Properties

Label 8700.2.a.bj
Level $8700$
Weight $2$
Character orbit 8700.a
Self dual yes
Analytic conductor $69.470$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8700,2,Mod(1,8700)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8700, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8700.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8700 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8700.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-6,0,0,0,6,0,6,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(69.4698497585\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.71480896.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 7x^{4} + 12x^{3} + 11x^{2} - 10x - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 1740)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{3} + ( - \beta_{2} + 1) q^{7} + q^{9} + (\beta_{5} + \beta_{4}) q^{11} + (\beta_{2} - \beta_1) q^{13} + ( - \beta_{5} + \beta_{4} + \beta_{3}) q^{17} + ( - \beta_{5} + \beta_{3} - \beta_1 - 2) q^{19}+ \cdots + (\beta_{5} + \beta_{4}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{3} + 6 q^{7} + 6 q^{9} + 4 q^{11} + 2 q^{13} + 2 q^{17} - 10 q^{19} - 6 q^{21} + 10 q^{23} - 6 q^{27} + 6 q^{29} - 14 q^{31} - 4 q^{33} + 2 q^{37} - 2 q^{39} - 12 q^{41} + 32 q^{43} + 10 q^{47}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} - 7x^{4} + 12x^{3} + 11x^{2} - 10x - 6 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu - 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{3} - 4\nu - 1 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{4} - \nu^{3} - 5\nu^{2} + 4\nu + 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} - 7\nu^{2} + 7 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{5} - 2\nu^{4} - 6\nu^{3} + 11\nu^{2} + 4\nu - 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{4} + \beta_{3} + \beta_{2} + 6 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{2} + 2\beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -5\beta_{4} + 7\beta_{3} + 7\beta_{2} + 28 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 2\beta_{5} + \beta_{4} + 3\beta_{3} + 15\beta_{2} + 20\beta _1 + 32 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.47441
−0.926821
−0.511965
2.14421
−2.24258
1.06275
0 −1.00000 0 0 0 −3.25240 0 1.00000 0
1.2 0 −1.00000 0 0 0 −0.911147 0 1.00000 0
1.3 0 −1.00000 0 0 0 0.0863317 0 1.00000 0
1.4 0 −1.00000 0 0 0 0.718581 0 1.00000 0
1.5 0 −1.00000 0 0 0 4.30795 0 1.00000 0
1.6 0 −1.00000 0 0 0 5.05069 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(5\) \( -1 \)
\(29\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8700.2.a.bj 6
5.b even 2 1 8700.2.a.bk 6
5.c odd 4 2 1740.2.g.d 12
15.e even 4 2 5220.2.g.e 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1740.2.g.d 12 5.c odd 4 2
5220.2.g.e 12 15.e even 4 2
8700.2.a.bj 6 1.a even 1 1 trivial
8700.2.a.bk 6 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8700))\):

\( T_{7}^{6} - 6T_{7}^{5} - 10T_{7}^{4} + 74T_{7}^{3} + 13T_{7}^{2} - 48T_{7} + 4 \) Copy content Toggle raw display
\( T_{11}^{6} - 4T_{11}^{5} - 32T_{11}^{4} + 160T_{11}^{3} - 89T_{11}^{2} - 236T_{11} + 172 \) Copy content Toggle raw display
\( T_{13}^{6} - 2T_{13}^{5} - 34T_{13}^{4} + 78T_{13}^{3} + 209T_{13}^{2} - 544T_{13} + 144 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( (T + 1)^{6} \) Copy content Toggle raw display
$5$ \( T^{6} \) Copy content Toggle raw display
$7$ \( T^{6} - 6 T^{5} + \cdots + 4 \) Copy content Toggle raw display
$11$ \( T^{6} - 4 T^{5} + \cdots + 172 \) Copy content Toggle raw display
$13$ \( T^{6} - 2 T^{5} + \cdots + 144 \) Copy content Toggle raw display
$17$ \( T^{6} - 2 T^{5} + \cdots + 352 \) Copy content Toggle raw display
$19$ \( T^{6} + 10 T^{5} + \cdots + 3888 \) Copy content Toggle raw display
$23$ \( T^{6} - 10 T^{5} + \cdots - 18416 \) Copy content Toggle raw display
$29$ \( (T - 1)^{6} \) Copy content Toggle raw display
$31$ \( T^{6} + 14 T^{5} + \cdots - 12176 \) Copy content Toggle raw display
$37$ \( T^{6} - 2 T^{5} + \cdots - 80000 \) Copy content Toggle raw display
$41$ \( T^{6} + 12 T^{5} + \cdots + 12224 \) Copy content Toggle raw display
$43$ \( T^{6} - 32 T^{5} + \cdots - 28544 \) Copy content Toggle raw display
$47$ \( T^{6} - 10 T^{5} + \cdots + 70624 \) Copy content Toggle raw display
$53$ \( T^{6} - 26 T^{5} + \cdots - 192 \) Copy content Toggle raw display
$59$ \( T^{6} - 4 T^{5} + \cdots - 18752 \) Copy content Toggle raw display
$61$ \( T^{6} + 26 T^{5} + \cdots - 34928 \) Copy content Toggle raw display
$67$ \( T^{6} - 38 T^{5} + \cdots + 19700 \) Copy content Toggle raw display
$71$ \( T^{6} - 6 T^{5} + \cdots + 24768 \) Copy content Toggle raw display
$73$ \( T^{6} + 6 T^{5} + \cdots - 64 \) Copy content Toggle raw display
$79$ \( T^{6} - 30 T^{5} + \cdots + 542832 \) Copy content Toggle raw display
$83$ \( T^{6} - 8 T^{5} + \cdots + 45232 \) Copy content Toggle raw display
$89$ \( T^{6} + 4 T^{5} + \cdots - 4900 \) Copy content Toggle raw display
$97$ \( T^{6} + 6 T^{5} + \cdots - 6976 \) Copy content Toggle raw display
show more
show less