −0.383282 0.923631i \(-0.625206\pi\)
−0.0791047 + 0.996866i \(0.525206\pi\)
\(674\) 13.6762 + 7.89599i 0.526789 + 0.304142i
\(675\) 0 0
\(676\) 3.22178 + 5.58028i 0.123914 + 0.214626i
\(677\) −18.2371 + 47.5094i −0.700911 + 1.82593i −0.155357 + 0.987858i \(0.549653\pi\)
−0.545553 + 0.838076i \(0.683681\pi\)
\(678\) 0.515486 1.01170i 0.0197971 0.0388541i
\(679\) −18.6894 + 13.2127i −0.717232 + 0.507055i
\(680\) 0 0
\(681\) 0.627255 + 0.696637i 0.0240365 + 0.0266952i
\(682\) 3.95865 + 1.06072i 0.151585 + 0.0406170i
\(683\) 5.01790 7.72689i 0.192005 0.295661i −0.729536 0.683942i \(-0.760264\pi\)
0.921541 + 0.388281i \(0.126931\pi\)
\(684\) −0.516146 4.91080i −0.0197353 0.187769i
\(685\) 0 0
\(686\) −14.7309 3.73393i −0.562428 0.142562i
\(687\) 1.57312 + 0.249157i 0.0600181 + 0.00950593i
\(688\) 2.74258 + 2.22090i 0.104560 + 0.0846709i
\(689\) −2.13856 + 20.3470i −0.0814726 + 0.775160i
\(690\) 0 0
\(691\) 0.391533 0.0411518i 0.0148946 0.00156549i −0.0970782 0.995277i \(-0.530950\pi\)
0.111973 + 0.993711i \(0.464283\pi\)
\(692\) 8.75330 + 17.1793i 0.332751 + 0.653060i
\(693\) −3.23095 1.69925i −0.122734 0.0645492i
\(694\) 17.3031 + 5.62211i 0.656816 + 0.213412i
\(695\) 0 0
\(696\) −0.855313 0.770127i −0.0324206 0.0291916i
\(697\) 21.7339 1.13903i 0.823230 0.0431437i
\(698\) 13.0863 + 5.02336i 0.495324 + 0.190137i
\(699\) −0.363698 −0.0137563
\(700\) 0 0
\(701\) 46.4699 1.75515 0.877573 0.479443i \(-0.159161\pi\)
0.877573 + 0.479443i \(0.159161\pi\)
\(702\) −1.83563 0.704634i −0.0692815 0.0265947i
\(703\) 7.05383 0.369676i 0.266040 0.0139426i
\(704\) −1.35250 1.21779i −0.0509741 0.0458973i
\(705\) 0 0
\(706\) 13.9037 + 4.51760i 0.523274 + 0.170022i
\(707\) 1.85037 + 46.9109i 0.0695902 + 1.76427i
\(708\) −0.206594 0.405464i −0.00776428 0.0152383i
\(709\) 34.4747 3.62344i 1.29473 0.136081i 0.568011 0.823021i \(-0.307713\pi\)
0.726714 + 0.686940i \(0.241046\pi\)
\(710\) 0 0
\(711\) −3.10849 + 29.5753i −0.116578 + 1.10916i
\(712\) −19.7066 15.9581i −0.738535 0.598054i
\(713\) 55.9283 + 8.85817i 2.09453 + 0.331741i
\(714\) −0.397021 1.99435i −0.0148581 0.0746368i
\(715\) 0 0
\(716\) 1.34089 + 12.7577i 0.0501114 + 0.476779i
\(717\) 1.24770 1.92129i 0.0465962 0.0717518i
\(718\) −11.2218 3.00687i −0.418793 0.112215i
\(719\) 24.4779 + 27.1854i 0.912870 + 1.01385i 0.999844 + 0.0176346i \(0.00561355\pi\)
−0.0869742 + 0.996211i \(0.527720\pi\)
\(720\) 0 0
\(721\) 29.2756 2.69460i 1.09028 0.100352i
\(722\) 6.49691 12.7509i 0.241790 0.474539i
\(723\) 0.398721 1.03870i 0.0148286 0.0386298i
\(724\) 13.3352 + 23.0973i 0.495599 + 0.858403i
\(725\) 0 0
\(726\) −1.07620 0.621344i −0.0399415 0.0230602i
\(727\) −36.2364 + 5.73928i −1.34393 + 0.212858i −0.786616 0.617442i \(-0.788169\pi\)
−0.557316 + 0.830300i \(0.688169\pi\)
\(728\) 20.3122 + 3.48705i 0.752819 + 0.129239i
\(729\) −24.6715 + 8.01626i −0.913759 + 0.296898i
\(730\) 0 0
\(731\) 11.8357 + 55.6824i 0.437757 + 2.05949i
\(732\) −0.0364291 + 0.135955i −0.00134646 + 0.00502505i
\(733\) 0.886929 16.9236i 0.0327595 0.625088i −0.932081 0.362251i \(-0.882008\pi\)
0.964840 0.262837i \(-0.0846583\pi\)
\(734\) −13.5820 + 9.86791i −0.501321 + 0.364231i
\(735\) 0 0
\(736\) −24.6238 17.8903i −0.907647 0.659444i
\(737\) −0.692725 + 0.855444i −0.0255168 + 0.0315107i
\(738\) 2.85921 + 7.44851i 0.105249 + 0.274183i
\(739\) 9.14979 + 0.961682i 0.336580 + 0.0353760i 0.271311 0.962492i \(-0.412543\pi\)
0.0652692 + 0.997868i \(0.479209\pi\)
\(740\) 0 0
\(741\) −0.294127 0.404831i −0.0108050 0.0148718i
\(742\) −10.8626 11.1474i −0.398780 0.409234i
\(743\) −28.0230 + 28.0230i −1.02806 + 1.02806i −0.0284701 + 0.999595i \(0.509064\pi\)
−0.999595 + 0.0284701i \(0.990936\pi\)
\(744\) 3.07292 2.76687i 0.112659 0.101438i
\(745\) 0 0
\(746\) −3.99979 + 4.44221i −0.146443 + 0.162641i
\(747\) 25.1382 16.3249i 0.919758 0.597298i
\(748\) 0.640965 + 4.04689i 0.0234360 + 0.147969i
\(749\) −1.40444 + 6.21119i −0.0513172 + 0.226952i
\(750\) 0 0
\(751\) 21.1806 36.6859i 0.772892 1.33869i −0.163080 0.986613i \(-0.552143\pi\)
0.935972 0.352075i \(-0.114524\pi\)
\(752\) 0.430800 + 0.531994i 0.0157097 + 0.0193998i
\(753\) −0.0964502 1.84038i −0.00351484 0.0670672i
\(754\) 6.87745 + 1.46185i 0.250462 + 0.0532373i
\(755\) 0 0
\(756\) −2.57147 + 1.44061i −0.0935236 + 0.0523946i
\(757\) 21.6112 + 21.6112i 0.785474 + 0.785474i 0.980749 0.195275i \(-0.0625599\pi\)
−0.195275 + 0.980749i \(0.562560\pi\)
\(758\) −3.44403 0.180494i −0.125093 0.00655583i
\(759\) 0.311714 + 0.138784i 0.0113145 + 0.00503754i
\(760\) 0 0
\(761\) −16.0906 36.1400i −0.583282 1.31007i −0.928424 0.371523i \(-0.878836\pi\)
0.345142 0.938551i \(-0.387831\pi\)
\(762\) −0.118515 + 0.748276i −0.00429335 + 0.0271072i
\(763\) −30.3290 38.4600i −1.09798 1.39235i
\(764\) 19.3591 26.6455i 0.700388 0.964001i
\(765\) 0 0
\(766\) 7.45054 16.7342i 0.269199 0.604630i
\(767\) 5.84621 + 3.79657i 0.211094 + 0.137086i
\(768\) −1.99806 + 0.535378i −0.0720987 + 0.0193188i
\(769\) 0.678119 2.08704i 0.0244536 0.0752604i −0.938085 0.346405i \(-0.887402\pi\)
0.962539 + 0.271145i \(0.0874022\pi\)
\(770\) 0 0
\(771\) −0.0857432 0.263890i −0.00308796 0.00950378i
\(772\) −10.2248 15.7448i −0.367998 0.566668i
\(773\) 36.3288 29.4185i 1.30666 1.05811i 0.312526 0.949909i \(-0.398825\pi\)
0.994129 0.108199i \(-0.0345085\pi\)
\(774\) −18.0729 + 10.4344i −0.649618 + 0.375057i
\(775\) 0 0
\(776\) 23.6145i 0.847711i
\(777\) −0.929642 1.88440i −0.0333507 0.0676024i
\(778\) 4.92045 + 2.50710i 0.176407 + 0.0898837i
\(779\) −0.847115 + 3.98536i −0.0303510 + 0.142790i
\(780\) 0 0
\(781\) 3.62637 0.770808i 0.129762 0.0275817i
\(782\) −7.43600 27.7515i −0.265911 0.992393i
\(783\) −2.24666 + 1.14473i −0.0802890 + 0.0409093i
\(784\) 2.20064 1.88070i 0.0785944 0.0671678i
\(785\) 0 0
\(786\) −1.16226 + 0.517470i −0.0414563 + 0.0184576i
\(787\) 35.8960 13.7792i 1.27955 0.491174i 0.378789 0.925483i \(-0.376341\pi\)
0.900764 + 0.434309i \(0.143007\pi\)
\(788\) −25.7875 + 9.89890i −0.918643 + 0.352634i
\(789\) 1.41075 0.628108i 0.0502242 0.0223613i
\(790\) 0 0
\(791\) 20.8941 + 15.5974i 0.742909 + 0.554579i
\(792\) −3.35589 + 1.70991i −0.119246 + 0.0607590i
\(793\) −0.558034 2.08261i −0.0198164 0.0739556i
\(794\) −13.1305 + 2.79097i −0.465983 + 0.0990478i
\(795\) 0 0
\(796\) −4.35632 + 20.4949i −0.154406 + 0.726421i
\(797\) −8.48456 4.32310i −0.300539 0.153132i 0.297218 0.954810i \(-0.403941\pi\)
−0.597757 + 0.801678i \(0.703941\pi\)
\(798\) 0.379879 + 0.0248398i 0.0134476 + 0.000879321i
\(799\) 11.0423i 0.390650i
\(800\) 0 0
\(801\) −23.9761 + 13.8426i −0.847155 + 0.489105i
\(802\) −4.07947 + 3.30349i −0.144051 + 0.116650i
\(803\) −1.60218 2.46714i −0.0565397 0.0870635i
\(804\) 0.136869 + 0.421239i 0.00482700 + 0.0148560i
\(805\) 0 0
\(806\) −7.80606 + 24.0246i −0.274957 + 0.846229i
\(807\) −0.764371 + 0.204813i −0.0269071 + 0.00720975i
\(808\) 40.6230 + 26.3809i 1.42911 + 0.928076i
\(809\) −4.19545 + 9.42313i −0.147504 + 0.331300i −0.972154 0.234344i \(-0.924706\pi\)
0.824650 + 0.565644i \(0.191372\pi\)
\(810\) 0 0
\(811\) −2.44836 + 3.36987i −0.0859734 + 0.118332i −0.849837 0.527045i \(-0.823300\pi\)
0.763864 + 0.645377i \(0.223300\pi\)
\(812\) 8.27631 6.52659i 0.290442 0.229038i
\(813\) 0.603151 3.80814i 0.0211534 0.133557i
\(814\) −0.873941 1.96290i −0.0306316 0.0687997i
\(815\) 0 0
\(816\) 0.353866 + 0.157551i 0.0123878 + 0.00551540i
\(817\) −10.6426 0.557755i −0.372338 0.0195134i
\(818\) −2.73953 2.73953i −0.0957856 0.0957856i
\(819\) 11.5017 19.3394i 0.401901 0.675772i
\(820\) 0 0
\(821\) 31.7211 + 6.74254i 1.10708 + 0.235316i 0.724955 0.688796i \(-0.241861\pi\)
0.382121 + 0.924112i \(0.375194\pi\)
\(822\) −0.00828618 0.158110i −0.000289014 0.00551471i
\(823\) 27.2112 + 33.6031i 0.948523 + 1.17133i 0.985097 + 0.171998i \(0.0550223\pi\)
−0.0365738 + 0.999331i \(0.511644\pi\)
\(824\) 15.1662 26.2686i 0.528340 0.915111i
\(825\) 0 0
\(826\) −5.06443 + 1.57340i −0.176214 + 0.0547456i
\(827\) −0.940691 5.93929i −0.0327110 0.206529i 0.965920 0.258842i \(-0.0833408\pi\)
−0.998631 + 0.0523125i \(0.983341\pi\)
\(828\) −17.4054 + 11.3032i −0.604881 + 0.392814i
\(829\) 6.44654 7.15960i 0.223897 0.248663i −0.620722 0.784031i \(-0.713160\pi\)
0.844619 + 0.535368i \(0.179827\pi\)
\(830\) 0 0
\(831\) 1.36094 1.22540i 0.0472105 0.0425085i
\(832\) 7.93220 7.93220i 0.274999 0.274999i
\(833\) 46.6791 1.23671i 1.61734 0.0428496i
\(834\) −0.226666 0.311979i −0.00784881 0.0108030i
\(835\) 0 0
\(836\) −0.762862 0.0801801i −0.0263841 0.00277309i
\(837\) −3.24647 8.45734i −0.112214 0.292329i
\(838\) −8.21068 + 10.1393i −0.283633 + 0.350258i
\(839\) −32.1825 23.3819i −1.11106 0.807234i −0.128232 0.991744i \(-0.540930\pi\)
−0.982831 + 0.184510i \(0.940930\pi\)
\(840\) 0 0
\(841\) −16.1669 + 11.7459i −0.557479 + 0.405032i
\(842\) 1.23332 23.5332i 0.0425031 0.811007i
\(843\) −0.832276 + 3.10610i −0.0286651 + 0.106980i
\(844\) −1.28404 6.04095i −0.0441986 0.207938i
\(845\) 0 0
\(846\) −3.84992 + 1.25092i −0.132363 + 0.0430073i
\(847\) 18.2438 21.9426i 0.626863 0.753957i
\(848\) 2.92839 0.463812i 0.100561 0.0159274i
\(849\) −0.0827277 0.0477629i −0.00283921 0.00163922i
\(850\) 0 0
\(851\) −14.8438 25.7103i −0.508840 0.881337i
\(852\) 0.534602 1.39269i 0.0183152 0.0477126i
\(853\) 11.8947 23.3447i 0.407267 0.799307i −0.592714 0.805413i \(-0.701944\pi\)
0.999981 + 0.00610592i \(0.00194359\pi\)
\(854\) 1.48972 + 0.686493i 0.0509772 + 0.0234913i
\(855\) 0 0
\(856\) 4.39624 + 4.88252i 0.150261 + 0.166881i
\(857\) 8.06662 + 2.16145i 0.275551 + 0.0738336i 0.393948 0.919133i \(-0.371109\pi\)
−0.118397 + 0.992966i \(0.537776\pi\)
\(858\) −0.0829035 + 0.127660i −0.00283028 + 0.00435825i
\(859\) −0.536493 5.10439i −0.0183049 0.174160i 0.981550 0.191207i \(-0.0612401\pi\)
−0.999855 + 0.0170472i \(0.994573\pi\)
\(860\) 0 0
\(861\) 1.18872 0.236640i 0.0405113 0.00806468i
\(862\) −20.9478 3.31781i −0.713486 0.113005i
\(863\) −1.31908 1.06817i −0.0449021 0.0363610i 0.606607 0.795002i \(-0.292530\pi\)
−0.651509 + 0.758641i \(0.725864\pi\)
\(864\) −0.508983 + 4.84265i −0.0173160 + 0.164750i
\(865\) 0 0
\(866\) −21.5003 + 2.25977i −0.730608 + 0.0767900i
\(867\) 1.75300 + 3.44045i 0.0595349 + 0.116844i
\(868\) 20.2118 + 32.0228i 0.686033 + 1.08693i
\(869\) 4.39355 + 1.42755i 0.149041 + 0.0484263i
\(870\) 0 0
\(871\) −5.04206 4.53989i −0.170844 0.153828i
\(872\) −50.4650 + 2.64476i −1.70896 + 0.0895628i
\(873\) 24.0697 + 9.23949i 0.814636 + 0.312709i
\(874\) 5.37865 0.181936
\(875\) 0 0
\(876\) −1.18369 −0.0399930
\(877\) 10.4385 + 4.00698i 0.352484 + 0.135306i 0.528166 0.849141i \(-0.322880\pi\)
−0.175682 + 0.984447i \(0.556213\pi\)
\(878\) −29.8069 + 1.56211i −1.00593 + 0.0527188i
\(879\) 2.65079 + 2.38678i 0.0894089 + 0.0805042i
\(880\) 0 0
\(881\) 19.9227 + 6.47328i 0.671213 + 0.218090i 0.624744 0.780829i \(-0.285203\pi\)
0.0464689 + 0.998920i \(0.485203\pi\)
\(882\) 5.71916 + 16.1346i 0.192574 + 0.543281i
\(883\) 20.5259 + 40.2843i 0.690751 + 1.35567i 0.923674 + 0.383180i \(0.125171\pi\)
−0.232923 + 0.972495i \(0.574829\pi\)
\(884\) −25.1166 + 2.63987i −0.844764 + 0.0887883i
\(885\) 0 0
\(886\) −1.52800 + 14.5380i −0.0513342 + 0.488413i
\(887\) 27.2474 + 22.0645i 0.914879 + 0.740855i 0.966191 0.257828i \(-0.0830068\pi\)
−0.0513114 + 0.998683i \(0.516340\pi\)
\(888\) −2.14123 0.339137i −0.0718549 0.0113807i
\(889\) −16.4746 5.58956i −0.552542 0.187468i
\(890\) 0 0
\(891\) 0.426972 + 4.06237i 0.0143041 + 0.136094i
\(892\) −1.59881 + 2.46196i −0.0535322 + 0.0824324i
\(893\) −1.99680 0.535041i −0.0668204 0.0179045i
\(894\) −1.44141 1.60084i −0.0482079 0.0535402i
\(895\) 0 0
\(896\) −2.03015 22.0567i −0.0678226 0.736863i
\(897\) −0.954813 + 1.87393i −0.0318803 + 0.0625686i
\(898\) 2.55283 6.65034i 0.0851889 0.221925i
\(899\) 16.1972 + 28.0544i 0.540208 + 0.935668i
\(900\) 0 0
\(901\) 41.4188 + 23.9131i 1.37986 + 0.796662i
\(902\) 1.22414 0.193885i 0.0407594 0.00645566i
\(903\) 1.09775 + 2.97416i 0.0365307 + 0.0989738i
\(904\) 25.5846 8.31294i 0.850932 0.276484i
\(905\) 0 0
\(906\) 0.266042 + 1.25163i 0.00883866 + 0.0415826i
\(907\) 4.55651 17.0051i 0.151296 0.564646i −0.848098 0.529840i \(-0.822252\pi\)
0.999394 0.0348060i \(-0.0110813\pi\)
\(908\) −0.463548 + 8.84503i −0.0153834 + 0.293532i
\(909\) 42.7837 31.0842i 1.41904 1.03100i
\(910\) 0 0
\(911\) −17.7761 12.9151i −0.588949 0.427897i 0.252990 0.967469i \(-0.418586\pi\)
−0.841939 + 0.539572i \(0.818586\pi\)
\(912\) −0.0456363 + 0.0563562i −0.00151117 + 0.00186614i
\(913\) −1.66865 4.34698i −0.0552243 0.143864i
\(914\) −21.8135 2.29269i −0.721527 0.0758355i
\(915\) 0 0
\(916\) 8.84547 + 12.1747i 0.292263 + 0.402265i
\(917\) −7.19572 28.3150i −0.237624 0.935042i
\(918\) −3.25012 + 3.25012i −0.107270 + 0.107270i
\(919\) 12.0720 10.8697i 0.398219 0.358558i −0.445557 0.895254i \(-0.646994\pi\)
0.843776 + 0.536695i \(0.180328\pi\)
\(920\) 0 0
\(921\) −1.40650 + 1.56208i −0.0463459 + 0.0514723i
\(922\) −0.381040 + 0.247450i −0.0125489 + 0.00814935i
\(923\) 3.57475 + 22.5701i 0.117664 + 0.742903i
\(924\) 0.0676997 + 0.217910i 0.00222716 + 0.00716872i
\(925\) 0 0
\(926\) 14.2836 24.7399i 0.469388 0.813004i
\(927\) −20.8410 25.7365i −0.684509 0.845298i
\(928\) −0.911293 17.3885i −0.0299147 0.570806i
\(929\) −18.4656 3.92499i −0.605837 0.128775i −0.105228 0.994448i \(-0.533557\pi\)
−0.500609 + 0.865673i \(0.666891\pi\)
\(930\) 0 0
\(931\) −2.03814 + 8.50097i −0.0667972 + 0.278608i
\(932\) −2.42989 2.42989i −0.0795939 0.0795939i
\(933\) −0.0578295 0.00303072i −0.00189325 9.92212e-5i
\(934\) 23.7241 + 10.5626i 0.776276 + 0.345620i
\(935\) 0 0
\(936\) −9.44247 21.2081i −0.308637 0.693209i
\(937\) −5.52877 + 34.9073i −0.180617 + 1.14037i 0.716175 + 0.697920i \(0.245891\pi\)
−0.896792 + 0.442451i \(0.854109\pi\)
\(938\) 5.10814 0.741448i 0.166787 0.0242091i
\(939\) −0.177266 + 0.243986i −0.00578486 + 0.00796218i
\(940\) 0 0
\(941\) 17.0291 38.2479i 0.555131 1.24685i −0.390199 0.920731i \(-0.627594\pi\)
0.945330 0.326115i \(-0.105740\pi\)
\(942\) 0.0754191 + 0.0489777i 0.00245729 + 0.00159578i
\(943\) 16.5410 4.43216i 0.538650 0.144331i
\(944\) 0.312168 0.960754i 0.0101602 0.0312699i
\(945\) 0 0
\(946\) 1.00178 + 3.08317i 0.0325708 + 0.100243i
\(947\) 0.388606 + 0.598401i 0.0126280 + 0.0194454i 0.844928 0.534880i \(-0.179643\pi\)
−0.832300 + 0.554325i \(0.812976\pi\)
\(948\) 1.44459 1.16981i 0.0469182 0.0379936i
\(949\) 15.7029 9.06605i 0.509736 0.294296i
\(950\) 0 0
\(951\) 0.856142i 0.0277623i
\(952\) 26.7598 40.0622i 0.867289 1.29842i
\(953\) −19.8369 10.1074i −0.642581 0.327411i 0.102157 0.994768i \(-0.467426\pi\)
−0.744738 + 0.667357i \(0.767426\pi\)
\(954\) −3.64527 + 17.1496i −0.118020 + 0.555240i
\(955\) 0 0
\(956\) 21.1723 4.50030i 0.684760 0.145550i
\(957\) 0.0505221 + 0.188551i 0.00163315 + 0.00609500i
\(958\) 15.7594 8.02981i 0.509163 0.259431i
\(959\) 3.61056 + 0.426775i 0.116591 + 0.0137813i
\(960\) 0 0
\(961\) −78.0031 + 34.7292i −2.51623 + 1.12030i
\(962\) 12.3642 4.74617i 0.398638 0.153023i
\(963\) 6.69673 2.57063i 0.215799 0.0828375i
\(964\) 9.60354 4.27577i 0.309309 0.137713i
\(965\) 0 0
\(966\) −0.631827 1.46999i −0.0203287 0.0472963i
\(967\) −24.2914 + 12.3771i −0.781158 + 0.398020i −0.798626 0.601828i \(-0.794439\pi\)
0.0174683 + 0.999847i \(0.494439\pi\)
\(968\) −7.62010 28.4386i −0.244919 0.914051i
\(969\) −1.14420 + 0.243206i −0.0367568 + 0.00781291i
\(970\) 0 0
\(971\) −5.21228 + 24.5219i −0.167270 + 0.786944i 0.811883 + 0.583820i \(0.198443\pi\)
−0.979153 + 0.203124i \(0.934891\pi\)
\(972\) 4.44236 + 2.26350i 0.142489 + 0.0726017i
\(973\) 7.94145 3.91781i 0.254591 0.125599i
\(974\) 14.5847i 0.467322i
\(975\) 0 0
\(976\) −0.270594 + 0.156227i −0.00866150 + 0.00500072i
\(977\) −13.0377 + 10.5578i −0.417114 + 0.337772i −0.814793 0.579752i \(-0.803149\pi\)
0.397679 + 0.917525i \(0.369816\pi\)
\(978\) −1.35844 2.09181i −0.0434380 0.0668886i
\(979\) 1.32900 + 4.09024i 0.0424750 + 0.130725i
\(980\) 0 0
\(981\) −17.0494 + 52.4725i −0.544344 + 1.67532i
\(982\) 16.0290 4.29496i 0.511506 0.137058i
\(983\) 13.4200 + 8.71505i 0.428032 + 0.277967i 0.740623 0.671921i \(-0.234530\pi\)
−0.312591 + 0.949888i \(0.601197\pi\)
\(984\) 0.508627 1.14239i 0.0162144 0.0364182i
\(985\) 0 0
\(986\) 9.66099 13.2972i 0.307669 0.423469i
\(987\) 0.0883355 + 0.608580i 0.00281175 + 0.0193713i
\(988\) 0.739622 4.66979i 0.0235305 0.148566i
\(989\) 18.2185 + 40.9194i 0.579314 + 1.30116i
\(990\) 0 0
\(991\) 24.1634 + 10.7582i 0.767575 + 0.341746i 0.752890 0.658146i \(-0.228659\pi\)
0.0146843 + 0.999892i \(0.495326\pi\)
\(992\) 62.4724 + 3.27404i 1.98350 + 0.103951i
\(993\) 1.68690 + 1.68690i 0.0535321 + 0.0535321i
\(994\) −14.9419 8.88641i −0.473930 0.281860i
\(995\) 0 0
\(996\) −1.83263 0.389537i −0.0580691 0.0123430i
\(997\) −0.484111 9.23739i −0.0153320 0.292551i −0.995524 0.0945041i \(-0.969873\pi\)
0.980193 0.198047i \(-0.0634599\pi\)
\(998\) −12.0337 14.8604i −0.380920 0.470397i
\(999\) −2.37475 + 4.11318i −0.0751337 + 0.130135i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 875.2.bb.a.82.11 288
5.2 odd 4 175.2.x.a.138.8 yes 288
5.3 odd 4 875.2.bb.c.418.11 288
5.4 even 2 875.2.bb.b.82.8 288
7.3 odd 6 inner 875.2.bb.a.332.8 288
25.2 odd 20 875.2.bb.b.593.11 288
25.11 even 5 875.2.bb.c.782.11 288
25.14 even 10 175.2.x.a.152.8 yes 288
25.23 odd 20 inner 875.2.bb.a.593.8 288
35.3 even 12 875.2.bb.c.668.11 288
35.17 even 12 175.2.x.a.38.8 288
35.24 odd 6 875.2.bb.b.332.11 288
175.52 even 60 875.2.bb.b.843.8 288
175.73 even 60 inner 875.2.bb.a.843.11 288
175.136 odd 30 875.2.bb.c.157.11 288
175.164 odd 30 175.2.x.a.52.8 yes 288
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
175.2.x.a.38.8 288 35.17 even 12
175.2.x.a.52.8 yes 288 175.164 odd 30
175.2.x.a.138.8 yes 288 5.2 odd 4
175.2.x.a.152.8 yes 288 25.14 even 10
875.2.bb.a.82.11 288 1.1 even 1 trivial
875.2.bb.a.332.8 288 7.3 odd 6 inner
875.2.bb.a.593.8 288 25.23 odd 20 inner
875.2.bb.a.843.11 288 175.73 even 60 inner
875.2.bb.b.82.8 288 5.4 even 2
875.2.bb.b.332.11 288 35.24 odd 6
875.2.bb.b.593.11 288 25.2 odd 20
875.2.bb.b.843.8 288 175.52 even 60
875.2.bb.c.157.11 288 175.136 odd 30
875.2.bb.c.418.11 288 5.3 odd 4
875.2.bb.c.668.11 288 35.3 even 12
875.2.bb.c.782.11 288 25.11 even 5