Properties

Label 8700.2.a
Level $8700$
Weight $2$
Character orbit 8700.a
Rep. character $\chi_{8700}(1,\cdot)$
Character field $\Q$
Dimension $88$
Newform subspaces $38$
Sturm bound $3600$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 8700 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8700.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 38 \)
Sturm bound: \(3600\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(7\), \(11\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(8700))\).

Total New Old
Modular forms 1836 88 1748
Cusp forms 1765 88 1677
Eisenstein series 71 0 71

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(5\)\(29\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(+\)\(102\)\(0\)\(102\)\(97\)\(0\)\(97\)\(5\)\(0\)\(5\)
\(+\)\(+\)\(+\)\(-\)\(-\)\(129\)\(0\)\(129\)\(123\)\(0\)\(123\)\(6\)\(0\)\(6\)
\(+\)\(+\)\(-\)\(+\)\(-\)\(126\)\(0\)\(126\)\(120\)\(0\)\(120\)\(6\)\(0\)\(6\)
\(+\)\(+\)\(-\)\(-\)\(+\)\(105\)\(0\)\(105\)\(99\)\(0\)\(99\)\(6\)\(0\)\(6\)
\(+\)\(-\)\(+\)\(+\)\(-\)\(120\)\(0\)\(120\)\(114\)\(0\)\(114\)\(6\)\(0\)\(6\)
\(+\)\(-\)\(+\)\(-\)\(+\)\(111\)\(0\)\(111\)\(105\)\(0\)\(105\)\(6\)\(0\)\(6\)
\(+\)\(-\)\(-\)\(+\)\(+\)\(108\)\(0\)\(108\)\(102\)\(0\)\(102\)\(6\)\(0\)\(6\)
\(+\)\(-\)\(-\)\(-\)\(-\)\(123\)\(0\)\(123\)\(117\)\(0\)\(117\)\(6\)\(0\)\(6\)
\(-\)\(+\)\(+\)\(+\)\(-\)\(114\)\(10\)\(104\)\(111\)\(10\)\(101\)\(3\)\(0\)\(3\)
\(-\)\(+\)\(+\)\(-\)\(+\)\(114\)\(10\)\(104\)\(111\)\(10\)\(101\)\(3\)\(0\)\(3\)
\(-\)\(+\)\(-\)\(+\)\(+\)\(117\)\(12\)\(105\)\(114\)\(12\)\(102\)\(3\)\(0\)\(3\)
\(-\)\(+\)\(-\)\(-\)\(-\)\(111\)\(12\)\(99\)\(108\)\(12\)\(96\)\(3\)\(0\)\(3\)
\(-\)\(-\)\(+\)\(+\)\(+\)\(123\)\(11\)\(112\)\(120\)\(11\)\(109\)\(3\)\(0\)\(3\)
\(-\)\(-\)\(+\)\(-\)\(-\)\(105\)\(11\)\(94\)\(102\)\(11\)\(91\)\(3\)\(0\)\(3\)
\(-\)\(-\)\(-\)\(+\)\(-\)\(108\)\(11\)\(97\)\(105\)\(11\)\(94\)\(3\)\(0\)\(3\)
\(-\)\(-\)\(-\)\(-\)\(+\)\(120\)\(11\)\(109\)\(117\)\(11\)\(106\)\(3\)\(0\)\(3\)
Plus space\(+\)\(900\)\(44\)\(856\)\(865\)\(44\)\(821\)\(35\)\(0\)\(35\)
Minus space\(-\)\(936\)\(44\)\(892\)\(900\)\(44\)\(856\)\(36\)\(0\)\(36\)

Trace form

\( 88 q + 4 q^{7} + 88 q^{9} - 8 q^{11} - 4 q^{13} - 20 q^{19} - 12 q^{21} - 12 q^{23} - 12 q^{31} - 8 q^{37} - 12 q^{39} - 8 q^{41} - 8 q^{47} + 80 q^{49} + 8 q^{51} + 12 q^{53} - 12 q^{57} + 24 q^{59} - 4 q^{61}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(8700))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 5 29
8700.2.a.a 8700.a 1.a $1$ $69.470$ \(\Q\) None 8700.2.a.a \(0\) \(-1\) \(0\) \(-3\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}-3q^{7}+q^{9}-6q^{11}-q^{13}+\cdots\)
8700.2.a.b 8700.a 1.a $1$ $69.470$ \(\Q\) None 1740.2.a.h \(0\) \(-1\) \(0\) \(-2\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-2q^{7}+q^{9}+4q^{11}-2q^{13}+\cdots\)
8700.2.a.c 8700.a 1.a $1$ $69.470$ \(\Q\) None 348.2.a.d \(0\) \(-1\) \(0\) \(-1\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{7}+q^{9}+q^{11}+3q^{13}+3q^{17}+\cdots\)
8700.2.a.d 8700.a 1.a $1$ $69.470$ \(\Q\) None 1740.2.a.e \(0\) \(-1\) \(0\) \(1\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{7}+q^{9}-3q^{11}+q^{13}-3q^{17}+\cdots\)
8700.2.a.e 8700.a 1.a $1$ $69.470$ \(\Q\) None 8700.2.a.e \(0\) \(-1\) \(0\) \(1\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{7}+q^{9}-2q^{11}-5q^{13}+\cdots\)
8700.2.a.f 8700.a 1.a $1$ $69.470$ \(\Q\) None 1740.2.g.a \(0\) \(-1\) \(0\) \(2\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+2q^{7}+q^{9}-q^{11}+4q^{13}+\cdots\)
8700.2.a.g 8700.a 1.a $1$ $69.470$ \(\Q\) None 1740.2.g.b \(0\) \(-1\) \(0\) \(2\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+2q^{7}+q^{9}+5q^{11}-4q^{17}+\cdots\)
8700.2.a.h 8700.a 1.a $1$ $69.470$ \(\Q\) None 1740.2.a.g \(0\) \(-1\) \(0\) \(3\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+3q^{7}+q^{9}-3q^{11}-q^{13}+\cdots\)
8700.2.a.i 8700.a 1.a $1$ $69.470$ \(\Q\) None 348.2.a.c \(0\) \(-1\) \(0\) \(3\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+3q^{7}+q^{9}-q^{11}+3q^{13}+\cdots\)
8700.2.a.j 8700.a 1.a $1$ $69.470$ \(\Q\) None 1740.2.a.f \(0\) \(-1\) \(0\) \(5\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+5q^{7}+q^{9}+5q^{11}+5q^{13}+\cdots\)
8700.2.a.k 8700.a 1.a $1$ $69.470$ \(\Q\) None 1740.2.a.d \(0\) \(1\) \(0\) \(-3\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-3q^{7}+q^{9}+3q^{11}-3q^{13}+\cdots\)
8700.2.a.l 8700.a 1.a $1$ $69.470$ \(\Q\) None 1740.2.a.c \(0\) \(1\) \(0\) \(-2\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-2q^{7}+q^{9}-4q^{11}-2q^{13}+\cdots\)
8700.2.a.m 8700.a 1.a $1$ $69.470$ \(\Q\) None 1740.2.g.a \(0\) \(1\) \(0\) \(-2\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-2q^{7}+q^{9}-q^{11}-4q^{13}+\cdots\)
8700.2.a.n 8700.a 1.a $1$ $69.470$ \(\Q\) None 1740.2.g.b \(0\) \(1\) \(0\) \(-2\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-2q^{7}+q^{9}+5q^{11}+4q^{17}+\cdots\)
8700.2.a.o 8700.a 1.a $1$ $69.470$ \(\Q\) None 8700.2.a.e \(0\) \(1\) \(0\) \(-1\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{7}+q^{9}-2q^{11}+5q^{13}+\cdots\)
8700.2.a.p 8700.a 1.a $1$ $69.470$ \(\Q\) None 348.2.a.a \(0\) \(1\) \(0\) \(-1\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{7}+q^{9}+3q^{11}-5q^{13}+\cdots\)
8700.2.a.q 8700.a 1.a $1$ $69.470$ \(\Q\) None 1740.2.a.a \(0\) \(1\) \(0\) \(0\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{9}-6q^{11}-6q^{13}-4q^{17}+\cdots\)
8700.2.a.r 8700.a 1.a $1$ $69.470$ \(\Q\) None 1740.2.a.b \(0\) \(1\) \(0\) \(2\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+2q^{7}+q^{9}+3q^{11}+2q^{13}+\cdots\)
8700.2.a.s 8700.a 1.a $1$ $69.470$ \(\Q\) None 8700.2.a.a \(0\) \(1\) \(0\) \(3\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+3q^{7}+q^{9}-6q^{11}+q^{13}+\cdots\)
8700.2.a.t 8700.a 1.a $1$ $69.470$ \(\Q\) None 348.2.a.b \(0\) \(1\) \(0\) \(3\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+3q^{7}+q^{9}-3q^{11}+3q^{13}+\cdots\)
8700.2.a.u 8700.a 1.a $2$ $69.470$ \(\Q(\sqrt{57}) \) None 1740.2.a.n \(0\) \(-2\) \(0\) \(-4\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-2q^{7}+q^{9}+(-1-\beta )q^{11}+\cdots\)
8700.2.a.v 8700.a 1.a $2$ $69.470$ \(\Q(\sqrt{17}) \) None 1740.2.a.m \(0\) \(-2\) \(0\) \(-2\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}-2\beta q^{7}+q^{9}+(-2+\beta )q^{11}+\cdots\)
8700.2.a.w 8700.a 1.a $2$ $69.470$ \(\Q(\sqrt{33}) \) None 1740.2.a.l \(0\) \(-2\) \(0\) \(-1\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}-\beta q^{7}+q^{9}+(2-\beta )q^{11}+(2+\cdots)q^{13}+\cdots\)
8700.2.a.x 8700.a 1.a $2$ $69.470$ \(\Q(\sqrt{17}) \) None 1740.2.a.j \(0\) \(2\) \(0\) \(-3\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+(-1-\beta )q^{7}+q^{9}+(-1+2\beta )q^{11}+\cdots\)
8700.2.a.y 8700.a 1.a $2$ $69.470$ \(\Q(\sqrt{33}) \) None 1740.2.a.i \(0\) \(2\) \(0\) \(1\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+\beta q^{7}+q^{9}+(2+\beta )q^{11}+(2+\cdots)q^{13}+\cdots\)
8700.2.a.z 8700.a 1.a $2$ $69.470$ \(\Q(\sqrt{17}) \) None 1740.2.a.k \(0\) \(2\) \(0\) \(5\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+(3-\beta )q^{7}+q^{9}+(-1+\beta )q^{11}+\cdots\)
8700.2.a.ba 8700.a 1.a $3$ $69.470$ 3.3.321.1 None 8700.2.a.ba \(0\) \(-3\) \(0\) \(-2\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+(-1+2\beta _{1}+\beta _{2})q^{7}+q^{9}+\cdots\)
8700.2.a.bb 8700.a 1.a $3$ $69.470$ 3.3.257.1 None 8700.2.a.bb \(0\) \(-3\) \(0\) \(2\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+(1-\beta _{1})q^{7}+q^{9}-\beta _{2}q^{11}+\cdots\)
8700.2.a.bc 8700.a 1.a $3$ $69.470$ 3.3.257.1 None 8700.2.a.bb \(0\) \(3\) \(0\) \(-2\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+(-1+\beta _{1})q^{7}+q^{9}-\beta _{2}q^{11}+\cdots\)
8700.2.a.bd 8700.a 1.a $3$ $69.470$ 3.3.321.1 None 8700.2.a.ba \(0\) \(3\) \(0\) \(2\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+(1-2\beta _{1}-\beta _{2})q^{7}+q^{9}+(1+\cdots)q^{11}+\cdots\)
8700.2.a.be 8700.a 1.a $5$ $69.470$ 5.5.8524696.1 None 8700.2.a.be \(0\) \(-5\) \(0\) \(0\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+\beta _{4}q^{7}+q^{9}+(-2+\beta _{3})q^{11}+\cdots\)
8700.2.a.bf 8700.a 1.a $5$ $69.470$ 5.5.40563468.1 None 8700.2.a.bf \(0\) \(-5\) \(0\) \(0\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+\beta _{1}q^{7}+q^{9}-\beta _{2}q^{11}+(\beta _{1}+\cdots)q^{13}+\cdots\)
8700.2.a.bg 8700.a 1.a $5$ $69.470$ 5.5.8524696.1 None 8700.2.a.be \(0\) \(5\) \(0\) \(0\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-\beta _{4}q^{7}+q^{9}+(-2+\beta _{3})q^{11}+\cdots\)
8700.2.a.bh 8700.a 1.a $5$ $69.470$ 5.5.40563468.1 None 8700.2.a.bf \(0\) \(5\) \(0\) \(0\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-\beta _{1}q^{7}+q^{9}-\beta _{2}q^{11}+(-\beta _{1}+\cdots)q^{13}+\cdots\)
8700.2.a.bi 8700.a 1.a $6$ $69.470$ 6.6.41017664.1 None 1740.2.g.c \(0\) \(-6\) \(0\) \(-2\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+\beta _{3}q^{7}+q^{9}+(-\beta _{3}-\beta _{4})q^{11}+\cdots\)
8700.2.a.bj 8700.a 1.a $6$ $69.470$ 6.6.71480896.1 None 1740.2.g.d \(0\) \(-6\) \(0\) \(6\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+(1-\beta _{2})q^{7}+q^{9}+(\beta _{4}+\beta _{5})q^{11}+\cdots\)
8700.2.a.bk 8700.a 1.a $6$ $69.470$ 6.6.71480896.1 None 1740.2.g.d \(0\) \(6\) \(0\) \(-6\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+(-1+\beta _{2})q^{7}+q^{9}+(\beta _{4}+\beta _{5})q^{11}+\cdots\)
8700.2.a.bl 8700.a 1.a $6$ $69.470$ 6.6.41017664.1 None 1740.2.g.c \(0\) \(6\) \(0\) \(2\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-\beta _{3}q^{7}+q^{9}+(-\beta _{3}-\beta _{4})q^{11}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(8700))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(8700)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(29))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(58))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(75))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(87))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(100))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(116))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(145))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(150))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(174))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(290))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(300))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(348))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(435))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(580))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(725))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(870))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1450))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1740))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2175))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2900))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(4350))\)\(^{\oplus 2}\)