Properties

Label 875.2.bb.a.593.8
Level $875$
Weight $2$
Character 875.593
Analytic conductor $6.987$
Analytic rank $0$
Dimension $288$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [875,2,Mod(82,875)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("875.82"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(875, base_ring=CyclotomicField(60)) chi = DirichletCharacter(H, H._module([27, 50])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 875 = 5^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 875.bb (of order \(60\), degree \(16\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [288,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.98691017686\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(18\) over \(\Q(\zeta_{60})\)
Twist minimal: no (minimal twist has level 175)
Sato-Tate group: $\mathrm{SU}(2)[C_{60}]$

Embedding invariants

Embedding label 593.8
Character \(\chi\) \(=\) 875.593
Dual form 875.2.bb.a.332.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.637685 - 0.516387i) q^{2} +(-0.0764752 + 0.117761i) q^{3} +(-0.275837 - 1.29771i) q^{4} +(0.109578 - 0.0356039i) q^{6} +(-2.34165 - 1.23154i) q^{7} +(-1.23927 + 2.43220i) q^{8} +(1.21219 + 2.72262i) q^{9} +(0.422943 + 0.188306i) q^{11} +(0.173915 + 0.0667597i) q^{12} +(2.81849 - 0.446405i) q^{13} +(0.857282 + 1.99453i) q^{14} +(-0.377790 + 0.168203i) q^{16} +(-6.66164 + 0.349122i) q^{17} +(0.632933 - 2.36214i) q^{18} +(-1.22155 - 0.259649i) q^{19} +(0.324106 - 0.181574i) q^{21} +(-0.172465 - 0.338482i) q^{22} +(-3.30320 + 4.07911i) q^{23} +(-0.191646 - 0.331940i) q^{24} +(-2.02783 - 1.17077i) q^{26} +(-0.829380 - 0.131361i) q^{27} +(-0.952270 + 3.37848i) q^{28} +(-2.85581 - 0.927907i) q^{29} +(8.01719 + 7.21871i) q^{31} +(5.60118 + 1.50083i) q^{32} +(-0.0545199 + 0.0354056i) q^{33} +(4.42831 + 3.21736i) q^{34} +(3.19881 - 2.32407i) q^{36} +(-2.02695 + 5.28038i) q^{37} +(0.644885 + 0.796367i) q^{38} +(-0.162975 + 0.366049i) q^{39} +(1.91768 - 2.63945i) q^{41} +(-0.300440 - 0.0515774i) q^{42} +(6.03422 + 6.03422i) q^{43} +(0.127704 - 0.600799i) q^{44} +(4.21280 - 0.895458i) q^{46} +(-0.0866332 + 1.65306i) q^{47} +(0.00908374 - 0.0573524i) q^{48} +(3.96662 + 5.76766i) q^{49} +(0.468337 - 0.811184i) q^{51} +(-1.35675 - 3.53445i) q^{52} +(-6.01286 - 3.90480i) q^{53} +(0.461050 + 0.512048i) q^{54} +(5.89727 - 4.16914i) q^{56} +(0.123995 - 0.123995i) q^{57} +(1.34194 + 2.06641i) q^{58} +(-0.255341 + 2.42941i) q^{59} +(0.751418 - 0.0789772i) q^{61} +(-1.38479 - 8.74324i) q^{62} +(0.514499 - 7.86829i) q^{63} +(-2.31063 - 3.18031i) q^{64} +(0.0530495 + 0.00557573i) q^{66} +(0.124434 + 2.37433i) q^{67} +(2.29059 + 8.54858i) q^{68} +(-0.227749 - 0.700940i) q^{69} +(-2.47456 + 7.61592i) q^{71} +(-8.12418 - 0.425770i) q^{72} +(-5.93202 + 2.27709i) q^{73} +(4.01928 - 2.32053i) q^{74} +1.65684i q^{76} +(-0.758476 - 0.961818i) q^{77} +(0.292950 - 0.149265i) q^{78} +(7.41534 - 6.67680i) q^{79} +(-5.90370 + 6.55672i) q^{81} +(-2.58585 + 0.692877i) q^{82} +(8.96119 + 4.56596i) q^{83} +(-0.325030 - 0.370511i) q^{84} +(-0.731939 - 6.96393i) q^{86} +(0.327670 - 0.265342i) q^{87} +(-0.982136 + 0.795318i) q^{88} +(0.971014 + 9.23858i) q^{89} +(-7.14968 - 2.42576i) q^{91} +(6.20465 + 3.16143i) q^{92} +(-1.46320 + 0.392064i) q^{93} +(0.908864 - 1.00940i) q^{94} +(-0.605091 + 0.544826i) q^{96} +(7.70801 - 3.92743i) q^{97} +(0.448893 - 5.72626i) q^{98} +1.37978i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 288 q - 2 q^{2} - 6 q^{3} + 10 q^{4} + 10 q^{7} - 64 q^{8} + 10 q^{9} - 6 q^{11} + 6 q^{12} + 20 q^{14} - 30 q^{16} + 12 q^{17} + 14 q^{18} + 30 q^{19} - 12 q^{21} + 8 q^{22} - 30 q^{23} - 48 q^{26} + 58 q^{28}+ \cdots - 62 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/875\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(626\)
\(\chi(n)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.637685 0.516387i −0.450911 0.365141i 0.376800 0.926295i \(-0.377024\pi\)
−0.827712 + 0.561154i \(0.810358\pi\)
\(3\) −0.0764752 + 0.117761i −0.0441530 + 0.0679896i −0.860058 0.510197i \(-0.829573\pi\)
0.815905 + 0.578186i \(0.196239\pi\)
\(4\) −0.275837 1.29771i −0.137918 0.648855i
\(5\) 0 0
\(6\) 0.109578 0.0356039i 0.0447349 0.0145352i
\(7\) −2.34165 1.23154i −0.885059 0.465478i
\(8\) −1.23927 + 2.43220i −0.438146 + 0.859911i
\(9\) 1.21219 + 2.72262i 0.404064 + 0.907542i
\(10\) 0 0
\(11\) 0.422943 + 0.188306i 0.127522 + 0.0567765i 0.469506 0.882929i \(-0.344432\pi\)
−0.341984 + 0.939706i \(0.611099\pi\)
\(12\) 0.173915 + 0.0667597i 0.0502049 + 0.0192719i
\(13\) 2.81849 0.446405i 0.781709 0.123811i 0.247190 0.968967i \(-0.420493\pi\)
0.534519 + 0.845156i \(0.320493\pi\)
\(14\) 0.857282 + 1.99453i 0.229118 + 0.533061i
\(15\) 0 0
\(16\) −0.377790 + 0.168203i −0.0944475 + 0.0420507i
\(17\) −6.66164 + 0.349122i −1.61569 + 0.0846745i −0.838610 0.544733i \(-0.816631\pi\)
−0.777076 + 0.629407i \(0.783298\pi\)
\(18\) 0.632933 2.36214i 0.149184 0.556761i
\(19\) −1.22155 0.259649i −0.280243 0.0595675i 0.0656459 0.997843i \(-0.479089\pi\)
−0.345889 + 0.938276i \(0.612423\pi\)
\(20\) 0 0
\(21\) 0.324106 0.181574i 0.0707257 0.0396226i
\(22\) −0.172465 0.338482i −0.0367697 0.0721647i
\(23\) −3.30320 + 4.07911i −0.688764 + 0.850553i −0.994840 0.101454i \(-0.967651\pi\)
0.306076 + 0.952007i \(0.400984\pi\)
\(24\) −0.191646 0.331940i −0.0391195 0.0677570i
\(25\) 0 0
\(26\) −2.02783 1.17077i −0.397690 0.229606i
\(27\) −0.829380 0.131361i −0.159614 0.0252804i
\(28\) −0.952270 + 3.37848i −0.179962 + 0.638473i
\(29\) −2.85581 0.927907i −0.530310 0.172308i 0.0316093 0.999500i \(-0.489937\pi\)
−0.561919 + 0.827192i \(0.689937\pi\)
\(30\) 0 0
\(31\) 8.01719 + 7.21871i 1.43993 + 1.29652i 0.885783 + 0.464099i \(0.153622\pi\)
0.554146 + 0.832420i \(0.313045\pi\)
\(32\) 5.60118 + 1.50083i 0.990157 + 0.265312i
\(33\) −0.0545199 + 0.0354056i −0.00949069 + 0.00616332i
\(34\) 4.42831 + 3.21736i 0.759449 + 0.551772i
\(35\) 0 0
\(36\) 3.19881 2.32407i 0.533135 0.387345i
\(37\) −2.02695 + 5.28038i −0.333228 + 0.868089i 0.659931 + 0.751326i \(0.270585\pi\)
−0.993160 + 0.116764i \(0.962748\pi\)
\(38\) 0.644885 + 0.796367i 0.104614 + 0.129188i
\(39\) −0.162975 + 0.366049i −0.0260970 + 0.0586147i
\(40\) 0 0
\(41\) 1.91768 2.63945i 0.299491 0.412213i −0.632577 0.774497i \(-0.718003\pi\)
0.932068 + 0.362284i \(0.118003\pi\)
\(42\) −0.300440 0.0515774i −0.0463589 0.00795856i
\(43\) 6.03422 + 6.03422i 0.920211 + 0.920211i 0.997044 0.0768333i \(-0.0244809\pi\)
−0.0768333 + 0.997044i \(0.524481\pi\)
\(44\) 0.127704 0.600799i 0.0192521 0.0905739i
\(45\) 0 0
\(46\) 4.21280 0.895458i 0.621143 0.132028i
\(47\) −0.0866332 + 1.65306i −0.0126368 + 0.241124i 0.985007 + 0.172515i \(0.0551893\pi\)
−0.997644 + 0.0686086i \(0.978144\pi\)
\(48\) 0.00908374 0.0573524i 0.00131112 0.00827811i
\(49\) 3.96662 + 5.76766i 0.566660 + 0.823952i
\(50\) 0 0
\(51\) 0.468337 0.811184i 0.0655803 0.113588i
\(52\) −1.35675 3.53445i −0.188147 0.490140i
\(53\) −6.01286 3.90480i −0.825929 0.536365i 0.0610710 0.998133i \(-0.480548\pi\)
−0.887000 + 0.461769i \(0.847215\pi\)
\(54\) 0.461050 + 0.512048i 0.0627410 + 0.0696809i
\(55\) 0 0
\(56\) 5.89727 4.16914i 0.788055 0.557124i
\(57\) 0.123995 0.123995i 0.0164235 0.0164235i
\(58\) 1.34194 + 2.06641i 0.176206 + 0.271333i
\(59\) −0.255341 + 2.42941i −0.0332426 + 0.316282i 0.965247 + 0.261339i \(0.0841642\pi\)
−0.998490 + 0.0549424i \(0.982502\pi\)
\(60\) 0 0
\(61\) 0.751418 0.0789772i 0.0962092 0.0101120i −0.0563015 0.998414i \(-0.517931\pi\)
0.152511 + 0.988302i \(0.451264\pi\)
\(62\) −1.38479 8.74324i −0.175869 1.11039i
\(63\) 0.514499 7.86829i 0.0648207 0.991311i
\(64\) −2.31063 3.18031i −0.288829 0.397538i
\(65\) 0 0
\(66\) 0.0530495 + 0.00557573i 0.00652994 + 0.000686325i
\(67\) 0.124434 + 2.37433i 0.0152020 + 0.290071i 0.995642 + 0.0932545i \(0.0297270\pi\)
−0.980440 + 0.196817i \(0.936940\pi\)
\(68\) 2.29059 + 8.54858i 0.277774 + 1.03667i
\(69\) −0.227749 0.700940i −0.0274178 0.0843833i
\(70\) 0 0
\(71\) −2.47456 + 7.61592i −0.293676 + 0.903843i 0.689986 + 0.723822i \(0.257617\pi\)
−0.983663 + 0.180021i \(0.942383\pi\)
\(72\) −8.12418 0.425770i −0.957444 0.0501775i
\(73\) −5.93202 + 2.27709i −0.694291 + 0.266513i −0.679817 0.733382i \(-0.737941\pi\)
−0.0144739 + 0.999895i \(0.504607\pi\)
\(74\) 4.01928 2.32053i 0.467231 0.269756i
\(75\) 0 0
\(76\) 1.65684i 0.190052i
\(77\) −0.758476 0.961818i −0.0864363 0.109609i
\(78\) 0.292950 0.149265i 0.0331700 0.0169010i
\(79\) 7.41534 6.67680i 0.834291 0.751199i −0.136624 0.990623i \(-0.543625\pi\)
0.970915 + 0.239424i \(0.0769585\pi\)
\(80\) 0 0
\(81\) −5.90370 + 6.55672i −0.655967 + 0.728525i
\(82\) −2.58585 + 0.692877i −0.285560 + 0.0765155i
\(83\) 8.96119 + 4.56596i 0.983619 + 0.501179i 0.870375 0.492389i \(-0.163876\pi\)
0.113243 + 0.993567i \(0.463876\pi\)
\(84\) −0.325030 0.370511i −0.0354637 0.0404261i
\(85\) 0 0
\(86\) −0.731939 6.96393i −0.0789270 0.750940i
\(87\) 0.327670 0.265342i 0.0351299 0.0284476i
\(88\) −0.982136 + 0.795318i −0.104696 + 0.0847812i
\(89\) 0.971014 + 9.23858i 0.102927 + 0.979287i 0.917098 + 0.398662i \(0.130525\pi\)
−0.814171 + 0.580626i \(0.802808\pi\)
\(90\) 0 0
\(91\) −7.14968 2.42576i −0.749490 0.254289i
\(92\) 6.20465 + 3.16143i 0.646879 + 0.329601i
\(93\) −1.46320 + 0.392064i −0.151727 + 0.0406551i
\(94\) 0.908864 1.00940i 0.0937421 0.104111i
\(95\) 0 0
\(96\) −0.605091 + 0.544826i −0.0617569 + 0.0556061i
\(97\) 7.70801 3.92743i 0.782630 0.398770i −0.0165492 0.999863i \(-0.505268\pi\)
0.799179 + 0.601093i \(0.205268\pi\)
\(98\) 0.448893 5.72626i 0.0453451 0.578440i
\(99\) 1.37978i 0.138673i
\(100\) 0 0
\(101\) −15.3672 + 8.87223i −1.52909 + 0.882820i −0.529688 + 0.848192i \(0.677691\pi\)
−0.999400 + 0.0346276i \(0.988975\pi\)
\(102\) −0.717537 + 0.275437i −0.0710467 + 0.0272723i
\(103\) 11.0967 + 0.581553i 1.09339 + 0.0573021i 0.590492 0.807044i \(-0.298934\pi\)
0.502898 + 0.864346i \(0.332267\pi\)
\(104\) −2.40712 + 7.40834i −0.236037 + 0.726448i
\(105\) 0 0
\(106\) 1.81792 + 5.59499i 0.176572 + 0.543434i
\(107\) 0.622945 + 2.32486i 0.0602223 + 0.224753i 0.989478 0.144685i \(-0.0462169\pi\)
−0.929255 + 0.369438i \(0.879550\pi\)
\(108\) 0.0583052 + 1.11253i 0.00561042 + 0.107053i
\(109\) −18.4112 1.93510i −1.76347 0.185349i −0.833388 0.552689i \(-0.813602\pi\)
−0.930087 + 0.367340i \(0.880268\pi\)
\(110\) 0 0
\(111\) −0.466814 0.642515i −0.0443081 0.0609848i
\(112\) 1.09180 + 0.0713915i 0.103165 + 0.00674587i
\(113\) −1.54166 9.73363i −0.145027 0.915663i −0.947681 0.319219i \(-0.896580\pi\)
0.802654 0.596444i \(-0.203420\pi\)
\(114\) −0.143099 + 0.0150403i −0.0134025 + 0.00140865i
\(115\) 0 0
\(116\) −0.416419 + 3.96196i −0.0386635 + 0.367859i
\(117\) 4.63195 + 7.13257i 0.428223 + 0.659406i
\(118\) 1.41734 1.41734i 0.130477 0.130477i
\(119\) 16.0292 + 7.38656i 1.46939 + 0.677125i
\(120\) 0 0
\(121\) −7.21702 8.01531i −0.656092 0.728664i
\(122\) −0.519951 0.337660i −0.0470741 0.0305703i
\(123\) 0.164171 + 0.427681i 0.0148028 + 0.0385627i
\(124\) 7.15636 12.3952i 0.642660 1.11312i
\(125\) 0 0
\(126\) −4.39117 + 4.75181i −0.391197 + 0.423325i
\(127\) −1.02863 + 6.49451i −0.0912761 + 0.576294i 0.899084 + 0.437776i \(0.144234\pi\)
−0.990360 + 0.138518i \(0.955766\pi\)
\(128\) 0.438151 8.36042i 0.0387275 0.738964i
\(129\) −1.17207 + 0.249131i −0.103195 + 0.0219347i
\(130\) 0 0
\(131\) −2.29581 + 10.8009i −0.200586 + 0.943681i 0.756526 + 0.653963i \(0.226895\pi\)
−0.957112 + 0.289718i \(0.906438\pi\)
\(132\) 0.0609848 + 0.0609848i 0.00530805 + 0.00530805i
\(133\) 2.54067 + 2.11239i 0.220304 + 0.183168i
\(134\) 1.14673 1.57833i 0.0990621 0.136347i
\(135\) 0 0
\(136\) 7.40641 16.6351i 0.635094 1.42645i
\(137\) 0.864790 + 1.06793i 0.0738840 + 0.0912391i 0.812748 0.582616i \(-0.197971\pi\)
−0.738864 + 0.673855i \(0.764637\pi\)
\(138\) −0.216724 + 0.564586i −0.0184488 + 0.0480607i
\(139\) −2.70776 + 1.96730i −0.229669 + 0.166865i −0.696668 0.717393i \(-0.745335\pi\)
0.466999 + 0.884258i \(0.345335\pi\)
\(140\) 0 0
\(141\) −0.188041 0.136620i −0.0158360 0.0115055i
\(142\) 5.51075 3.57873i 0.462452 0.300320i
\(143\) 1.27612 + 0.341936i 0.106715 + 0.0285941i
\(144\) −0.915907 0.824686i −0.0763256 0.0687238i
\(145\) 0 0
\(146\) 4.95862 + 1.61115i 0.410378 + 0.133340i
\(147\) −0.982556 + 0.0260318i −0.0810399 + 0.00214707i
\(148\) 7.41151 + 1.17387i 0.609223 + 0.0964914i
\(149\) −16.1916 9.34825i −1.32647 0.765838i −0.341719 0.939802i \(-0.611009\pi\)
−0.984752 + 0.173964i \(0.944342\pi\)
\(150\) 0 0
\(151\) −5.55298 9.61804i −0.451895 0.782705i 0.546609 0.837388i \(-0.315919\pi\)
−0.998504 + 0.0546830i \(0.982585\pi\)
\(152\) 2.14534 2.64928i 0.174010 0.214885i
\(153\) −9.02571 17.7139i −0.729685 1.43209i
\(154\) −0.0130015 + 1.00500i −0.00104769 + 0.0809855i
\(155\) 0 0
\(156\) 0.519980 + 0.110525i 0.0416317 + 0.00884910i
\(157\) −0.202009 + 0.753908i −0.0161221 + 0.0601684i −0.973518 0.228609i \(-0.926582\pi\)
0.957396 + 0.288778i \(0.0932488\pi\)
\(158\) −8.17647 + 0.428511i −0.650485 + 0.0340905i
\(159\) 0.919669 0.409463i 0.0729345 0.0324725i
\(160\) 0 0
\(161\) 12.7585 5.48381i 1.00551 0.432185i
\(162\) 7.15051 1.13253i 0.561797 0.0889799i
\(163\) −20.2100 7.75789i −1.58297 0.607645i −0.601434 0.798923i \(-0.705404\pi\)
−0.981536 + 0.191277i \(0.938737\pi\)
\(164\) −3.95421 1.76053i −0.308772 0.137474i
\(165\) 0 0
\(166\) −3.35662 7.53909i −0.260524 0.585147i
\(167\) 4.06888 7.98564i 0.314860 0.617947i −0.678290 0.734794i \(-0.737279\pi\)
0.993150 + 0.116847i \(0.0372787\pi\)
\(168\) 0.0399691 + 1.01331i 0.00308368 + 0.0781783i
\(169\) −4.61911 + 1.50084i −0.355316 + 0.115449i
\(170\) 0 0
\(171\) −0.773826 3.64057i −0.0591760 0.278401i
\(172\) 6.16621 9.49514i 0.470169 0.723997i
\(173\) −11.2942 9.14584i −0.858680 0.695345i 0.0952246 0.995456i \(-0.469643\pi\)
−0.953904 + 0.300111i \(0.902976\pi\)
\(174\) −0.345969 −0.0262279
\(175\) 0 0
\(176\) −0.191457 −0.0144316
\(177\) −0.266563 0.215859i −0.0200361 0.0162249i
\(178\) 4.15148 6.39272i 0.311167 0.479155i
\(179\) −2.01032 9.45779i −0.150258 0.706909i −0.987183 0.159591i \(-0.948982\pi\)
0.836925 0.547317i \(-0.184351\pi\)
\(180\) 0 0
\(181\) 19.1189 6.21211i 1.42110 0.461742i 0.505146 0.863034i \(-0.331439\pi\)
0.915950 + 0.401292i \(0.131439\pi\)
\(182\) 3.30661 + 5.23888i 0.245102 + 0.388331i
\(183\) −0.0481643 + 0.0945278i −0.00356041 + 0.00698770i
\(184\) −5.82765 13.0891i −0.429620 0.964943i
\(185\) 0 0
\(186\) 1.13552 + 0.505565i 0.0832603 + 0.0370699i
\(187\) −2.88324 1.10677i −0.210843 0.0809351i
\(188\) 2.16909 0.343550i 0.158197 0.0250560i
\(189\) 1.78034 + 1.32902i 0.129501 + 0.0966716i
\(190\) 0 0
\(191\) −22.6790 + 10.0973i −1.64099 + 0.730617i −0.999338 0.0363766i \(-0.988418\pi\)
−0.641655 + 0.766994i \(0.721752\pi\)
\(192\) 0.551223 0.0288884i 0.0397811 0.00208484i
\(193\) −3.66243 + 13.6684i −0.263627 + 0.983870i 0.699458 + 0.714674i \(0.253425\pi\)
−0.963085 + 0.269196i \(0.913242\pi\)
\(194\) −6.94335 1.47586i −0.498504 0.105960i
\(195\) 0 0
\(196\) 6.39062 6.73846i 0.456473 0.481318i
\(197\) 9.45216 + 18.5509i 0.673439 + 1.32170i 0.934357 + 0.356337i \(0.115975\pi\)
−0.260919 + 0.965361i \(0.584025\pi\)
\(198\) 0.712499 0.879863i 0.0506351 0.0625292i
\(199\) 7.89655 + 13.6772i 0.559772 + 0.969553i 0.997515 + 0.0704529i \(0.0224444\pi\)
−0.437744 + 0.899100i \(0.644222\pi\)
\(200\) 0 0
\(201\) −0.289121 0.166924i −0.0203930 0.0117739i
\(202\) 14.3809 + 2.27771i 1.01184 + 0.160259i
\(203\) 5.54453 + 5.68987i 0.389150 + 0.399351i
\(204\) −1.18187 0.384012i −0.0827472 0.0268862i
\(205\) 0 0
\(206\) −6.77589 6.10104i −0.472099 0.425080i
\(207\) −15.1100 4.04871i −1.05022 0.281405i
\(208\) −0.989712 + 0.642726i −0.0686241 + 0.0445650i
\(209\) −0.467752 0.339842i −0.0323551 0.0235074i
\(210\) 0 0
\(211\) 3.76604 2.73619i 0.259265 0.188367i −0.450558 0.892747i \(-0.648775\pi\)
0.709823 + 0.704380i \(0.248775\pi\)
\(212\) −3.40873 + 8.88003i −0.234112 + 0.609883i
\(213\) −0.707619 0.873837i −0.0484853 0.0598743i
\(214\) 0.803286 1.80421i 0.0549115 0.123333i
\(215\) 0 0
\(216\) 1.34732 1.85442i 0.0916733 0.126178i
\(217\) −9.88329 26.7772i −0.670922 1.81775i
\(218\) 10.7413 + 10.7413i 0.727492 + 0.727492i
\(219\) 0.185499 0.872705i 0.0125349 0.0589719i
\(220\) 0 0
\(221\) −18.6199 + 3.95779i −1.25251 + 0.266230i
\(222\) −0.0341059 + 0.650779i −0.00228904 + 0.0436774i
\(223\) 0.346137 2.18542i 0.0231790 0.146347i −0.973385 0.229178i \(-0.926396\pi\)
0.996564 + 0.0828312i \(0.0263962\pi\)
\(224\) −11.2676 10.4125i −0.752851 0.695714i
\(225\) 0 0
\(226\) −4.04323 + 7.00308i −0.268952 + 0.465838i
\(227\) 2.39249 + 6.23265i 0.158795 + 0.413676i 0.989777 0.142624i \(-0.0455540\pi\)
−0.830982 + 0.556300i \(0.812221\pi\)
\(228\) −0.195112 0.126707i −0.0129216 0.00839138i
\(229\) −7.58996 8.42951i −0.501559 0.557038i 0.438199 0.898878i \(-0.355616\pi\)
−0.939758 + 0.341840i \(0.888950\pi\)
\(230\) 0 0
\(231\) 0.171270 0.0157641i 0.0112687 0.00103720i
\(232\) 5.79595 5.79595i 0.380523 0.380523i
\(233\) −1.41071 2.17230i −0.0924187 0.142312i 0.789437 0.613831i \(-0.210373\pi\)
−0.881856 + 0.471519i \(0.843706\pi\)
\(234\) 0.729446 6.94021i 0.0476853 0.453696i
\(235\) 0 0
\(236\) 3.22310 0.338761i 0.209806 0.0220515i
\(237\) 0.219181 + 1.38385i 0.0142373 + 0.0898908i
\(238\) −6.40724 12.9876i −0.415320 0.841858i
\(239\) −9.58977 13.1992i −0.620311 0.853784i 0.377065 0.926187i \(-0.376933\pi\)
−0.997375 + 0.0724026i \(0.976933\pi\)
\(240\) 0 0
\(241\) −7.88029 0.828252i −0.507614 0.0533524i −0.152740 0.988266i \(-0.548810\pi\)
−0.354874 + 0.934914i \(0.615476\pi\)
\(242\) 0.463181 + 8.83802i 0.0297744 + 0.568129i
\(243\) −0.972648 3.62997i −0.0623954 0.232863i
\(244\) −0.309758 0.953338i −0.0198302 0.0610312i
\(245\) 0 0
\(246\) 0.116159 0.357502i 0.00740605 0.0227935i
\(247\) −3.55884 0.186511i −0.226444 0.0118674i
\(248\) −27.4927 + 10.5535i −1.74579 + 0.670146i
\(249\) −1.22300 + 0.706101i −0.0775046 + 0.0447473i
\(250\) 0 0
\(251\) 13.1248i 0.828427i 0.910180 + 0.414214i \(0.135943\pi\)
−0.910180 + 0.414214i \(0.864057\pi\)
\(252\) −10.3527 + 1.50269i −0.652157 + 0.0946608i
\(253\) −2.16519 + 1.10322i −0.136124 + 0.0693587i
\(254\) 4.00962 3.61028i 0.251586 0.226529i
\(255\) 0 0
\(256\) −9.85742 + 10.9478i −0.616089 + 0.684236i
\(257\) 1.90875 0.511448i 0.119065 0.0319033i −0.198795 0.980041i \(-0.563703\pi\)
0.317859 + 0.948138i \(0.397036\pi\)
\(258\) 0.876058 + 0.446374i 0.0545410 + 0.0277900i
\(259\) 11.2494 9.86852i 0.699004 0.613200i
\(260\) 0 0
\(261\) −0.935437 8.90009i −0.0579021 0.550902i
\(262\) 7.04146 5.70206i 0.435023 0.352275i
\(263\) 8.54697 6.92120i 0.527029 0.426779i −0.328524 0.944496i \(-0.606551\pi\)
0.855552 + 0.517716i \(0.173218\pi\)
\(264\) −0.0185488 0.176480i −0.00114160 0.0108616i
\(265\) 0 0
\(266\) −0.529336 2.65901i −0.0324557 0.163034i
\(267\) −1.16221 0.592174i −0.0711259 0.0362405i
\(268\) 3.04688 0.816408i 0.186118 0.0498700i
\(269\) 3.77103 4.18815i 0.229924 0.255356i −0.617133 0.786859i \(-0.711706\pi\)
0.847056 + 0.531503i \(0.178373\pi\)
\(270\) 0 0
\(271\) 20.4059 18.3735i 1.23957 1.11611i 0.250583 0.968095i \(-0.419378\pi\)
0.988985 0.148017i \(-0.0472891\pi\)
\(272\) 2.45798 1.25240i 0.149037 0.0759380i
\(273\) 0.832435 0.656446i 0.0503812 0.0397299i
\(274\) 1.12757i 0.0681188i
\(275\) 0 0
\(276\) −0.846796 + 0.488898i −0.0509711 + 0.0294282i
\(277\) 12.1760 4.67394i 0.731586 0.280830i 0.0360792 0.999349i \(-0.488513\pi\)
0.695507 + 0.718519i \(0.255180\pi\)
\(278\) 2.74259 + 0.143733i 0.164490 + 0.00862053i
\(279\) −9.93547 + 30.5782i −0.594821 + 1.83067i
\(280\) 0 0
\(281\) 7.07687 + 21.7804i 0.422171 + 1.29931i 0.905677 + 0.423968i \(0.139363\pi\)
−0.483506 + 0.875341i \(0.660637\pi\)
\(282\) 0.0493624 + 0.184223i 0.00293949 + 0.0109703i
\(283\) −0.0356048 0.679380i −0.00211649 0.0403850i 0.997367 0.0725177i \(-0.0231034\pi\)
−0.999484 + 0.0321328i \(0.989770\pi\)
\(284\) 10.5658 + 1.11051i 0.626967 + 0.0658969i
\(285\) 0 0
\(286\) −0.637193 0.877020i −0.0376780 0.0518593i
\(287\) −7.74111 + 3.81897i −0.456943 + 0.225427i
\(288\) 2.70349 + 17.0692i 0.159305 + 1.00581i
\(289\) 27.3487 2.87447i 1.60875 0.169086i
\(290\) 0 0
\(291\) −0.126972 + 1.20806i −0.00744323 + 0.0708176i
\(292\) 4.59127 + 7.06994i 0.268684 + 0.413737i
\(293\) 17.9628 17.9628i 1.04940 1.04940i 0.0506858 0.998715i \(-0.483859\pi\)
0.998715 0.0506858i \(-0.0161407\pi\)
\(294\) 0.640004 + 0.490779i 0.0373258 + 0.0286228i
\(295\) 0 0
\(296\) −10.3310 11.4737i −0.600477 0.666897i
\(297\) −0.326044 0.211736i −0.0189190 0.0122861i
\(298\) 5.49785 + 14.3224i 0.318482 + 0.829674i
\(299\) −7.48910 + 12.9715i −0.433106 + 0.750162i
\(300\) 0 0
\(301\) −6.69863 21.5614i −0.386103 1.24278i
\(302\) −1.42558 + 9.00077i −0.0820330 + 0.517936i
\(303\) 0.130399 2.48816i 0.00749124 0.142941i
\(304\) 0.505163 0.107376i 0.0289731 0.00615842i
\(305\) 0 0
\(306\) −3.39170 + 15.9567i −0.193890 + 0.912183i
\(307\) −10.5853 10.5853i −0.604135 0.604135i 0.337272 0.941407i \(-0.390496\pi\)
−0.941407 + 0.337272i \(0.890496\pi\)
\(308\) −1.03895 + 1.24959i −0.0591994 + 0.0712018i
\(309\) −0.917107 + 1.26229i −0.0521724 + 0.0718091i
\(310\) 0 0
\(311\) 0.167744 0.376759i 0.00951188 0.0213640i −0.908727 0.417391i \(-0.862945\pi\)
0.918239 + 0.396027i \(0.129611\pi\)
\(312\) −0.688332 0.850020i −0.0389692 0.0481229i
\(313\) −0.769705 + 2.00515i −0.0435063 + 0.113338i −0.953612 0.301038i \(-0.902667\pi\)
0.910106 + 0.414376i \(0.136000\pi\)
\(314\) 0.518126 0.376441i 0.0292396 0.0212438i
\(315\) 0 0
\(316\) −10.7100 7.78126i −0.602484 0.437730i
\(317\) 5.11358 3.32080i 0.287207 0.186515i −0.392992 0.919542i \(-0.628560\pi\)
0.680199 + 0.733027i \(0.261893\pi\)
\(318\) −0.797901 0.213797i −0.0447440 0.0119891i
\(319\) −1.03311 0.930218i −0.0578431 0.0520822i
\(320\) 0 0
\(321\) −0.321419 0.104435i −0.0179399 0.00582901i
\(322\) −10.9677 3.09138i −0.611205 0.172276i
\(323\) 8.22818 + 1.30322i 0.457828 + 0.0725129i
\(324\) 10.1372 + 5.85271i 0.563177 + 0.325150i
\(325\) 0 0
\(326\) 8.88154 + 15.3833i 0.491903 + 0.852001i
\(327\) 1.63588 2.02014i 0.0904644 0.111714i
\(328\) 4.04316 + 7.93514i 0.223246 + 0.438145i
\(329\) 2.23867 3.76419i 0.123422 0.207527i
\(330\) 0 0
\(331\) 16.6187 + 3.53241i 0.913446 + 0.194159i 0.640578 0.767893i \(-0.278695\pi\)
0.272867 + 0.962052i \(0.412028\pi\)
\(332\) 3.45346 12.8885i 0.189533 0.707348i
\(333\) −16.8335 + 0.882209i −0.922473 + 0.0483447i
\(334\) −6.71835 + 2.99120i −0.367612 + 0.163671i
\(335\) 0 0
\(336\) −0.0919027 + 0.123112i −0.00501370 + 0.00671632i
\(337\) 19.0087 3.01068i 1.03547 0.164002i 0.384515 0.923119i \(-0.374369\pi\)
0.650955 + 0.759116i \(0.274369\pi\)
\(338\) 3.72055 + 1.42819i 0.202371 + 0.0776831i
\(339\) 1.26415 + 0.562834i 0.0686589 + 0.0305689i
\(340\) 0 0
\(341\) 2.03148 + 4.56279i 0.110011 + 0.247089i
\(342\) −1.38648 + 2.72113i −0.0749725 + 0.147142i
\(343\) −2.18531 18.3909i −0.117996 0.993014i
\(344\) −22.1544 + 7.19841i −1.19449 + 0.388112i
\(345\) 0 0
\(346\) 2.47933 + 11.6643i 0.133290 + 0.627078i
\(347\) −12.0760 + 18.5954i −0.648272 + 0.998251i 0.349839 + 0.936810i \(0.386236\pi\)
−0.998111 + 0.0614415i \(0.980430\pi\)
\(348\) −0.434721 0.352030i −0.0233035 0.0188708i
\(349\) −17.0829 −0.914426 −0.457213 0.889357i \(-0.651152\pi\)
−0.457213 + 0.889357i \(0.651152\pi\)
\(350\) 0 0
\(351\) −2.39624 −0.127902
\(352\) 2.08636 + 1.68950i 0.111203 + 0.0900508i
\(353\) 9.70354 14.9421i 0.516467 0.795290i −0.480175 0.877173i \(-0.659427\pi\)
0.996642 + 0.0818829i \(0.0260933\pi\)
\(354\) 0.0585168 + 0.275300i 0.00311013 + 0.0146320i
\(355\) 0 0
\(356\) 11.7212 3.80844i 0.621220 0.201847i
\(357\) −2.09569 + 1.32273i −0.110915 + 0.0700063i
\(358\) −3.60193 + 7.06919i −0.190368 + 0.373619i
\(359\) 5.75875 + 12.9344i 0.303935 + 0.682649i 0.999353 0.0359558i \(-0.0114476\pi\)
−0.695418 + 0.718605i \(0.744781\pi\)
\(360\) 0 0
\(361\) −15.9326 7.09365i −0.838558 0.373350i
\(362\) −15.3997 5.91139i −0.809390 0.310696i
\(363\) 1.49582 0.236914i 0.0785100 0.0124348i
\(364\) −1.17579 + 9.94733i −0.0616282 + 0.521382i
\(365\) 0 0
\(366\) 0.0795267 0.0354075i 0.00415692 0.00185078i
\(367\) −20.4318 + 1.07079i −1.06653 + 0.0558946i −0.577516 0.816380i \(-0.695978\pi\)
−0.489017 + 0.872274i \(0.662644\pi\)
\(368\) 0.561797 2.09665i 0.0292857 0.109296i
\(369\) 9.51083 + 2.02159i 0.495114 + 0.105240i
\(370\) 0 0
\(371\) 9.27108 + 16.5487i 0.481330 + 0.859167i
\(372\) 0.912390 + 1.79067i 0.0473052 + 0.0928417i
\(373\) −4.58452 + 5.66141i −0.237378 + 0.293137i −0.881888 0.471458i \(-0.843728\pi\)
0.644511 + 0.764595i \(0.277061\pi\)
\(374\) 1.26707 + 2.19464i 0.0655188 + 0.113482i
\(375\) 0 0
\(376\) −3.91320 2.25929i −0.201808 0.116514i
\(377\) −8.46329 1.34045i −0.435882 0.0690369i
\(378\) −0.449009 1.76684i −0.0230945 0.0908763i
\(379\) −3.99729 1.29880i −0.205327 0.0667147i 0.204548 0.978857i \(-0.434428\pi\)
−0.409875 + 0.912142i \(0.634428\pi\)
\(380\) 0 0
\(381\) −0.686138 0.617802i −0.0351519 0.0316509i
\(382\) 19.6762 + 5.27221i 1.00672 + 0.269750i
\(383\) −18.7224 + 12.1585i −0.956671 + 0.621269i −0.925703 0.378251i \(-0.876526\pi\)
−0.0309678 + 0.999520i \(0.509859\pi\)
\(384\) 0.951028 + 0.690962i 0.0485319 + 0.0352605i
\(385\) 0 0
\(386\) 9.39364 6.82488i 0.478124 0.347377i
\(387\) −9.11430 + 23.7436i −0.463306 + 1.20695i
\(388\) −7.22282 8.91943i −0.366683 0.452816i
\(389\) −2.73737 + 6.14824i −0.138790 + 0.311728i −0.969546 0.244909i \(-0.921242\pi\)
0.830756 + 0.556637i \(0.187909\pi\)
\(390\) 0 0
\(391\) 20.5806 28.3268i 1.04081 1.43255i
\(392\) −18.9438 + 2.49993i −0.956805 + 0.126265i
\(393\) −1.09636 1.09636i −0.0553041 0.0553041i
\(394\) 3.55195 16.7106i 0.178945 0.841869i
\(395\) 0 0
\(396\) 1.79055 0.380593i 0.0899786 0.0191255i
\(397\) 0.856195 16.3372i 0.0429712 0.819939i −0.889111 0.457692i \(-0.848676\pi\)
0.932082 0.362247i \(-0.117990\pi\)
\(398\) 2.02723 12.7994i 0.101616 0.641578i
\(399\) −0.443057 + 0.137648i −0.0221806 + 0.00689100i
\(400\) 0 0
\(401\) −3.19866 + 5.54023i −0.159733 + 0.276666i −0.934772 0.355247i \(-0.884397\pi\)
0.775039 + 0.631913i \(0.217730\pi\)
\(402\) 0.0981707 + 0.255744i 0.00489631 + 0.0127553i
\(403\) 25.8189 + 16.7670i 1.28613 + 0.835222i
\(404\) 15.7524 + 17.4948i 0.783712 + 0.870400i
\(405\) 0 0
\(406\) −0.597490 6.49147i −0.0296529 0.322166i
\(407\) −1.85161 + 1.85161i −0.0917810 + 0.0917810i
\(408\) 1.39256 + 2.14436i 0.0689422 + 0.106162i
\(409\) −0.493540 + 4.69572i −0.0244040 + 0.232189i 0.975521 + 0.219908i \(0.0705758\pi\)
−0.999925 + 0.0122805i \(0.996091\pi\)
\(410\) 0 0
\(411\) −0.191896 + 0.0201690i −0.00946551 + 0.000994865i
\(412\) −2.30619 14.5607i −0.113618 0.717355i
\(413\) 3.58983 5.37435i 0.176644 0.264454i
\(414\) 7.54471 + 10.3844i 0.370802 + 0.510366i
\(415\) 0 0
\(416\) 16.4569 + 1.72969i 0.806864 + 0.0848048i
\(417\) −0.0245960 0.469320i −0.00120447 0.0229827i
\(418\) 0.122789 + 0.458253i 0.00600579 + 0.0224139i
\(419\) 4.91344 + 15.1220i 0.240037 + 0.738759i 0.996413 + 0.0846218i \(0.0269682\pi\)
−0.756376 + 0.654137i \(0.773032\pi\)
\(420\) 0 0
\(421\) −8.87472 + 27.3136i −0.432527 + 1.33118i 0.463072 + 0.886321i \(0.346747\pi\)
−0.895599 + 0.444862i \(0.853253\pi\)
\(422\) −3.81448 0.199909i −0.185686 0.00973140i
\(423\) −4.60568 + 1.76795i −0.223936 + 0.0859609i
\(424\) 16.9487 9.78537i 0.823104 0.475219i
\(425\) 0 0
\(426\) 0.922638i 0.0447020i
\(427\) −1.85682 0.740464i −0.0898577 0.0358336i
\(428\) 2.84517 1.44968i 0.137526 0.0700731i
\(429\) −0.137859 + 0.124128i −0.00665587 + 0.00599298i
\(430\) 0 0
\(431\) 17.2952 19.2083i 0.833083 0.925232i −0.165052 0.986285i \(-0.552779\pi\)
0.998135 + 0.0610529i \(0.0194458\pi\)
\(432\) 0.335427 0.0898773i 0.0161382 0.00432422i
\(433\) 23.4750 + 11.9611i 1.12814 + 0.574815i 0.915501 0.402316i \(-0.131795\pi\)
0.212638 + 0.977131i \(0.431795\pi\)
\(434\) −7.52495 + 22.1790i −0.361209 + 1.06463i
\(435\) 0 0
\(436\) 2.56730 + 24.4262i 0.122951 + 1.16980i
\(437\) 5.09416 4.12517i 0.243687 0.197333i
\(438\) −0.568943 + 0.460721i −0.0271852 + 0.0220141i
\(439\) −3.80227 36.1762i −0.181473 1.72660i −0.584487 0.811403i \(-0.698704\pi\)
0.403015 0.915194i \(-0.367962\pi\)
\(440\) 0 0
\(441\) −10.8949 + 17.7911i −0.518804 + 0.847196i
\(442\) 13.9174 + 7.09128i 0.661984 + 0.337298i
\(443\) −17.2080 + 4.61086i −0.817575 + 0.219069i −0.643286 0.765626i \(-0.722429\pi\)
−0.174289 + 0.984695i \(0.555763\pi\)
\(444\) −0.705034 + 0.783019i −0.0334594 + 0.0371604i
\(445\) 0 0
\(446\) −1.34925 + 1.21487i −0.0638889 + 0.0575258i
\(447\) 2.33912 1.19184i 0.110637 0.0563722i
\(448\) 1.49400 + 10.2928i 0.0705849 + 0.486288i
\(449\) 8.68138i 0.409699i 0.978793 + 0.204850i \(0.0656706\pi\)
−0.978793 + 0.204850i \(0.934329\pi\)
\(450\) 0 0
\(451\) 1.30809 0.755227i 0.0615957 0.0355623i
\(452\) −12.2062 + 4.68552i −0.574131 + 0.220388i
\(453\) 1.55730 + 0.0816146i 0.0731683 + 0.00383459i
\(454\) 1.69281 5.20992i 0.0794473 0.244514i
\(455\) 0 0
\(456\) 0.147917 + 0.455242i 0.00692686 + 0.0213187i
\(457\) 6.91837 + 25.8197i 0.323628 + 1.20780i 0.915684 + 0.401899i \(0.131650\pi\)
−0.592056 + 0.805896i \(0.701684\pi\)
\(458\) 0.487116 + 9.29473i 0.0227615 + 0.434314i
\(459\) 5.57089 + 0.585525i 0.260027 + 0.0273299i
\(460\) 0 0
\(461\) 0.325458 + 0.447954i 0.0151581 + 0.0208633i 0.816529 0.577305i \(-0.195896\pi\)
−0.801371 + 0.598168i \(0.795896\pi\)
\(462\) −0.117356 0.0783889i −0.00545992 0.00364698i
\(463\) 5.44624 + 34.3862i 0.253108 + 1.59806i 0.707138 + 0.707075i \(0.249986\pi\)
−0.454030 + 0.890986i \(0.650014\pi\)
\(464\) 1.23497 0.129801i 0.0573321 0.00602585i
\(465\) 0 0
\(466\) −0.222161 + 2.11372i −0.0102914 + 0.0979161i
\(467\) 17.2371 + 26.5428i 0.797638 + 1.22826i 0.969972 + 0.243217i \(0.0782027\pi\)
−0.172333 + 0.985039i \(0.555131\pi\)
\(468\) 7.97835 7.97835i 0.368799 0.368799i
\(469\) 2.63271 5.71310i 0.121567 0.263806i
\(470\) 0 0
\(471\) −0.0733326 0.0814441i −0.00337899 0.00375275i
\(472\) −5.59236 3.63172i −0.257409 0.167163i
\(473\) 1.41585 + 3.68841i 0.0651008 + 0.169593i
\(474\) 0.574835 0.995644i 0.0264031 0.0457314i
\(475\) 0 0
\(476\) 5.16418 22.8387i 0.236700 1.04681i
\(477\) 3.34256 21.1041i 0.153045 0.966291i
\(478\) −0.700637 + 13.3690i −0.0320464 + 0.611482i
\(479\) 21.0843 4.48161i 0.963366 0.204770i 0.300728 0.953710i \(-0.402770\pi\)
0.662638 + 0.748940i \(0.269437\pi\)
\(480\) 0 0
\(481\) −3.35575 + 15.7876i −0.153009 + 0.719851i
\(482\) 4.59744 + 4.59744i 0.209408 + 0.209408i
\(483\) −0.329927 + 1.92184i −0.0150122 + 0.0874466i
\(484\) −8.41083 + 11.5765i −0.382310 + 0.526205i
\(485\) 0 0
\(486\) −1.25423 + 2.81704i −0.0568929 + 0.127784i
\(487\) 11.1857 + 13.8132i 0.506874 + 0.625937i 0.964778 0.263064i \(-0.0847332\pi\)
−0.457905 + 0.889001i \(0.651400\pi\)
\(488\) −0.739118 + 1.92547i −0.0334583 + 0.0871618i
\(489\) 2.45915 1.78667i 0.111206 0.0807962i
\(490\) 0 0
\(491\) 16.3613 + 11.8872i 0.738374 + 0.536460i 0.892201 0.451638i \(-0.149160\pi\)
−0.153828 + 0.988098i \(0.549160\pi\)
\(492\) 0.509722 0.331017i 0.0229800 0.0149234i
\(493\) 19.3483 + 5.18436i 0.871404 + 0.233492i
\(494\) 2.17311 + 1.95667i 0.0977727 + 0.0880349i
\(495\) 0 0
\(496\) −4.24302 1.37864i −0.190517 0.0619028i
\(497\) 15.1739 14.7863i 0.680641 0.663255i
\(498\) 1.14451 + 0.181273i 0.0512868 + 0.00812303i
\(499\) 20.1816 + 11.6518i 0.903450 + 0.521607i 0.878318 0.478077i \(-0.158666\pi\)
0.0251324 + 0.999684i \(0.491999\pi\)
\(500\) 0 0
\(501\) 0.629232 + 1.08986i 0.0281120 + 0.0486914i
\(502\) 6.77745 8.36946i 0.302493 0.373547i
\(503\) 12.9561 + 25.4278i 0.577684 + 1.13377i 0.976254 + 0.216631i \(0.0695068\pi\)
−0.398569 + 0.917138i \(0.630493\pi\)
\(504\) 18.4996 + 11.0023i 0.824038 + 0.490079i
\(505\) 0 0
\(506\) 1.95039 + 0.414569i 0.0867056 + 0.0184298i
\(507\) 0.176506 0.658730i 0.00783892 0.0292552i
\(508\) 8.71172 0.456562i 0.386520 0.0202567i
\(509\) 13.9211 6.19808i 0.617043 0.274725i −0.0743181 0.997235i \(-0.523678\pi\)
0.691361 + 0.722509i \(0.257011\pi\)
\(510\) 0 0
\(511\) 16.6950 + 1.97338i 0.738545 + 0.0872972i
\(512\) −4.59842 + 0.728319i −0.203224 + 0.0321874i
\(513\) 0.979022 + 0.375811i 0.0432249 + 0.0165925i
\(514\) −1.48129 0.659511i −0.0653368 0.0290898i
\(515\) 0 0
\(516\) 0.646599 + 1.45229i 0.0284649 + 0.0639333i
\(517\) −0.347922 + 0.682836i −0.0153016 + 0.0300311i
\(518\) −12.2696 + 0.483963i −0.539093 + 0.0212641i
\(519\) 1.94075 0.630588i 0.0851895 0.0276798i
\(520\) 0 0
\(521\) −2.61108 12.2842i −0.114393 0.538179i −0.997603 0.0691998i \(-0.977955\pi\)
0.883209 0.468979i \(-0.155378\pi\)
\(522\) −3.99938 + 6.15850i −0.175048 + 0.269550i
\(523\) −7.84099 6.34951i −0.342863 0.277645i 0.442387 0.896824i \(-0.354132\pi\)
−0.785249 + 0.619180i \(0.787465\pi\)
\(524\) 14.6497 0.639977
\(525\) 0 0
\(526\) −9.02429 −0.393478
\(527\) −55.9278 45.2895i −2.43626 1.97284i
\(528\) 0.0146417 0.0225463i 0.000637199 0.000981201i
\(529\) −0.946049 4.45081i −0.0411326 0.193514i
\(530\) 0 0
\(531\) −6.92388 + 2.24971i −0.300471 + 0.0976289i
\(532\) 2.04046 3.87973i 0.0884653 0.168208i
\(533\) 4.22669 8.29534i 0.183078 0.359311i
\(534\) 0.435331 + 0.977769i 0.0188386 + 0.0423122i
\(535\) 0 0
\(536\) −5.92905 2.63978i −0.256096 0.114021i
\(537\) 1.26750 + 0.486549i 0.0546968 + 0.0209961i
\(538\) −4.56744 + 0.723411i −0.196916 + 0.0311884i
\(539\) 0.591566 + 3.18633i 0.0254806 + 0.137245i
\(540\) 0 0
\(541\) 6.70459 2.98507i 0.288253 0.128338i −0.257517 0.966274i \(-0.582904\pi\)
0.545769 + 0.837936i \(0.316238\pi\)
\(542\) −22.5004 + 1.17919i −0.966474 + 0.0506507i
\(543\) −0.730575 + 2.72654i −0.0313520 + 0.117007i
\(544\) −37.8370 8.04250i −1.62225 0.344819i
\(545\) 0 0
\(546\) −0.869812 0.0112526i −0.0372245 0.000481565i
\(547\) −14.3950 28.2518i −0.615487 1.20796i −0.962801 0.270212i \(-0.912906\pi\)
0.347314 0.937749i \(-0.387094\pi\)
\(548\) 1.14732 1.41682i 0.0490110 0.0605236i
\(549\) 1.12589 + 1.95009i 0.0480517 + 0.0832279i
\(550\) 0 0
\(551\) 3.24758 + 1.87499i 0.138352 + 0.0798773i
\(552\) 1.98706 + 0.314720i 0.0845751 + 0.0133954i
\(553\) −25.5869 + 6.50243i −1.08806 + 0.276511i
\(554\) −10.1780 3.30704i −0.432423 0.140503i
\(555\) 0 0
\(556\) 3.29989 + 2.97124i 0.139947 + 0.126008i
\(557\) −17.9755 4.81653i −0.761648 0.204083i −0.142970 0.989727i \(-0.545665\pi\)
−0.618679 + 0.785644i \(0.712332\pi\)
\(558\) 22.1259 14.3687i 0.936665 0.608277i
\(559\) 19.7011 + 14.3137i 0.833269 + 0.605405i
\(560\) 0 0
\(561\) 0.350831 0.254894i 0.0148121 0.0107616i
\(562\) 6.73429 17.5434i 0.284069 0.740025i
\(563\) 11.2303 + 13.8682i 0.473299 + 0.584475i 0.956756 0.290893i \(-0.0939523\pi\)
−0.483457 + 0.875368i \(0.660619\pi\)
\(564\) −0.125425 + 0.281708i −0.00528133 + 0.0118621i
\(565\) 0 0
\(566\) −0.328119 + 0.451617i −0.0137919 + 0.0189829i
\(567\) 21.8992 8.08289i 0.919682 0.339449i
\(568\) −15.4568 15.4568i −0.648551 0.648551i
\(569\) −2.43038 + 11.4341i −0.101887 + 0.479340i 0.897387 + 0.441244i \(0.145463\pi\)
−0.999274 + 0.0380963i \(0.987871\pi\)
\(570\) 0 0
\(571\) 32.5444 6.91753i 1.36194 0.289490i 0.531719 0.846921i \(-0.321546\pi\)
0.830223 + 0.557431i \(0.188213\pi\)
\(572\) 0.0917322 1.75036i 0.00383552 0.0731860i
\(573\) 0.545303 3.44290i 0.0227803 0.143829i
\(574\) 6.90846 + 1.56211i 0.288354 + 0.0652011i
\(575\) 0 0
\(576\) 5.85786 10.1461i 0.244078 0.422755i
\(577\) 15.0945 + 39.3226i 0.628394 + 1.63702i 0.763209 + 0.646151i \(0.223622\pi\)
−0.134816 + 0.990871i \(0.543044\pi\)
\(578\) −18.9242 12.2895i −0.787143 0.511177i
\(579\) −1.32952 1.47658i −0.0552530 0.0613647i
\(580\) 0 0
\(581\) −15.3608 21.7279i −0.637273 0.901426i
\(582\) 0.704793 0.704793i 0.0292146 0.0292146i
\(583\) −1.80780 2.78376i −0.0748713 0.115292i
\(584\) 1.81302 17.2498i 0.0750234 0.713800i
\(585\) 0 0
\(586\) −20.7304 + 2.17885i −0.856366 + 0.0900077i
\(587\) −1.86295 11.7622i −0.0768923 0.485479i −0.995841 0.0911028i \(-0.970961\pi\)
0.918949 0.394376i \(-0.129039\pi\)
\(588\) 0.304807 + 1.26789i 0.0125700 + 0.0522870i
\(589\) −7.91907 10.8997i −0.326300 0.449113i
\(590\) 0 0
\(591\) −2.90744 0.305584i −0.119596 0.0125701i
\(592\) −0.122415 2.33581i −0.00503122 0.0960014i
\(593\) 2.18171 + 8.14227i 0.0895922 + 0.334363i 0.996144 0.0877316i \(-0.0279618\pi\)
−0.906552 + 0.422094i \(0.861295\pi\)
\(594\) 0.0985760 + 0.303386i 0.00404462 + 0.0124481i
\(595\) 0 0
\(596\) −7.66507 + 23.5906i −0.313973 + 0.966311i
\(597\) −2.21454 0.116059i −0.0906351 0.00474998i
\(598\) 11.4740 4.40446i 0.469207 0.180112i
\(599\) −31.0038 + 17.9000i −1.26678 + 0.731376i −0.974377 0.224919i \(-0.927788\pi\)
−0.292403 + 0.956295i \(0.594455\pi\)
\(600\) 0 0
\(601\) 12.5021i 0.509971i 0.966945 + 0.254985i \(0.0820706\pi\)
−0.966945 + 0.254985i \(0.917929\pi\)
\(602\) −6.86242 + 17.2085i −0.279691 + 0.701365i
\(603\) −6.31358 + 3.21693i −0.257109 + 0.131004i
\(604\) −10.9497 + 9.85917i −0.445538 + 0.401164i
\(605\) 0 0
\(606\) −1.36801 + 1.51933i −0.0555716 + 0.0617185i
\(607\) −30.0359 + 8.04810i −1.21912 + 0.326662i −0.810334 0.585968i \(-0.800715\pi\)
−0.408786 + 0.912630i \(0.634048\pi\)
\(608\) −6.45243 3.28768i −0.261681 0.133333i
\(609\) −1.09407 + 0.217798i −0.0443338 + 0.00882564i
\(610\) 0 0
\(611\) 0.493760 + 4.69781i 0.0199754 + 0.190053i
\(612\) −20.4980 + 16.5989i −0.828581 + 0.670971i
\(613\) −3.62060 + 2.93190i −0.146235 + 0.118418i −0.699646 0.714490i \(-0.746659\pi\)
0.553412 + 0.832908i \(0.313326\pi\)
\(614\) 1.28397 + 12.2162i 0.0518170 + 0.493006i
\(615\) 0 0
\(616\) 3.27928 0.652814i 0.132126 0.0263026i
\(617\) −22.0504 11.2353i −0.887717 0.452314i −0.0502084 0.998739i \(-0.515989\pi\)
−0.837508 + 0.546424i \(0.815989\pi\)
\(618\) 1.23666 0.331361i 0.0497456 0.0133293i
\(619\) −3.10323 + 3.44649i −0.124729 + 0.138526i −0.802275 0.596955i \(-0.796377\pi\)
0.677545 + 0.735481i \(0.263044\pi\)
\(620\) 0 0
\(621\) 3.27544 2.94922i 0.131439 0.118348i
\(622\) −0.301521 + 0.153633i −0.0120899 + 0.00616011i
\(623\) 9.10391 22.8293i 0.364740 0.914638i
\(624\) 0.165703i 0.00663341i
\(625\) 0 0
\(626\) 1.52626 0.881189i 0.0610018 0.0352194i
\(627\) 0.0757918 0.0290937i 0.00302683 0.00116189i
\(628\) 1.03408 + 0.0541936i 0.0412641 + 0.00216256i
\(629\) 11.6593 35.8837i 0.464887 1.43078i
\(630\) 0 0
\(631\) −8.92894 27.4805i −0.355456 1.09398i −0.955745 0.294197i \(-0.904948\pi\)
0.600289 0.799783i \(-0.295052\pi\)
\(632\) 7.04972 + 26.3099i 0.280423 + 1.04655i
\(633\) 0.0342090 + 0.652746i 0.00135968 + 0.0259443i
\(634\) −4.97567 0.522964i −0.197609 0.0207696i
\(635\) 0 0
\(636\) −0.785043 1.08052i −0.0311290 0.0428454i
\(637\) 13.7546 + 14.4854i 0.544977 + 0.573932i
\(638\) 0.178447 + 1.12667i 0.00706479 + 0.0446053i
\(639\) −23.7349 + 2.49464i −0.938939 + 0.0986865i
\(640\) 0 0
\(641\) 1.38534 13.1806i 0.0547175 0.520602i −0.932494 0.361186i \(-0.882372\pi\)
0.987211 0.159416i \(-0.0509612\pi\)
\(642\) 0.151035 + 0.232573i 0.00596088 + 0.00917894i
\(643\) −11.0712 + 11.0712i −0.436605 + 0.436605i −0.890868 0.454263i \(-0.849903\pi\)
0.454263 + 0.890868i \(0.349903\pi\)
\(644\) −10.6357 15.0442i −0.419104 0.592825i
\(645\) 0 0
\(646\) −4.57402 5.07997i −0.179963 0.199869i
\(647\) 16.5451 + 10.7445i 0.650453 + 0.422409i 0.827247 0.561839i \(-0.189906\pi\)
−0.176794 + 0.984248i \(0.556573\pi\)
\(648\) −8.63098 22.4845i −0.339057 0.883274i
\(649\) −0.565467 + 0.979418i −0.0221965 + 0.0384455i
\(650\) 0 0
\(651\) 3.90914 + 0.883916i 0.153211 + 0.0346434i
\(652\) −4.49284 + 28.3666i −0.175953 + 1.11092i
\(653\) −0.126284 + 2.40963i −0.00494186 + 0.0942963i −0.999987 0.00512946i \(-0.998367\pi\)
0.995045 + 0.0994257i \(0.0317006\pi\)
\(654\) −2.08635 + 0.443468i −0.0815829 + 0.0173410i
\(655\) 0 0
\(656\) −0.280515 + 1.31972i −0.0109523 + 0.0515263i
\(657\) −13.3904 13.3904i −0.522409 0.522409i
\(658\) −3.37135 + 1.24435i −0.131429 + 0.0485096i
\(659\) 8.37171 11.5227i 0.326116 0.448859i −0.614207 0.789145i \(-0.710524\pi\)
0.940322 + 0.340286i \(0.110524\pi\)
\(660\) 0 0
\(661\) 2.90913 6.53401i 0.113152 0.254144i −0.848089 0.529854i \(-0.822247\pi\)
0.961241 + 0.275711i \(0.0889132\pi\)
\(662\) −8.77340 10.8342i −0.340988 0.421085i
\(663\) 0.957888 2.49538i 0.0372013 0.0969127i
\(664\) −22.2106 + 16.1369i −0.861938 + 0.626235i
\(665\) 0 0
\(666\) 11.1901 + 8.13006i 0.433606 + 0.315033i
\(667\) 13.2183 8.58408i 0.511816 0.332377i
\(668\) −11.4854 3.07750i −0.444383 0.119072i
\(669\) 0.230888 + 0.207892i 0.00892663 + 0.00803758i
\(670\) 0 0
\(671\) 0.332679 + 0.108094i 0.0128429 + 0.00417292i
\(672\) 2.08789 0.530597i 0.0805419 0.0204682i
\(673\) −11.9953 1.89988i −0.462386 0.0732348i −0.0791047 0.996866i \(-0.525206\pi\)
−0.383282 + 0.923631i \(0.625206\pi\)
\(674\) −13.6762 7.89599i −0.526789 0.304142i
\(675\) 0 0
\(676\) 3.22178 + 5.58028i 0.123914 + 0.214626i
\(677\) 32.0258 39.5485i 1.23085 1.51997i 0.453018 0.891501i \(-0.350347\pi\)
0.777832 0.628472i \(-0.216319\pi\)
\(678\) −0.515486 1.01170i −0.0197971 0.0388541i
\(679\) −22.8862 0.296074i −0.878292 0.0113623i
\(680\) 0 0
\(681\) −0.916933 0.194900i −0.0351369 0.00746859i
\(682\) 1.06072 3.95865i 0.0406170 0.151585i
\(683\) −9.20064 + 0.482185i −0.352053 + 0.0184503i −0.227543 0.973768i \(-0.573069\pi\)
−0.124510 + 0.992218i \(0.539736\pi\)
\(684\) −4.51095 + 2.00840i −0.172481 + 0.0767933i
\(685\) 0 0
\(686\) −8.10327 + 12.8561i −0.309384 + 0.490847i
\(687\) 1.57312 0.249157i 0.0600181 0.00950593i
\(688\) −3.29464 1.26470i −0.125607 0.0482160i
\(689\) −18.6903 8.32147i −0.712044 0.317023i
\(690\) 0 0
\(691\) 0.160128 + 0.359653i 0.00609156 + 0.0136819i 0.916566 0.399884i \(-0.130950\pi\)
−0.910474 + 0.413566i \(0.864283\pi\)
\(692\) −8.75330 + 17.1793i −0.332751 + 0.653060i
\(693\) 1.69925 3.23095i 0.0645492 0.122734i
\(694\) 17.3031 5.62211i 0.656816 0.213412i
\(695\) 0 0
\(696\) 0.239293 + 1.12579i 0.00907039 + 0.0426728i
\(697\) −11.8534 + 18.2526i −0.448979 + 0.691366i
\(698\) 10.8935 + 8.82139i 0.412325 + 0.333894i
\(699\) 0.363698 0.0137563
\(700\) 0 0
\(701\) 46.4699 1.75515 0.877573 0.479443i \(-0.159161\pi\)
0.877573 + 0.479443i \(0.159161\pi\)
\(702\) 1.52805 + 1.23739i 0.0576724 + 0.0467022i
\(703\) 3.84706 5.92396i 0.145095 0.223426i
\(704\) −0.378392 1.78019i −0.0142612 0.0670936i
\(705\) 0 0
\(706\) −13.9037 + 4.51760i −0.523274 + 0.170022i
\(707\) 46.9109 1.85037i 1.76427 0.0695902i
\(708\) −0.206594 + 0.405464i −0.00776428 + 0.0152383i
\(709\) −14.0994 31.6677i −0.529513 1.18931i −0.958264 0.285883i \(-0.907713\pi\)
0.428752 0.903422i \(-0.358954\pi\)
\(710\) 0 0
\(711\) 27.1672 + 12.0956i 1.01885 + 0.453622i
\(712\) −23.6734 9.08736i −0.887197 0.340563i
\(713\) −55.9283 + 8.85817i −2.09453 + 0.331741i
\(714\) 2.01943 + 0.238700i 0.0755752 + 0.00893312i
\(715\) 0 0
\(716\) −11.7190 + 5.21762i −0.437958 + 0.194991i
\(717\) 2.28773 0.119895i 0.0854370 0.00447756i
\(718\) 3.00687 11.2218i 0.112215 0.418793i
\(719\) 35.7822 + 7.60574i 1.33445 + 0.283646i 0.819257 0.573427i \(-0.194386\pi\)
0.515194 + 0.857073i \(0.327720\pi\)
\(720\) 0 0
\(721\) −25.2683 15.0278i −0.941042 0.559665i
\(722\) 6.49691 + 12.7509i 0.241790 + 0.474539i
\(723\) 0.700183 0.864654i 0.0260401 0.0321568i
\(724\) −13.3352 23.0973i −0.495599 0.858403i
\(725\) 0 0
\(726\) −1.07620 0.621344i −0.0399415 0.0230602i
\(727\) 36.2364 + 5.73928i 1.34393 + 0.212858i 0.786616 0.617442i \(-0.211831\pi\)
0.557316 + 0.830300i \(0.311831\pi\)
\(728\) 14.7603 14.3833i 0.547052 0.533079i
\(729\) −24.6715 8.01626i −0.913759 0.296898i
\(730\) 0 0
\(731\) −42.3045 38.0912i −1.56469 1.40885i
\(732\) 0.135955 + 0.0364291i 0.00502505 + 0.00134646i
\(733\) −14.2128 + 9.22991i −0.524963 + 0.340915i −0.779759 0.626080i \(-0.784658\pi\)
0.254796 + 0.966995i \(0.417992\pi\)
\(734\) 13.5820 + 9.86791i 0.501321 + 0.364231i
\(735\) 0 0
\(736\) −24.6238 + 17.8903i −0.907647 + 0.659444i
\(737\) −0.394474 + 1.02764i −0.0145306 + 0.0378536i
\(738\) −5.02099 6.20041i −0.184825 0.228240i
\(739\) −3.74205 + 8.40479i −0.137654 + 0.309175i −0.969198 0.246283i \(-0.920791\pi\)
0.831544 + 0.555459i \(0.187457\pi\)
\(740\) 0 0
\(741\) 0.294127 0.404831i 0.0108050 0.0148718i
\(742\) 2.63352 15.3403i 0.0966796 0.563162i
\(743\) −28.0230 28.0230i −1.02806 1.02806i −0.999595 0.0284701i \(-0.990936\pi\)
−0.0284701 0.999595i \(-0.509064\pi\)
\(744\) 0.859720 4.04466i 0.0315189 0.148285i
\(745\) 0 0
\(746\) 5.84696 1.24281i 0.214073 0.0455025i
\(747\) −1.56871 + 29.9328i −0.0573961 + 1.09518i
\(748\) −0.640965 + 4.04689i −0.0234360 + 0.147969i
\(749\) 1.40444 6.21119i 0.0513172 0.226952i
\(750\) 0 0
\(751\) 21.1806 36.6859i 0.772892 1.33869i −0.163080 0.986613i \(-0.552143\pi\)
0.935972 0.352075i \(-0.114524\pi\)
\(752\) −0.245320 0.639081i −0.00894591 0.0233049i
\(753\) −1.54559 1.00372i −0.0563244 0.0365775i
\(754\) 4.70472 + 5.22512i 0.171336 + 0.190288i
\(755\) 0 0
\(756\) 1.23359 2.67696i 0.0448654 0.0973599i
\(757\) 21.6112 21.6112i 0.785474 0.785474i −0.195275 0.980749i \(-0.562560\pi\)
0.980749 + 0.195275i \(0.0625599\pi\)
\(758\) 1.87833 + 2.89237i 0.0682239 + 0.105056i
\(759\) 0.0356665 0.339344i 0.00129461 0.0123174i
\(760\) 0 0
\(761\) −39.3434 + 4.13516i −1.42620 + 0.149899i −0.785960 0.618277i \(-0.787831\pi\)
−0.640238 + 0.768177i \(0.721164\pi\)
\(762\) 0.118515 + 0.748276i 0.00429335 + 0.0271072i
\(763\) 40.7294 + 27.2055i 1.47450 + 0.984904i
\(764\) 19.3591 + 26.6455i 0.700388 + 0.964001i
\(765\) 0 0
\(766\) 18.2175 + 1.91474i 0.658225 + 0.0691822i
\(767\) 0.364824 + 6.96125i 0.0131730 + 0.251356i
\(768\) −0.535378 1.99806i −0.0193188 0.0720987i
\(769\) −0.678119 2.08704i −0.0244536 0.0752604i 0.938085 0.346405i \(-0.112598\pi\)
−0.962539 + 0.271145i \(0.912598\pi\)
\(770\) 0 0
\(771\) −0.0857432 + 0.263890i −0.00308796 + 0.00950378i
\(772\) 18.7478 + 0.982531i 0.674748 + 0.0353620i
\(773\) 43.6415 16.7524i 1.56968 0.602542i 0.590768 0.806842i \(-0.298825\pi\)
0.978908 + 0.204299i \(0.0654915\pi\)
\(774\) 18.0729 10.4344i 0.649618 0.375057i
\(775\) 0 0
\(776\) 23.6145i 0.847711i
\(777\) 0.301832 + 2.07944i 0.0108282 + 0.0745996i
\(778\) 4.92045 2.50710i 0.176407 0.0898837i
\(779\) −3.02787 + 2.72630i −0.108485 + 0.0976800i
\(780\) 0 0
\(781\) −2.48072 + 2.75512i −0.0887673 + 0.0985860i
\(782\) −27.7515 + 7.43600i −0.992393 + 0.265911i
\(783\) 2.24666 + 1.14473i 0.0802890 + 0.0409093i
\(784\) −2.46869 1.51177i −0.0881674 0.0539917i
\(785\) 0 0
\(786\) 0.132986 + 1.26528i 0.00474346 + 0.0451310i
\(787\) 29.8811 24.1972i 1.06515 0.862538i 0.0742593 0.997239i \(-0.476341\pi\)
0.990886 + 0.134701i \(0.0430074\pi\)
\(788\) 21.4665 17.3832i 0.764711 0.619251i
\(789\) 0.161419 + 1.53580i 0.00574668 + 0.0546761i
\(790\) 0 0
\(791\) −8.37734 + 24.6913i −0.297864 + 0.877923i
\(792\) −3.35589 1.70991i −0.119246 0.0607590i
\(793\) 2.08261 0.558034i 0.0739556 0.0198164i
\(794\) −8.98229 + 9.97584i −0.318770 + 0.354029i
\(795\) 0 0
\(796\) 15.5709 14.0201i 0.551897 0.496930i
\(797\) 8.48456 4.32310i 0.300539 0.153132i −0.297218 0.954810i \(-0.596059\pi\)
0.597757 + 0.801678i \(0.296059\pi\)
\(798\) 0.353610 + 0.141013i 0.0125177 + 0.00499181i
\(799\) 11.0423i 0.390650i
\(800\) 0 0
\(801\) −23.9761 + 13.8426i −0.847155 + 0.489105i
\(802\) 4.90064 1.88118i 0.173048 0.0664268i
\(803\) −2.93770 0.153958i −0.103669 0.00543306i
\(804\) −0.136869 + 0.421239i −0.00482700 + 0.0148560i
\(805\) 0 0
\(806\) −7.80606 24.0246i −0.274957 0.846229i
\(807\) 0.204813 + 0.764371i 0.00720975 + 0.0269071i
\(808\) −2.53501 48.3710i −0.0891815 1.70168i
\(809\) 10.2584 + 1.07820i 0.360666 + 0.0379075i 0.283129 0.959082i \(-0.408628\pi\)
0.0775373 + 0.996989i \(0.475294\pi\)
\(810\) 0 0
\(811\) 2.44836 + 3.36987i 0.0859734 + 0.118332i 0.849837 0.527045i \(-0.176700\pi\)
−0.763864 + 0.645377i \(0.776700\pi\)
\(812\) 5.85442 8.76467i 0.205450 0.307580i
\(813\) 0.603151 + 3.80814i 0.0211534 + 0.133557i
\(814\) 2.13689 0.224597i 0.0748981 0.00787211i
\(815\) 0 0
\(816\) −0.0404896 + 0.385233i −0.00141742 + 0.0134858i
\(817\) −5.80433 8.93789i −0.203068 0.312697i
\(818\) 2.73953 2.73953i 0.0957856 0.0957856i
\(819\) −2.06234 22.4064i −0.0720638 0.782942i
\(820\) 0 0
\(821\) −21.6998 24.1000i −0.757328 0.841098i 0.234038 0.972228i \(-0.424806\pi\)
−0.991365 + 0.131130i \(0.958139\pi\)
\(822\) 0.132784 + 0.0862309i 0.00463137 + 0.00300765i
\(823\) 15.4955 + 40.3671i 0.540139 + 1.40711i 0.883733 + 0.467992i \(0.155022\pi\)
−0.343594 + 0.939118i \(0.611644\pi\)
\(824\) −15.1662 + 26.2686i −0.528340 + 0.915111i
\(825\) 0 0
\(826\) −5.06443 + 1.57340i −0.176214 + 0.0547456i
\(827\) −0.940691 + 5.93929i −0.0327110 + 0.206529i −0.998631 0.0523125i \(-0.983341\pi\)
0.965920 + 0.258842i \(0.0833408\pi\)
\(828\) −1.08616 + 20.7252i −0.0377467 + 0.720250i
\(829\) 9.42367 2.00306i 0.327297 0.0695692i −0.0413325 0.999145i \(-0.513160\pi\)
0.368630 + 0.929576i \(0.379827\pi\)
\(830\) 0 0
\(831\) −0.380754 + 1.79131i −0.0132082 + 0.0621397i
\(832\) −7.93220 7.93220i −0.274999 0.274999i
\(833\) −28.4378 37.0373i −0.985312 1.28327i
\(834\) −0.226666 + 0.311979i −0.00784881 + 0.0108030i
\(835\) 0 0
\(836\) −0.311993 + 0.700748i −0.0107905 + 0.0242359i
\(837\) −5.70104 7.04020i −0.197057 0.243345i
\(838\) 4.67559 12.1803i 0.161516 0.420762i
\(839\) 32.1825 23.3819i 1.11106 0.807234i 0.128232 0.991744i \(-0.459070\pi\)
0.982831 + 0.184510i \(0.0590698\pi\)
\(840\) 0 0
\(841\) −16.1669 11.7459i −0.557479 0.405032i
\(842\) 19.7637 12.8347i 0.681101 0.442312i
\(843\) −3.10610 0.832276i −0.106980 0.0286651i
\(844\) −4.58960 4.13249i −0.157980 0.142246i
\(845\) 0 0
\(846\) 3.84992 + 1.25092i 0.132363 + 0.0430073i
\(847\) 7.02853 + 27.6571i 0.241503 + 0.950308i
\(848\) 2.92839 + 0.463812i 0.100561 + 0.0159274i
\(849\) 0.0827277 + 0.0477629i 0.00283921 + 0.00163922i
\(850\) 0 0
\(851\) −14.8438 25.7103i −0.508840 0.881337i
\(852\) −0.938800 + 1.15932i −0.0321628 + 0.0397177i
\(853\) −11.8947 23.3447i −0.407267 0.799307i 0.592714 0.805413i \(-0.298056\pi\)
−0.999981 + 0.00610592i \(0.998056\pi\)
\(854\) 0.801699 + 1.43102i 0.0274336 + 0.0489685i
\(855\) 0 0
\(856\) −6.42651 1.36600i −0.219654 0.0466888i
\(857\) 2.16145 8.06662i 0.0738336 0.275551i −0.919133 0.393948i \(-0.871109\pi\)
0.992966 + 0.118397i \(0.0377757\pi\)
\(858\) 0.152009 0.00796644i 0.00518949 0.000271970i
\(859\) −4.68878 + 2.08758i −0.159979 + 0.0712273i −0.485164 0.874423i \(-0.661240\pi\)
0.325185 + 0.945650i \(0.394573\pi\)
\(860\) 0 0
\(861\) 0.142275 1.20366i 0.00484871 0.0410207i
\(862\) −20.9478 + 3.31781i −0.713486 + 0.113005i
\(863\) 1.58461 + 0.608273i 0.0539406 + 0.0207059i 0.385189 0.922838i \(-0.374136\pi\)
−0.331248 + 0.943544i \(0.607470\pi\)
\(864\) −4.44835 1.98053i −0.151336 0.0673791i
\(865\) 0 0
\(866\) −8.79311 19.7497i −0.298802 0.671120i
\(867\) −1.75300 + 3.44045i −0.0595349 + 0.116844i
\(868\) −32.0228 + 20.2118i −1.08693 + 0.686033i
\(869\) 4.39355 1.42755i 0.149041 0.0484263i
\(870\) 0 0
\(871\) 1.41063 + 6.63650i 0.0477974 + 0.224869i
\(872\) 27.5229 42.3816i 0.932043 1.43522i
\(873\) 20.0365 + 16.2252i 0.678132 + 0.549141i
\(874\) −5.37865 −0.181936
\(875\) 0 0
\(876\) −1.18369 −0.0399930
\(877\) −8.68941 7.03655i −0.293421 0.237607i 0.471294 0.881976i \(-0.343787\pi\)
−0.764715 + 0.644369i \(0.777120\pi\)
\(878\) −16.2563 + 25.0325i −0.548623 + 0.844805i
\(879\) 0.741619 + 3.48904i 0.0250142 + 0.117682i
\(880\) 0 0
\(881\) −19.9227 + 6.47328i −0.671213 + 0.218090i −0.624744 0.780829i \(-0.714797\pi\)
−0.0464689 + 0.998920i \(0.514797\pi\)
\(882\) 16.1346 5.71916i 0.543281 0.192574i
\(883\) 20.5259 40.2843i 0.690751 1.35567i −0.232923 0.972495i \(-0.574829\pi\)
0.923674 0.383180i \(-0.125171\pi\)
\(884\) 10.2721 + 23.0716i 0.345489 + 0.775982i
\(885\) 0 0
\(886\) 13.3543 + 5.94570i 0.448645 + 0.199750i
\(887\) 32.7322 + 12.5647i 1.09904 + 0.421881i 0.839229 0.543778i \(-0.183007\pi\)
0.259810 + 0.965660i \(0.416340\pi\)
\(888\) 2.14123 0.339137i 0.0718549 0.0113807i
\(889\) 10.4069 13.9410i 0.349037 0.467568i
\(890\) 0 0
\(891\) −3.73160 + 1.66142i −0.125013 + 0.0556595i
\(892\) −2.93152 + 0.153635i −0.0981547 + 0.00514407i
\(893\) 0.535041 1.99680i 0.0179045 0.0668204i
\(894\) −2.10708 0.447873i −0.0704711 0.0149791i
\(895\) 0 0
\(896\) −11.3222 + 19.0376i −0.378248 + 0.636000i
\(897\) −0.954813 1.87393i −0.0318803 0.0625686i
\(898\) 4.48295 5.53598i 0.149598 0.184738i
\(899\) −16.1972 28.0544i −0.540208 0.935668i
\(900\) 0 0
\(901\) 41.4188 + 23.9131i 1.37986 + 0.796662i
\(902\) −1.22414 0.193885i −0.0407594 0.00645566i
\(903\) 3.05138 + 0.860072i 0.101544 + 0.0286214i
\(904\) 25.5846 + 8.31294i 0.850932 + 0.276484i
\(905\) 0 0
\(906\) −0.950922 0.856214i −0.0315923 0.0284458i
\(907\) −17.0051 4.55651i −0.564646 0.151296i −0.0348060 0.999394i \(-0.511081\pi\)
−0.529840 + 0.848098i \(0.677748\pi\)
\(908\) 7.42824 4.82396i 0.246515 0.160089i
\(909\) −42.7837 31.0842i −1.41904 1.03100i
\(910\) 0 0
\(911\) −17.7761 + 12.9151i −0.588949 + 0.427897i −0.841939 0.539572i \(-0.818586\pi\)
0.252990 + 0.967469i \(0.418586\pi\)
\(912\) −0.0259877 + 0.0677003i −0.000860539 + 0.00224178i
\(913\) 2.93027 + 3.61859i 0.0969779 + 0.119758i
\(914\) 8.92123 20.0374i 0.295088 0.662778i
\(915\) 0 0
\(916\) −8.84547 + 12.1747i −0.292263 + 0.402265i
\(917\) 18.6777 22.4646i 0.616793 0.741846i
\(918\) −3.25012 3.25012i −0.107270 0.107270i
\(919\) 3.37742 15.8895i 0.111411 0.524147i −0.886680 0.462384i \(-0.846994\pi\)
0.998091 0.0617633i \(-0.0196724\pi\)
\(920\) 0 0
\(921\) 2.05605 0.437028i 0.0677493 0.0144006i
\(922\) 0.0237782 0.453716i 0.000783095 0.0149423i
\(923\) −3.57475 + 22.5701i −0.117664 + 0.742903i
\(924\) −0.0676997 0.217910i −0.00222716 0.00716872i
\(925\) 0 0
\(926\) 14.2836 24.7399i 0.469388 0.813004i
\(927\) 11.8680 + 30.9171i 0.389795 + 1.01545i
\(928\) −14.6032 9.48345i −0.479375 0.311310i
\(929\) −12.6320 14.0292i −0.414441 0.460283i 0.499391 0.866377i \(-0.333557\pi\)
−0.913831 + 0.406094i \(0.866891\pi\)
\(930\) 0 0
\(931\) −3.34786 8.07542i −0.109722 0.264661i
\(932\) −2.42989 + 2.42989i −0.0795939 + 0.0795939i
\(933\) 0.0315394 + 0.0485665i 0.00103255 + 0.00158999i
\(934\) 2.71453 25.8270i 0.0888220 0.845085i
\(935\) 0 0
\(936\) −23.0880 + 2.42665i −0.754655 + 0.0793175i
\(937\) 5.52877 + 34.9073i 0.180617 + 1.14037i 0.896792 + 0.442451i \(0.145891\pi\)
−0.716175 + 0.697920i \(0.754109\pi\)
\(938\) −4.62901 + 2.28366i −0.151142 + 0.0745641i
\(939\) −0.177266 0.243986i −0.00578486 0.00796218i
\(940\) 0 0
\(941\) 41.6382 + 4.37635i 1.35737 + 0.142665i 0.755089 0.655623i \(-0.227594\pi\)
0.602277 + 0.798287i \(0.294260\pi\)
\(942\) 0.00470641 + 0.0898037i 0.000153343 + 0.00292596i
\(943\) 4.43216 + 16.5410i 0.144331 + 0.538650i
\(944\) −0.312168 0.960754i −0.0101602 0.0312699i
\(945\) 0 0
\(946\) 1.00178 3.08317i 0.0325708 0.100243i
\(947\) −0.712534 0.0373423i −0.0231542 0.00121346i 0.0407553 0.999169i \(-0.487024\pi\)
−0.0639096 + 0.997956i \(0.520357\pi\)
\(948\) 1.73538 0.666150i 0.0563625 0.0216356i
\(949\) −15.7029 + 9.06605i −0.509736 + 0.294296i
\(950\) 0 0
\(951\) 0.856142i 0.0277623i
\(952\) −37.8299 + 29.8322i −1.22608 + 0.966866i
\(953\) −19.8369 + 10.1074i −0.642581 + 0.327411i −0.744738 0.667357i \(-0.767426\pi\)
0.102157 + 0.994768i \(0.467426\pi\)
\(954\) −13.0294 + 11.7317i −0.421842 + 0.379828i
\(955\) 0 0
\(956\) −14.4835 + 16.0856i −0.468430 + 0.520244i
\(957\) 0.188551 0.0505221i 0.00609500 0.00163315i
\(958\) −15.7594 8.02981i −0.509163 0.259431i
\(959\) −0.709838 3.56573i −0.0229219 0.115143i
\(960\) 0 0
\(961\) 8.92517 + 84.9173i 0.287909 + 2.73927i
\(962\) 10.2924 8.33463i 0.331840 0.268719i
\(963\) −5.57460 + 4.51422i −0.179639 + 0.145469i
\(964\) 1.09884 + 10.4548i 0.0353914 + 0.336726i
\(965\) 0 0
\(966\) 1.20280 1.05516i 0.0386995 0.0339491i
\(967\) −24.2914 12.3771i −0.781158 0.398020i 0.0174683 0.999847i \(-0.494439\pi\)
−0.798626 + 0.601828i \(0.794439\pi\)
\(968\) 28.4386 7.62010i 0.914051 0.244919i
\(969\) −0.782720 + 0.869299i −0.0251446 + 0.0279259i
\(970\) 0 0
\(971\) 18.6304 16.7749i 0.597879 0.538332i −0.313666 0.949533i \(-0.601557\pi\)
0.911545 + 0.411201i \(0.134891\pi\)
\(972\) −4.44236 + 2.26350i −0.142489 + 0.0726017i
\(973\) 8.76343 1.27201i 0.280943 0.0407789i
\(974\) 14.5847i 0.467322i
\(975\) 0 0
\(976\) −0.270594 + 0.156227i −0.00866150 + 0.00500072i
\(977\) 15.6621 6.01214i 0.501077 0.192345i −0.0946840 0.995507i \(-0.530184\pi\)
0.595761 + 0.803162i \(0.296851\pi\)
\(978\) −2.49078 0.130536i −0.0796462 0.00417408i
\(979\) −1.32900 + 4.09024i −0.0424750 + 0.130725i
\(980\) 0 0
\(981\) −17.0494 52.4725i −0.544344 1.67532i
\(982\) −4.29496 16.0290i −0.137058 0.511506i
\(983\) −0.837455 15.9796i −0.0267107 0.509670i −0.978923 0.204232i \(-0.934530\pi\)
0.952212 0.305438i \(-0.0988029\pi\)
\(984\) −1.24366 0.130713i −0.0396463 0.00416699i
\(985\) 0 0
\(986\) −9.66099 13.2972i −0.307669 0.423469i
\(987\) 0.272074 + 0.551497i 0.00866020 + 0.0175543i
\(988\) 0.739622 + 4.66979i 0.0235305 + 0.148566i
\(989\) −44.5465 + 4.68203i −1.41650 + 0.148880i
\(990\) 0 0
\(991\) −2.76479 + 26.3052i −0.0878264 + 0.835612i 0.858590 + 0.512663i \(0.171341\pi\)
−0.946416 + 0.322949i \(0.895326\pi\)
\(992\) 34.0716 + 52.4657i 1.08178 + 1.66579i
\(993\) −1.68690 + 1.68690i −0.0535321 + 0.0535321i
\(994\) −17.3116 + 1.59340i −0.549090 + 0.0505395i
\(995\) 0 0
\(996\) 1.25366 + 1.39233i 0.0397239 + 0.0441178i
\(997\) 7.75776 + 5.03795i 0.245691 + 0.159553i 0.661610 0.749848i \(-0.269873\pi\)
−0.415919 + 0.909402i \(0.636540\pi\)
\(998\) −6.85262 17.8517i −0.216916 0.565085i
\(999\) 2.37475 4.11318i 0.0751337 0.130135i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 875.2.bb.a.593.8 288
5.2 odd 4 875.2.bb.c.782.11 288
5.3 odd 4 175.2.x.a.152.8 yes 288
5.4 even 2 875.2.bb.b.593.11 288
7.3 odd 6 inner 875.2.bb.a.843.11 288
25.9 even 10 175.2.x.a.138.8 yes 288
25.12 odd 20 inner 875.2.bb.a.82.11 288
25.13 odd 20 875.2.bb.b.82.8 288
25.16 even 5 875.2.bb.c.418.11 288
35.3 even 12 175.2.x.a.52.8 yes 288
35.17 even 12 875.2.bb.c.157.11 288
35.24 odd 6 875.2.bb.b.843.8 288
175.38 even 60 875.2.bb.b.332.11 288
175.59 odd 30 175.2.x.a.38.8 288
175.66 odd 30 875.2.bb.c.668.11 288
175.87 even 60 inner 875.2.bb.a.332.8 288
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
175.2.x.a.38.8 288 175.59 odd 30
175.2.x.a.52.8 yes 288 35.3 even 12
175.2.x.a.138.8 yes 288 25.9 even 10
175.2.x.a.152.8 yes 288 5.3 odd 4
875.2.bb.a.82.11 288 25.12 odd 20 inner
875.2.bb.a.332.8 288 175.87 even 60 inner
875.2.bb.a.593.8 288 1.1 even 1 trivial
875.2.bb.a.843.11 288 7.3 odd 6 inner
875.2.bb.b.82.8 288 25.13 odd 20
875.2.bb.b.332.11 288 175.38 even 60
875.2.bb.b.593.11 288 5.4 even 2
875.2.bb.b.843.8 288 35.24 odd 6
875.2.bb.c.157.11 288 35.17 even 12
875.2.bb.c.418.11 288 25.16 even 5
875.2.bb.c.668.11 288 175.66 odd 30
875.2.bb.c.782.11 288 5.2 odd 4