Properties

Label 8700.2.a.bj.1.3
Level $8700$
Weight $2$
Character 8700.1
Self dual yes
Analytic conductor $69.470$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8700,2,Mod(1,8700)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8700, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8700.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8700 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8700.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-6,0,0,0,6,0,6,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(69.4698497585\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.71480896.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 7x^{4} + 12x^{3} + 11x^{2} - 10x - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 1740)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.511965\) of defining polynomial
Character \(\chi\) \(=\) 8700.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} +0.0863317 q^{7} +1.00000 q^{9} +1.70184 q^{11} +2.93760 q^{13} +7.61055 q^{17} +2.40053 q^{19} -0.0863317 q^{21} -1.94053 q^{23} -1.00000 q^{27} +1.00000 q^{29} +9.38449 q^{31} -1.70184 q^{33} +9.79606 q^{37} -2.93760 q^{39} -1.11691 q^{41} +8.39126 q^{43} +0.945743 q^{47} -6.99255 q^{49} -7.61055 q^{51} -2.71154 q^{53} -2.40053 q^{57} -7.86705 q^{59} -10.2279 q^{61} +0.0863317 q^{63} +2.92156 q^{67} +1.94053 q^{69} +8.31213 q^{71} -10.2197 q^{73} +0.146923 q^{77} +15.1831 q^{79} +1.00000 q^{81} +3.85101 q^{83} -1.00000 q^{87} -7.36238 q^{89} +0.253608 q^{91} -9.38449 q^{93} -1.01524 q^{97} +1.70184 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{3} + 6 q^{7} + 6 q^{9} + 4 q^{11} + 2 q^{13} + 2 q^{17} - 10 q^{19} - 6 q^{21} + 10 q^{23} - 6 q^{27} + 6 q^{29} - 14 q^{31} - 4 q^{33} + 2 q^{37} - 2 q^{39} - 12 q^{41} + 32 q^{43} + 10 q^{47}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 0.0863317 0.0326303 0.0163152 0.999867i \(-0.494806\pi\)
0.0163152 + 0.999867i \(0.494806\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 1.70184 0.513124 0.256562 0.966528i \(-0.417410\pi\)
0.256562 + 0.966528i \(0.417410\pi\)
\(12\) 0 0
\(13\) 2.93760 0.814743 0.407371 0.913263i \(-0.366445\pi\)
0.407371 + 0.913263i \(0.366445\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 7.61055 1.84583 0.922915 0.385005i \(-0.125800\pi\)
0.922915 + 0.385005i \(0.125800\pi\)
\(18\) 0 0
\(19\) 2.40053 0.550719 0.275360 0.961341i \(-0.411203\pi\)
0.275360 + 0.961341i \(0.411203\pi\)
\(20\) 0 0
\(21\) −0.0863317 −0.0188391
\(22\) 0 0
\(23\) −1.94053 −0.404628 −0.202314 0.979321i \(-0.564846\pi\)
−0.202314 + 0.979321i \(0.564846\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) 9.38449 1.68550 0.842752 0.538301i \(-0.180934\pi\)
0.842752 + 0.538301i \(0.180934\pi\)
\(32\) 0 0
\(33\) −1.70184 −0.296252
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 9.79606 1.61046 0.805231 0.592961i \(-0.202041\pi\)
0.805231 + 0.592961i \(0.202041\pi\)
\(38\) 0 0
\(39\) −2.93760 −0.470392
\(40\) 0 0
\(41\) −1.11691 −0.174433 −0.0872163 0.996189i \(-0.527797\pi\)
−0.0872163 + 0.996189i \(0.527797\pi\)
\(42\) 0 0
\(43\) 8.39126 1.27966 0.639828 0.768518i \(-0.279006\pi\)
0.639828 + 0.768518i \(0.279006\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0.945743 0.137951 0.0689754 0.997618i \(-0.478027\pi\)
0.0689754 + 0.997618i \(0.478027\pi\)
\(48\) 0 0
\(49\) −6.99255 −0.998935
\(50\) 0 0
\(51\) −7.61055 −1.06569
\(52\) 0 0
\(53\) −2.71154 −0.372459 −0.186230 0.982506i \(-0.559627\pi\)
−0.186230 + 0.982506i \(0.559627\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −2.40053 −0.317958
\(58\) 0 0
\(59\) −7.86705 −1.02420 −0.512101 0.858925i \(-0.671133\pi\)
−0.512101 + 0.858925i \(0.671133\pi\)
\(60\) 0 0
\(61\) −10.2279 −1.30954 −0.654772 0.755826i \(-0.727235\pi\)
−0.654772 + 0.755826i \(0.727235\pi\)
\(62\) 0 0
\(63\) 0.0863317 0.0108768
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 2.92156 0.356925 0.178463 0.983947i \(-0.442888\pi\)
0.178463 + 0.983947i \(0.442888\pi\)
\(68\) 0 0
\(69\) 1.94053 0.233612
\(70\) 0 0
\(71\) 8.31213 0.986469 0.493234 0.869896i \(-0.335815\pi\)
0.493234 + 0.869896i \(0.335815\pi\)
\(72\) 0 0
\(73\) −10.2197 −1.19613 −0.598064 0.801448i \(-0.704063\pi\)
−0.598064 + 0.801448i \(0.704063\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.146923 0.0167434
\(78\) 0 0
\(79\) 15.1831 1.70823 0.854114 0.520086i \(-0.174100\pi\)
0.854114 + 0.520086i \(0.174100\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 3.85101 0.422703 0.211352 0.977410i \(-0.432213\pi\)
0.211352 + 0.977410i \(0.432213\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −1.00000 −0.107211
\(88\) 0 0
\(89\) −7.36238 −0.780410 −0.390205 0.920728i \(-0.627596\pi\)
−0.390205 + 0.920728i \(0.627596\pi\)
\(90\) 0 0
\(91\) 0.253608 0.0265853
\(92\) 0 0
\(93\) −9.38449 −0.973127
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −1.01524 −0.103082 −0.0515408 0.998671i \(-0.516413\pi\)
−0.0515408 + 0.998671i \(0.516413\pi\)
\(98\) 0 0
\(99\) 1.70184 0.171041
\(100\) 0 0
\(101\) −10.7661 −1.07126 −0.535631 0.844452i \(-0.679926\pi\)
−0.535631 + 0.844452i \(0.679926\pi\)
\(102\) 0 0
\(103\) −3.21014 −0.316304 −0.158152 0.987415i \(-0.550554\pi\)
−0.158152 + 0.987415i \(0.550554\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 5.24849 0.507391 0.253695 0.967284i \(-0.418354\pi\)
0.253695 + 0.967284i \(0.418354\pi\)
\(108\) 0 0
\(109\) −7.96830 −0.763225 −0.381612 0.924322i \(-0.624631\pi\)
−0.381612 + 0.924322i \(0.624631\pi\)
\(110\) 0 0
\(111\) −9.79606 −0.929801
\(112\) 0 0
\(113\) 10.3452 0.973196 0.486598 0.873626i \(-0.338238\pi\)
0.486598 + 0.873626i \(0.338238\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 2.93760 0.271581
\(118\) 0 0
\(119\) 0.657032 0.0602300
\(120\) 0 0
\(121\) −8.10374 −0.736704
\(122\) 0 0
\(123\) 1.11691 0.100709
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −17.8138 −1.58072 −0.790359 0.612644i \(-0.790106\pi\)
−0.790359 + 0.612644i \(0.790106\pi\)
\(128\) 0 0
\(129\) −8.39126 −0.738810
\(130\) 0 0
\(131\) 10.4514 0.913145 0.456572 0.889686i \(-0.349077\pi\)
0.456572 + 0.889686i \(0.349077\pi\)
\(132\) 0 0
\(133\) 0.207242 0.0179702
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 13.7048 1.17088 0.585439 0.810717i \(-0.300922\pi\)
0.585439 + 0.810717i \(0.300922\pi\)
\(138\) 0 0
\(139\) 9.32998 0.791359 0.395679 0.918389i \(-0.370509\pi\)
0.395679 + 0.918389i \(0.370509\pi\)
\(140\) 0 0
\(141\) −0.945743 −0.0796459
\(142\) 0 0
\(143\) 4.99932 0.418064
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 6.99255 0.576736
\(148\) 0 0
\(149\) −13.8670 −1.13603 −0.568016 0.823017i \(-0.692289\pi\)
−0.568016 + 0.823017i \(0.692289\pi\)
\(150\) 0 0
\(151\) 1.58843 0.129265 0.0646323 0.997909i \(-0.479413\pi\)
0.0646323 + 0.997909i \(0.479413\pi\)
\(152\) 0 0
\(153\) 7.61055 0.615276
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 12.0766 0.963820 0.481910 0.876221i \(-0.339943\pi\)
0.481910 + 0.876221i \(0.339943\pi\)
\(158\) 0 0
\(159\) 2.71154 0.215039
\(160\) 0 0
\(161\) −0.167529 −0.0132032
\(162\) 0 0
\(163\) 17.9098 1.40281 0.701403 0.712765i \(-0.252557\pi\)
0.701403 + 0.712765i \(0.252557\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 7.20506 0.557544 0.278772 0.960357i \(-0.410073\pi\)
0.278772 + 0.960357i \(0.410073\pi\)
\(168\) 0 0
\(169\) −4.37052 −0.336194
\(170\) 0 0
\(171\) 2.40053 0.183573
\(172\) 0 0
\(173\) 5.40954 0.411280 0.205640 0.978628i \(-0.434072\pi\)
0.205640 + 0.978628i \(0.434072\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 7.86705 0.591324
\(178\) 0 0
\(179\) −9.11319 −0.681152 −0.340576 0.940217i \(-0.610622\pi\)
−0.340576 + 0.940217i \(0.610622\pi\)
\(180\) 0 0
\(181\) −17.9948 −1.33754 −0.668771 0.743468i \(-0.733179\pi\)
−0.668771 + 0.743468i \(0.733179\pi\)
\(182\) 0 0
\(183\) 10.2279 0.756066
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 12.9519 0.947139
\(188\) 0 0
\(189\) −0.0863317 −0.00627971
\(190\) 0 0
\(191\) −18.9574 −1.37171 −0.685856 0.727737i \(-0.740572\pi\)
−0.685856 + 0.727737i \(0.740572\pi\)
\(192\) 0 0
\(193\) −5.61204 −0.403964 −0.201982 0.979389i \(-0.564738\pi\)
−0.201982 + 0.979389i \(0.564738\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 6.44387 0.459106 0.229553 0.973296i \(-0.426273\pi\)
0.229553 + 0.973296i \(0.426273\pi\)
\(198\) 0 0
\(199\) −7.26374 −0.514913 −0.257456 0.966290i \(-0.582884\pi\)
−0.257456 + 0.966290i \(0.582884\pi\)
\(200\) 0 0
\(201\) −2.92156 −0.206071
\(202\) 0 0
\(203\) 0.0863317 0.00605930
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −1.94053 −0.134876
\(208\) 0 0
\(209\) 4.08532 0.282587
\(210\) 0 0
\(211\) −18.5216 −1.27508 −0.637540 0.770417i \(-0.720048\pi\)
−0.637540 + 0.770417i \(0.720048\pi\)
\(212\) 0 0
\(213\) −8.31213 −0.569538
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0.810179 0.0549986
\(218\) 0 0
\(219\) 10.2197 0.690585
\(220\) 0 0
\(221\) 22.3567 1.50388
\(222\) 0 0
\(223\) −6.47792 −0.433793 −0.216897 0.976195i \(-0.569593\pi\)
−0.216897 + 0.976195i \(0.569593\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −25.3062 −1.67963 −0.839815 0.542873i \(-0.817337\pi\)
−0.839815 + 0.542873i \(0.817337\pi\)
\(228\) 0 0
\(229\) 11.3881 0.752548 0.376274 0.926508i \(-0.377205\pi\)
0.376274 + 0.926508i \(0.377205\pi\)
\(230\) 0 0
\(231\) −0.146923 −0.00966680
\(232\) 0 0
\(233\) −12.1884 −0.798492 −0.399246 0.916844i \(-0.630728\pi\)
−0.399246 + 0.916844i \(0.630728\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −15.1831 −0.986246
\(238\) 0 0
\(239\) 0.738073 0.0477420 0.0238710 0.999715i \(-0.492401\pi\)
0.0238710 + 0.999715i \(0.492401\pi\)
\(240\) 0 0
\(241\) 17.7064 1.14057 0.570283 0.821448i \(-0.306833\pi\)
0.570283 + 0.821448i \(0.306833\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 7.05179 0.448695
\(248\) 0 0
\(249\) −3.85101 −0.244048
\(250\) 0 0
\(251\) 7.94712 0.501618 0.250809 0.968037i \(-0.419303\pi\)
0.250809 + 0.968037i \(0.419303\pi\)
\(252\) 0 0
\(253\) −3.30247 −0.207624
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −29.9020 −1.86524 −0.932618 0.360865i \(-0.882481\pi\)
−0.932618 + 0.360865i \(0.882481\pi\)
\(258\) 0 0
\(259\) 0.845711 0.0525499
\(260\) 0 0
\(261\) 1.00000 0.0618984
\(262\) 0 0
\(263\) 17.1721 1.05888 0.529438 0.848348i \(-0.322403\pi\)
0.529438 + 0.848348i \(0.322403\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 7.36238 0.450570
\(268\) 0 0
\(269\) −11.7897 −0.718832 −0.359416 0.933177i \(-0.617024\pi\)
−0.359416 + 0.933177i \(0.617024\pi\)
\(270\) 0 0
\(271\) −11.2152 −0.681277 −0.340638 0.940194i \(-0.610643\pi\)
−0.340638 + 0.940194i \(0.610643\pi\)
\(272\) 0 0
\(273\) −0.253608 −0.0153490
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −9.15029 −0.549788 −0.274894 0.961475i \(-0.588643\pi\)
−0.274894 + 0.961475i \(0.588643\pi\)
\(278\) 0 0
\(279\) 9.38449 0.561835
\(280\) 0 0
\(281\) 11.1974 0.667981 0.333991 0.942576i \(-0.391605\pi\)
0.333991 + 0.942576i \(0.391605\pi\)
\(282\) 0 0
\(283\) 22.5134 1.33828 0.669142 0.743135i \(-0.266662\pi\)
0.669142 + 0.743135i \(0.266662\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −0.0964251 −0.00569179
\(288\) 0 0
\(289\) 40.9204 2.40708
\(290\) 0 0
\(291\) 1.01524 0.0595142
\(292\) 0 0
\(293\) 25.3153 1.47894 0.739468 0.673191i \(-0.235077\pi\)
0.739468 + 0.673191i \(0.235077\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −1.70184 −0.0987507
\(298\) 0 0
\(299\) −5.70049 −0.329668
\(300\) 0 0
\(301\) 0.724432 0.0417556
\(302\) 0 0
\(303\) 10.7661 0.618494
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 9.77753 0.558033 0.279017 0.960286i \(-0.409992\pi\)
0.279017 + 0.960286i \(0.409992\pi\)
\(308\) 0 0
\(309\) 3.21014 0.182618
\(310\) 0 0
\(311\) 24.9181 1.41298 0.706488 0.707725i \(-0.250279\pi\)
0.706488 + 0.707725i \(0.250279\pi\)
\(312\) 0 0
\(313\) 32.8771 1.85832 0.929161 0.369675i \(-0.120531\pi\)
0.929161 + 0.369675i \(0.120531\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −5.58630 −0.313758 −0.156879 0.987618i \(-0.550143\pi\)
−0.156879 + 0.987618i \(0.550143\pi\)
\(318\) 0 0
\(319\) 1.70184 0.0952847
\(320\) 0 0
\(321\) −5.24849 −0.292942
\(322\) 0 0
\(323\) 18.2694 1.01653
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 7.96830 0.440648
\(328\) 0 0
\(329\) 0.0816476 0.00450138
\(330\) 0 0
\(331\) 21.3330 1.17257 0.586284 0.810105i \(-0.300590\pi\)
0.586284 + 0.810105i \(0.300590\pi\)
\(332\) 0 0
\(333\) 9.79606 0.536821
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0.296030 0.0161258 0.00806289 0.999967i \(-0.497433\pi\)
0.00806289 + 0.999967i \(0.497433\pi\)
\(338\) 0 0
\(339\) −10.3452 −0.561875
\(340\) 0 0
\(341\) 15.9709 0.864873
\(342\) 0 0
\(343\) −1.20800 −0.0652259
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −32.2059 −1.72890 −0.864452 0.502715i \(-0.832335\pi\)
−0.864452 + 0.502715i \(0.832335\pi\)
\(348\) 0 0
\(349\) 5.98147 0.320181 0.160090 0.987102i \(-0.448821\pi\)
0.160090 + 0.987102i \(0.448821\pi\)
\(350\) 0 0
\(351\) −2.93760 −0.156797
\(352\) 0 0
\(353\) 11.1076 0.591200 0.295600 0.955312i \(-0.404480\pi\)
0.295600 + 0.955312i \(0.404480\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −0.657032 −0.0347738
\(358\) 0 0
\(359\) −9.24108 −0.487726 −0.243863 0.969810i \(-0.578415\pi\)
−0.243863 + 0.969810i \(0.578415\pi\)
\(360\) 0 0
\(361\) −13.2375 −0.696708
\(362\) 0 0
\(363\) 8.10374 0.425336
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 13.2721 0.692796 0.346398 0.938088i \(-0.387405\pi\)
0.346398 + 0.938088i \(0.387405\pi\)
\(368\) 0 0
\(369\) −1.11691 −0.0581442
\(370\) 0 0
\(371\) −0.234092 −0.0121535
\(372\) 0 0
\(373\) 29.9886 1.55275 0.776374 0.630272i \(-0.217057\pi\)
0.776374 + 0.630272i \(0.217057\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2.93760 0.151294
\(378\) 0 0
\(379\) 29.7555 1.52844 0.764219 0.644956i \(-0.223125\pi\)
0.764219 + 0.644956i \(0.223125\pi\)
\(380\) 0 0
\(381\) 17.8138 0.912628
\(382\) 0 0
\(383\) 33.6277 1.71829 0.859147 0.511729i \(-0.170995\pi\)
0.859147 + 0.511729i \(0.170995\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 8.39126 0.426552
\(388\) 0 0
\(389\) 9.97346 0.505674 0.252837 0.967509i \(-0.418636\pi\)
0.252837 + 0.967509i \(0.418636\pi\)
\(390\) 0 0
\(391\) −14.7685 −0.746875
\(392\) 0 0
\(393\) −10.4514 −0.527204
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −2.85376 −0.143226 −0.0716130 0.997432i \(-0.522815\pi\)
−0.0716130 + 0.997432i \(0.522815\pi\)
\(398\) 0 0
\(399\) −0.207242 −0.0103751
\(400\) 0 0
\(401\) −23.2457 −1.16083 −0.580417 0.814319i \(-0.697110\pi\)
−0.580417 + 0.814319i \(0.697110\pi\)
\(402\) 0 0
\(403\) 27.5679 1.37325
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 16.6713 0.826367
\(408\) 0 0
\(409\) 16.6924 0.825384 0.412692 0.910871i \(-0.364589\pi\)
0.412692 + 0.910871i \(0.364589\pi\)
\(410\) 0 0
\(411\) −13.7048 −0.676007
\(412\) 0 0
\(413\) −0.679176 −0.0334201
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −9.32998 −0.456891
\(418\) 0 0
\(419\) −3.97632 −0.194256 −0.0971279 0.995272i \(-0.530966\pi\)
−0.0971279 + 0.995272i \(0.530966\pi\)
\(420\) 0 0
\(421\) 28.7014 1.39882 0.699410 0.714720i \(-0.253446\pi\)
0.699410 + 0.714720i \(0.253446\pi\)
\(422\) 0 0
\(423\) 0.945743 0.0459836
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −0.882989 −0.0427308
\(428\) 0 0
\(429\) −4.99932 −0.241369
\(430\) 0 0
\(431\) −22.8175 −1.09908 −0.549540 0.835468i \(-0.685197\pi\)
−0.549540 + 0.835468i \(0.685197\pi\)
\(432\) 0 0
\(433\) −33.2710 −1.59890 −0.799450 0.600733i \(-0.794876\pi\)
−0.799450 + 0.600733i \(0.794876\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −4.65830 −0.222837
\(438\) 0 0
\(439\) 14.4826 0.691217 0.345608 0.938379i \(-0.387673\pi\)
0.345608 + 0.938379i \(0.387673\pi\)
\(440\) 0 0
\(441\) −6.99255 −0.332978
\(442\) 0 0
\(443\) −12.6821 −0.602544 −0.301272 0.953538i \(-0.597411\pi\)
−0.301272 + 0.953538i \(0.597411\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 13.8670 0.655889
\(448\) 0 0
\(449\) −40.5628 −1.91428 −0.957140 0.289627i \(-0.906469\pi\)
−0.957140 + 0.289627i \(0.906469\pi\)
\(450\) 0 0
\(451\) −1.90081 −0.0895055
\(452\) 0 0
\(453\) −1.58843 −0.0746310
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 9.30406 0.435225 0.217613 0.976035i \(-0.430173\pi\)
0.217613 + 0.976035i \(0.430173\pi\)
\(458\) 0 0
\(459\) −7.61055 −0.355230
\(460\) 0 0
\(461\) −42.8411 −1.99531 −0.997654 0.0684524i \(-0.978194\pi\)
−0.997654 + 0.0684524i \(0.978194\pi\)
\(462\) 0 0
\(463\) 36.6769 1.70452 0.852261 0.523117i \(-0.175231\pi\)
0.852261 + 0.523117i \(0.175231\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −29.4216 −1.36147 −0.680735 0.732529i \(-0.738340\pi\)
−0.680735 + 0.732529i \(0.738340\pi\)
\(468\) 0 0
\(469\) 0.252223 0.0116466
\(470\) 0 0
\(471\) −12.0766 −0.556462
\(472\) 0 0
\(473\) 14.2806 0.656622
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −2.71154 −0.124153
\(478\) 0 0
\(479\) −21.8388 −0.997840 −0.498920 0.866648i \(-0.666270\pi\)
−0.498920 + 0.866648i \(0.666270\pi\)
\(480\) 0 0
\(481\) 28.7769 1.31211
\(482\) 0 0
\(483\) 0.167529 0.00762284
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −17.9371 −0.812809 −0.406404 0.913693i \(-0.633218\pi\)
−0.406404 + 0.913693i \(0.633218\pi\)
\(488\) 0 0
\(489\) −17.9098 −0.809910
\(490\) 0 0
\(491\) 33.4680 1.51039 0.755194 0.655501i \(-0.227543\pi\)
0.755194 + 0.655501i \(0.227543\pi\)
\(492\) 0 0
\(493\) 7.61055 0.342762
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0.717601 0.0321888
\(498\) 0 0
\(499\) −2.09063 −0.0935893 −0.0467947 0.998905i \(-0.514901\pi\)
−0.0467947 + 0.998905i \(0.514901\pi\)
\(500\) 0 0
\(501\) −7.20506 −0.321898
\(502\) 0 0
\(503\) 18.2783 0.814991 0.407495 0.913207i \(-0.366402\pi\)
0.407495 + 0.913207i \(0.366402\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 4.37052 0.194102
\(508\) 0 0
\(509\) −26.1018 −1.15694 −0.578470 0.815704i \(-0.696350\pi\)
−0.578470 + 0.815704i \(0.696350\pi\)
\(510\) 0 0
\(511\) −0.882286 −0.0390300
\(512\) 0 0
\(513\) −2.40053 −0.105986
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 1.60950 0.0707858
\(518\) 0 0
\(519\) −5.40954 −0.237453
\(520\) 0 0
\(521\) 5.90027 0.258496 0.129248 0.991612i \(-0.458744\pi\)
0.129248 + 0.991612i \(0.458744\pi\)
\(522\) 0 0
\(523\) −19.5206 −0.853578 −0.426789 0.904351i \(-0.640355\pi\)
−0.426789 + 0.904351i \(0.640355\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 71.4211 3.11115
\(528\) 0 0
\(529\) −19.2343 −0.836276
\(530\) 0 0
\(531\) −7.86705 −0.341401
\(532\) 0 0
\(533\) −3.28104 −0.142118
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 9.11319 0.393263
\(538\) 0 0
\(539\) −11.9002 −0.512577
\(540\) 0 0
\(541\) 37.5741 1.61544 0.807718 0.589569i \(-0.200702\pi\)
0.807718 + 0.589569i \(0.200702\pi\)
\(542\) 0 0
\(543\) 17.9948 0.772230
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −8.81738 −0.377004 −0.188502 0.982073i \(-0.560363\pi\)
−0.188502 + 0.982073i \(0.560363\pi\)
\(548\) 0 0
\(549\) −10.2279 −0.436515
\(550\) 0 0
\(551\) 2.40053 0.102266
\(552\) 0 0
\(553\) 1.31078 0.0557400
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −8.60084 −0.364429 −0.182215 0.983259i \(-0.558327\pi\)
−0.182215 + 0.983259i \(0.558327\pi\)
\(558\) 0 0
\(559\) 24.6502 1.04259
\(560\) 0 0
\(561\) −12.9519 −0.546831
\(562\) 0 0
\(563\) −7.44311 −0.313690 −0.156845 0.987623i \(-0.550132\pi\)
−0.156845 + 0.987623i \(0.550132\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0.0863317 0.00362559
\(568\) 0 0
\(569\) −2.93373 −0.122988 −0.0614942 0.998107i \(-0.519587\pi\)
−0.0614942 + 0.998107i \(0.519587\pi\)
\(570\) 0 0
\(571\) −35.0057 −1.46494 −0.732471 0.680799i \(-0.761633\pi\)
−0.732471 + 0.680799i \(0.761633\pi\)
\(572\) 0 0
\(573\) 18.9574 0.791958
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 10.8811 0.452987 0.226494 0.974013i \(-0.427274\pi\)
0.226494 + 0.974013i \(0.427274\pi\)
\(578\) 0 0
\(579\) 5.61204 0.233228
\(580\) 0 0
\(581\) 0.332464 0.0137929
\(582\) 0 0
\(583\) −4.61461 −0.191118
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1.22269 0.0504659 0.0252329 0.999682i \(-0.491967\pi\)
0.0252329 + 0.999682i \(0.491967\pi\)
\(588\) 0 0
\(589\) 22.5278 0.928240
\(590\) 0 0
\(591\) −6.44387 −0.265065
\(592\) 0 0
\(593\) −20.5341 −0.843235 −0.421617 0.906774i \(-0.638537\pi\)
−0.421617 + 0.906774i \(0.638537\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 7.26374 0.297285
\(598\) 0 0
\(599\) 38.3997 1.56897 0.784485 0.620147i \(-0.212927\pi\)
0.784485 + 0.620147i \(0.212927\pi\)
\(600\) 0 0
\(601\) 39.8975 1.62745 0.813726 0.581248i \(-0.197435\pi\)
0.813726 + 0.581248i \(0.197435\pi\)
\(602\) 0 0
\(603\) 2.92156 0.118975
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −17.4957 −0.710127 −0.355063 0.934842i \(-0.615541\pi\)
−0.355063 + 0.934842i \(0.615541\pi\)
\(608\) 0 0
\(609\) −0.0863317 −0.00349834
\(610\) 0 0
\(611\) 2.77821 0.112394
\(612\) 0 0
\(613\) −20.8587 −0.842475 −0.421237 0.906950i \(-0.638404\pi\)
−0.421237 + 0.906950i \(0.638404\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 12.8938 0.519085 0.259542 0.965732i \(-0.416428\pi\)
0.259542 + 0.965732i \(0.416428\pi\)
\(618\) 0 0
\(619\) −9.09969 −0.365748 −0.182874 0.983136i \(-0.558540\pi\)
−0.182874 + 0.983136i \(0.558540\pi\)
\(620\) 0 0
\(621\) 1.94053 0.0778708
\(622\) 0 0
\(623\) −0.635607 −0.0254650
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −4.08532 −0.163152
\(628\) 0 0
\(629\) 74.5534 2.97264
\(630\) 0 0
\(631\) −9.92630 −0.395160 −0.197580 0.980287i \(-0.563308\pi\)
−0.197580 + 0.980287i \(0.563308\pi\)
\(632\) 0 0
\(633\) 18.5216 0.736168
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −20.5413 −0.813875
\(638\) 0 0
\(639\) 8.31213 0.328823
\(640\) 0 0
\(641\) −25.1936 −0.995086 −0.497543 0.867439i \(-0.665764\pi\)
−0.497543 + 0.867439i \(0.665764\pi\)
\(642\) 0 0
\(643\) −4.84807 −0.191189 −0.0955946 0.995420i \(-0.530475\pi\)
−0.0955946 + 0.995420i \(0.530475\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 9.03185 0.355079 0.177539 0.984114i \(-0.443186\pi\)
0.177539 + 0.984114i \(0.443186\pi\)
\(648\) 0 0
\(649\) −13.3885 −0.525543
\(650\) 0 0
\(651\) −0.810179 −0.0317534
\(652\) 0 0
\(653\) 32.1899 1.25969 0.629843 0.776722i \(-0.283119\pi\)
0.629843 + 0.776722i \(0.283119\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −10.2197 −0.398709
\(658\) 0 0
\(659\) −9.66702 −0.376573 −0.188287 0.982114i \(-0.560293\pi\)
−0.188287 + 0.982114i \(0.560293\pi\)
\(660\) 0 0
\(661\) 24.0476 0.935345 0.467672 0.883902i \(-0.345093\pi\)
0.467672 + 0.883902i \(0.345093\pi\)
\(662\) 0 0
\(663\) −22.3567 −0.868263
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −1.94053 −0.0751376
\(668\) 0 0
\(669\) 6.47792 0.250451
\(670\) 0 0
\(671\) −17.4062 −0.671958
\(672\) 0 0
\(673\) −34.6367 −1.33514 −0.667572 0.744545i \(-0.732667\pi\)
−0.667572 + 0.744545i \(0.732667\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 47.1443 1.81190 0.905951 0.423384i \(-0.139158\pi\)
0.905951 + 0.423384i \(0.139158\pi\)
\(678\) 0 0
\(679\) −0.0876471 −0.00336359
\(680\) 0 0
\(681\) 25.3062 0.969735
\(682\) 0 0
\(683\) 25.6738 0.982382 0.491191 0.871052i \(-0.336562\pi\)
0.491191 + 0.871052i \(0.336562\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −11.3881 −0.434484
\(688\) 0 0
\(689\) −7.96542 −0.303458
\(690\) 0 0
\(691\) −26.7700 −1.01838 −0.509189 0.860654i \(-0.670055\pi\)
−0.509189 + 0.860654i \(0.670055\pi\)
\(692\) 0 0
\(693\) 0.146923 0.00558113
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −8.50033 −0.321973
\(698\) 0 0
\(699\) 12.1884 0.461009
\(700\) 0 0
\(701\) −46.8954 −1.77122 −0.885608 0.464434i \(-0.846258\pi\)
−0.885608 + 0.464434i \(0.846258\pi\)
\(702\) 0 0
\(703\) 23.5157 0.886913
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −0.929452 −0.0349556
\(708\) 0 0
\(709\) 7.80324 0.293057 0.146528 0.989206i \(-0.453190\pi\)
0.146528 + 0.989206i \(0.453190\pi\)
\(710\) 0 0
\(711\) 15.1831 0.569409
\(712\) 0 0
\(713\) −18.2109 −0.682003
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −0.738073 −0.0275638
\(718\) 0 0
\(719\) 3.42899 0.127880 0.0639399 0.997954i \(-0.479633\pi\)
0.0639399 + 0.997954i \(0.479633\pi\)
\(720\) 0 0
\(721\) −0.277137 −0.0103211
\(722\) 0 0
\(723\) −17.7064 −0.658507
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −5.50489 −0.204165 −0.102083 0.994776i \(-0.532551\pi\)
−0.102083 + 0.994776i \(0.532551\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 63.8621 2.36203
\(732\) 0 0
\(733\) 11.0645 0.408678 0.204339 0.978900i \(-0.434496\pi\)
0.204339 + 0.978900i \(0.434496\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 4.97202 0.183147
\(738\) 0 0
\(739\) 30.3879 1.11784 0.558918 0.829223i \(-0.311217\pi\)
0.558918 + 0.829223i \(0.311217\pi\)
\(740\) 0 0
\(741\) −7.05179 −0.259054
\(742\) 0 0
\(743\) −26.3463 −0.966552 −0.483276 0.875468i \(-0.660553\pi\)
−0.483276 + 0.875468i \(0.660553\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 3.85101 0.140901
\(748\) 0 0
\(749\) 0.453111 0.0165563
\(750\) 0 0
\(751\) 12.9716 0.473341 0.236670 0.971590i \(-0.423944\pi\)
0.236670 + 0.971590i \(0.423944\pi\)
\(752\) 0 0
\(753\) −7.94712 −0.289609
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 3.50097 0.127245 0.0636225 0.997974i \(-0.479735\pi\)
0.0636225 + 0.997974i \(0.479735\pi\)
\(758\) 0 0
\(759\) 3.30247 0.119872
\(760\) 0 0
\(761\) 13.3077 0.482404 0.241202 0.970475i \(-0.422458\pi\)
0.241202 + 0.970475i \(0.422458\pi\)
\(762\) 0 0
\(763\) −0.687917 −0.0249043
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −23.1102 −0.834462
\(768\) 0 0
\(769\) −31.5112 −1.13632 −0.568162 0.822917i \(-0.692345\pi\)
−0.568162 + 0.822917i \(0.692345\pi\)
\(770\) 0 0
\(771\) 29.9020 1.07689
\(772\) 0 0
\(773\) 13.8301 0.497434 0.248717 0.968576i \(-0.419991\pi\)
0.248717 + 0.968576i \(0.419991\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −0.845711 −0.0303397
\(778\) 0 0
\(779\) −2.68119 −0.0960635
\(780\) 0 0
\(781\) 14.1459 0.506181
\(782\) 0 0
\(783\) −1.00000 −0.0357371
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 45.8094 1.63293 0.816465 0.577395i \(-0.195931\pi\)
0.816465 + 0.577395i \(0.195931\pi\)
\(788\) 0 0
\(789\) −17.1721 −0.611343
\(790\) 0 0
\(791\) 0.893120 0.0317557
\(792\) 0 0
\(793\) −30.0454 −1.06694
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −23.2005 −0.821805 −0.410903 0.911679i \(-0.634786\pi\)
−0.410903 + 0.911679i \(0.634786\pi\)
\(798\) 0 0
\(799\) 7.19762 0.254634
\(800\) 0 0
\(801\) −7.36238 −0.260137
\(802\) 0 0
\(803\) −17.3923 −0.613762
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 11.7897 0.415018
\(808\) 0 0
\(809\) −12.6305 −0.444066 −0.222033 0.975039i \(-0.571269\pi\)
−0.222033 + 0.975039i \(0.571269\pi\)
\(810\) 0 0
\(811\) 49.7822 1.74809 0.874044 0.485846i \(-0.161489\pi\)
0.874044 + 0.485846i \(0.161489\pi\)
\(812\) 0 0
\(813\) 11.2152 0.393335
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 20.1435 0.704731
\(818\) 0 0
\(819\) 0.253608 0.00886177
\(820\) 0 0
\(821\) −14.6057 −0.509744 −0.254872 0.966975i \(-0.582033\pi\)
−0.254872 + 0.966975i \(0.582033\pi\)
\(822\) 0 0
\(823\) 40.1288 1.39880 0.699400 0.714730i \(-0.253451\pi\)
0.699400 + 0.714730i \(0.253451\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 43.4889 1.51226 0.756129 0.654423i \(-0.227088\pi\)
0.756129 + 0.654423i \(0.227088\pi\)
\(828\) 0 0
\(829\) 22.2210 0.771768 0.385884 0.922547i \(-0.373896\pi\)
0.385884 + 0.922547i \(0.373896\pi\)
\(830\) 0 0
\(831\) 9.15029 0.317420
\(832\) 0 0
\(833\) −53.2171 −1.84386
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −9.38449 −0.324376
\(838\) 0 0
\(839\) −45.8662 −1.58348 −0.791738 0.610861i \(-0.790824\pi\)
−0.791738 + 0.610861i \(0.790824\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 0 0
\(843\) −11.1974 −0.385659
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −0.699610 −0.0240389
\(848\) 0 0
\(849\) −22.5134 −0.772658
\(850\) 0 0
\(851\) −19.0095 −0.651639
\(852\) 0 0
\(853\) 42.0910 1.44117 0.720585 0.693367i \(-0.243873\pi\)
0.720585 + 0.693367i \(0.243873\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 13.2236 0.451711 0.225855 0.974161i \(-0.427482\pi\)
0.225855 + 0.974161i \(0.427482\pi\)
\(858\) 0 0
\(859\) 53.5925 1.82855 0.914277 0.405090i \(-0.132760\pi\)
0.914277 + 0.405090i \(0.132760\pi\)
\(860\) 0 0
\(861\) 0.0964251 0.00328616
\(862\) 0 0
\(863\) 28.0920 0.956263 0.478132 0.878288i \(-0.341314\pi\)
0.478132 + 0.878288i \(0.341314\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −40.9204 −1.38973
\(868\) 0 0
\(869\) 25.8391 0.876532
\(870\) 0 0
\(871\) 8.58237 0.290802
\(872\) 0 0
\(873\) −1.01524 −0.0343606
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −30.3854 −1.02604 −0.513020 0.858376i \(-0.671473\pi\)
−0.513020 + 0.858376i \(0.671473\pi\)
\(878\) 0 0
\(879\) −25.3153 −0.853865
\(880\) 0 0
\(881\) 3.46133 0.116615 0.0583076 0.998299i \(-0.481430\pi\)
0.0583076 + 0.998299i \(0.481430\pi\)
\(882\) 0 0
\(883\) −11.3866 −0.383190 −0.191595 0.981474i \(-0.561366\pi\)
−0.191595 + 0.981474i \(0.561366\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 47.3582 1.59013 0.795066 0.606523i \(-0.207436\pi\)
0.795066 + 0.606523i \(0.207436\pi\)
\(888\) 0 0
\(889\) −1.53790 −0.0515794
\(890\) 0 0
\(891\) 1.70184 0.0570138
\(892\) 0 0
\(893\) 2.27028 0.0759722
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 5.70049 0.190334
\(898\) 0 0
\(899\) 9.38449 0.312990
\(900\) 0 0
\(901\) −20.6363 −0.687496
\(902\) 0 0
\(903\) −0.724432 −0.0241076
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 22.7370 0.754970 0.377485 0.926016i \(-0.376789\pi\)
0.377485 + 0.926016i \(0.376789\pi\)
\(908\) 0 0
\(909\) −10.7661 −0.357087
\(910\) 0 0
\(911\) −18.7161 −0.620092 −0.310046 0.950722i \(-0.600344\pi\)
−0.310046 + 0.950722i \(0.600344\pi\)
\(912\) 0 0
\(913\) 6.55380 0.216899
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0.902289 0.0297962
\(918\) 0 0
\(919\) 2.80576 0.0925536 0.0462768 0.998929i \(-0.485264\pi\)
0.0462768 + 0.998929i \(0.485264\pi\)
\(920\) 0 0
\(921\) −9.77753 −0.322181
\(922\) 0 0
\(923\) 24.4177 0.803718
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −3.21014 −0.105435
\(928\) 0 0
\(929\) 24.1779 0.793251 0.396625 0.917981i \(-0.370181\pi\)
0.396625 + 0.917981i \(0.370181\pi\)
\(930\) 0 0
\(931\) −16.7858 −0.550133
\(932\) 0 0
\(933\) −24.9181 −0.815782
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −47.8220 −1.56228 −0.781139 0.624357i \(-0.785361\pi\)
−0.781139 + 0.624357i \(0.785361\pi\)
\(938\) 0 0
\(939\) −32.8771 −1.07290
\(940\) 0 0
\(941\) −3.25697 −0.106174 −0.0530870 0.998590i \(-0.516906\pi\)
−0.0530870 + 0.998590i \(0.516906\pi\)
\(942\) 0 0
\(943\) 2.16740 0.0705804
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 27.6584 0.898778 0.449389 0.893336i \(-0.351642\pi\)
0.449389 + 0.893336i \(0.351642\pi\)
\(948\) 0 0
\(949\) −30.0214 −0.974537
\(950\) 0 0
\(951\) 5.58630 0.181148
\(952\) 0 0
\(953\) −34.3048 −1.11124 −0.555620 0.831436i \(-0.687519\pi\)
−0.555620 + 0.831436i \(0.687519\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −1.70184 −0.0550126
\(958\) 0 0
\(959\) 1.18316 0.0382061
\(960\) 0 0
\(961\) 57.0687 1.84093
\(962\) 0 0
\(963\) 5.24849 0.169130
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 25.4858 0.819568 0.409784 0.912183i \(-0.365604\pi\)
0.409784 + 0.912183i \(0.365604\pi\)
\(968\) 0 0
\(969\) −18.2694 −0.586896
\(970\) 0 0
\(971\) 0.399988 0.0128362 0.00641812 0.999979i \(-0.497957\pi\)
0.00641812 + 0.999979i \(0.497957\pi\)
\(972\) 0 0
\(973\) 0.805473 0.0258223
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0.428515 0.0137094 0.00685470 0.999977i \(-0.497818\pi\)
0.00685470 + 0.999977i \(0.497818\pi\)
\(978\) 0 0
\(979\) −12.5296 −0.400447
\(980\) 0 0
\(981\) −7.96830 −0.254408
\(982\) 0 0
\(983\) −37.2259 −1.18732 −0.593662 0.804715i \(-0.702318\pi\)
−0.593662 + 0.804715i \(0.702318\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −0.0816476 −0.00259887
\(988\) 0 0
\(989\) −16.2835 −0.517785
\(990\) 0 0
\(991\) 7.11721 0.226086 0.113043 0.993590i \(-0.463940\pi\)
0.113043 + 0.993590i \(0.463940\pi\)
\(992\) 0 0
\(993\) −21.3330 −0.676983
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 11.6348 0.368479 0.184239 0.982881i \(-0.441018\pi\)
0.184239 + 0.982881i \(0.441018\pi\)
\(998\) 0 0
\(999\) −9.79606 −0.309934
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8700.2.a.bj.1.3 6
5.2 odd 4 1740.2.g.d.349.11 yes 12
5.3 odd 4 1740.2.g.d.349.5 12
5.4 even 2 8700.2.a.bk.1.4 6
15.2 even 4 5220.2.g.e.2089.3 12
15.8 even 4 5220.2.g.e.2089.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1740.2.g.d.349.5 12 5.3 odd 4
1740.2.g.d.349.11 yes 12 5.2 odd 4
5220.2.g.e.2089.3 12 15.2 even 4
5220.2.g.e.2089.4 12 15.8 even 4
8700.2.a.bj.1.3 6 1.1 even 1 trivial
8700.2.a.bk.1.4 6 5.4 even 2