Properties

Label 875.2.bb.a
Level 875875
Weight 22
Character orbit 875.bb
Analytic conductor 6.9876.987
Analytic rank 00
Dimension 288288
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [875,2,Mod(82,875)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("875.82"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(875, base_ring=CyclotomicField(60)) chi = DirichletCharacter(H, H._module([27, 50])) N = Newforms(chi, 2, names="a")
 
Level: N N == 875=537 875 = 5^{3} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 875.bb (of order 6060, degree 1616, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [288,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 6.986910176866.98691017686
Analytic rank: 00
Dimension: 288288
Relative dimension: 1818 over Q(ζ60)\Q(\zeta_{60})
Twist minimal: no (minimal twist has level 175)
Sato-Tate group: SU(2)[C60]\mathrm{SU}(2)[C_{60}]

qq-expansion

The algebraic qq-expansion of this newform has not been computed, but we have computed the trace expansion.

Tr(f)(q)=\operatorname{Tr}(f)(q) = 288q2q26q3+10q4+10q764q8+10q96q11+6q12+20q1430q16+12q17+14q18+30q1912q21+8q2230q2348q26+58q28+62q98+O(q100) 288 q - 2 q^{2} - 6 q^{3} + 10 q^{4} + 10 q^{7} - 64 q^{8} + 10 q^{9} - 6 q^{11} + 6 q^{12} + 20 q^{14} - 30 q^{16} + 12 q^{17} + 14 q^{18} + 30 q^{19} - 12 q^{21} + 8 q^{22} - 30 q^{23} - 48 q^{26} + 58 q^{28}+ \cdots - 62 q^{98}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
82.1 −2.53114 0.971615i 0.977922 0.0512507i 3.97637 + 3.58034i 0 −2.52506 0.820441i 2.54155 0.735207i −4.12431 8.09441i −2.02986 + 0.213347i 0
82.2 −2.18349 0.838165i −1.19738 + 0.0627519i 2.57884 + 2.32200i 0 2.66706 + 0.866582i −2.62853 + 0.301393i −1.56104 3.06372i −1.55379 + 0.163310i 0
82.3 −2.07887 0.798002i −2.97775 + 0.156057i 2.19859 + 1.97962i 0 6.31487 + 2.05183i 1.33917 2.28180i −0.968973 1.90172i 5.85905 0.615811i 0
82.4 −1.81626 0.697196i 2.40177 0.125871i 1.32642 + 1.19431i 0 −4.44999 1.44589i 2.13721 1.55960i 0.190005 + 0.372906i 2.76909 0.291043i 0
82.5 −1.47859 0.567578i −0.936069 + 0.0490573i 0.377800 + 0.340173i 0 1.41191 + 0.458757i 0.0623449 + 2.64502i 1.07251 + 2.10492i −2.10975 + 0.221743i 0
82.6 −0.782618 0.300419i 2.02474 0.106112i −0.964050 0.868035i 0 −1.61648 0.525226i 0.522392 + 2.59367i 1.25487 + 2.46282i 1.10477 0.116116i 0
82.7 −0.596349 0.228917i 0.0491972 0.00257832i −1.18306 1.06523i 0 −0.0299289 0.00972449i −1.82620 1.91442i 1.04166 + 2.04438i −2.98115 + 0.313332i 0
82.8 −0.278809 0.107025i −3.11927 + 0.163474i −1.42001 1.27858i 0 0.887175 + 0.288261i −2.59603 + 0.510505i 0.530235 + 1.04064i 6.71954 0.706252i 0
82.9 0.00521563 + 0.00200209i −2.07789 + 0.108898i −1.48627 1.33824i 0 −0.0110555 0.00359216i 1.62930 + 2.08455i −0.0101452 0.0199110i 1.32220 0.138969i 0
82.10 0.252007 + 0.0967363i 1.95874 0.102653i −1.43214 1.28950i 0 0.503546 + 0.163612i 2.64466 + 0.0759508i −0.481263 0.944532i 0.842568 0.0885574i 0
82.11 0.766047 + 0.294058i −0.140222 + 0.00734873i −0.985932 0.887737i 0 −0.109578 0.0356039i 1.23154 2.34165i −1.23927 2.43220i −2.96396 + 0.311524i 0
82.12 0.957274 + 0.367463i 1.16281 0.0609404i −0.704945 0.634736i 0 1.13552 + 0.368954i −2.47964 + 0.922709i −1.37261 2.69390i −1.63515 + 0.171861i 0
82.13 1.30359 + 0.500401i 3.22509 0.169020i −0.0373446 0.0336253i 0 4.28878 + 1.39351i −2.37511 1.16570i −1.29970 2.55081i 7.38909 0.776624i 0
82.14 1.67005 + 0.641073i −0.719894 + 0.0377280i 0.891813 + 0.802992i 0 −1.22645 0.398497i −1.50450 + 2.17635i −0.649660 1.27503i −2.46674 + 0.259265i 0
82.15 1.78057 + 0.683496i −1.92325 + 0.100793i 1.21696 + 1.09576i 0 −3.49337 1.13506i 2.62152 + 0.357251i −0.313803 0.615873i 0.705160 0.0741153i 0
82.16 2.09413 + 0.803861i −2.97123 + 0.155716i 2.25290 + 2.02852i 0 −6.34732 2.06237i −1.16740 2.37427i 1.05050 + 2.06173i 5.82041 0.611750i 0
82.17 2.32523 + 0.892573i 1.91879 0.100560i 3.12372 + 2.81261i 0 4.55139 + 1.47884i 0.589885 2.57915i 2.49145 + 4.88974i 0.688086 0.0723207i 0
82.18 2.43619 + 0.935166i 0.773359 0.0405301i 3.57420 + 3.21822i 0 1.92195 + 0.624480i 0.425622 + 2.61129i 3.32847 + 6.53248i −2.38712 + 0.250897i 0
143.1 −0.145421 2.77479i −1.03115 0.835009i −5.68928 + 0.597968i 0 −2.16703 + 2.98265i 1.54641 + 2.14677i 1.61724 + 10.2108i −0.257705 1.21240i 0
143.2 −0.127179 2.42673i 1.58931 + 1.28700i −3.88379 + 0.408202i 0 2.92107 4.02051i −1.28591 2.31224i 0.724243 + 4.57269i 0.245810 + 1.15644i 0
See next 80 embeddings (of 288 total)
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 82.18
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.d odd 6 1 inner
25.f odd 20 1 inner
175.x even 60 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 875.2.bb.a 288
5.b even 2 1 875.2.bb.b 288
5.c odd 4 1 175.2.x.a 288
5.c odd 4 1 875.2.bb.c 288
7.d odd 6 1 inner 875.2.bb.a 288
25.d even 5 1 875.2.bb.c 288
25.e even 10 1 175.2.x.a 288
25.f odd 20 1 inner 875.2.bb.a 288
25.f odd 20 1 875.2.bb.b 288
35.i odd 6 1 875.2.bb.b 288
35.k even 12 1 175.2.x.a 288
35.k even 12 1 875.2.bb.c 288
175.u odd 30 1 175.2.x.a 288
175.v odd 30 1 875.2.bb.c 288
175.x even 60 1 inner 875.2.bb.a 288
175.x even 60 1 875.2.bb.b 288
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
175.2.x.a 288 5.c odd 4 1
175.2.x.a 288 25.e even 10 1
175.2.x.a 288 35.k even 12 1
175.2.x.a 288 175.u odd 30 1
875.2.bb.a 288 1.a even 1 1 trivial
875.2.bb.a 288 7.d odd 6 1 inner
875.2.bb.a 288 25.f odd 20 1 inner
875.2.bb.a 288 175.x even 60 1 inner
875.2.bb.b 288 5.b even 2 1
875.2.bb.b 288 25.f odd 20 1
875.2.bb.b 288 35.i odd 6 1
875.2.bb.b 288 175.x even 60 1
875.2.bb.c 288 5.c odd 4 1
875.2.bb.c 288 25.d even 5 1
875.2.bb.c 288 35.k even 12 1
875.2.bb.c 288 175.v odd 30 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T2288+2T22873T2286+18T2285+184T2284+184T2283++1 T_{2}^{288} + 2 T_{2}^{287} - 3 T_{2}^{286} + 18 T_{2}^{285} + 184 T_{2}^{284} + 184 T_{2}^{283} + \cdots + 1 acting on S2new(875,[χ])S_{2}^{\mathrm{new}}(875, [\chi]). Copy content Toggle raw display