Defining parameters
Level: | \( N \) | \(=\) | \( 8700 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 8700.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 38 \) | ||
Sturm bound: | \(3600\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(7\), \(11\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(8700))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1836 | 88 | 1748 |
Cusp forms | 1765 | 88 | 1677 |
Eisenstein series | 71 | 0 | 71 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(5\) | \(29\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(102\) | \(0\) | \(102\) | \(97\) | \(0\) | \(97\) | \(5\) | \(0\) | \(5\) | |||
\(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(129\) | \(0\) | \(129\) | \(123\) | \(0\) | \(123\) | \(6\) | \(0\) | \(6\) | |||
\(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(126\) | \(0\) | \(126\) | \(120\) | \(0\) | \(120\) | \(6\) | \(0\) | \(6\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(105\) | \(0\) | \(105\) | \(99\) | \(0\) | \(99\) | \(6\) | \(0\) | \(6\) | |||
\(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(120\) | \(0\) | \(120\) | \(114\) | \(0\) | \(114\) | \(6\) | \(0\) | \(6\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(111\) | \(0\) | \(111\) | \(105\) | \(0\) | \(105\) | \(6\) | \(0\) | \(6\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(108\) | \(0\) | \(108\) | \(102\) | \(0\) | \(102\) | \(6\) | \(0\) | \(6\) | |||
\(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(123\) | \(0\) | \(123\) | \(117\) | \(0\) | \(117\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(114\) | \(10\) | \(104\) | \(111\) | \(10\) | \(101\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(114\) | \(10\) | \(104\) | \(111\) | \(10\) | \(101\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(117\) | \(12\) | \(105\) | \(114\) | \(12\) | \(102\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(111\) | \(12\) | \(99\) | \(108\) | \(12\) | \(96\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(123\) | \(11\) | \(112\) | \(120\) | \(11\) | \(109\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(105\) | \(11\) | \(94\) | \(102\) | \(11\) | \(91\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(108\) | \(11\) | \(97\) | \(105\) | \(11\) | \(94\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(120\) | \(11\) | \(109\) | \(117\) | \(11\) | \(106\) | \(3\) | \(0\) | \(3\) | |||
Plus space | \(+\) | \(900\) | \(44\) | \(856\) | \(865\) | \(44\) | \(821\) | \(35\) | \(0\) | \(35\) | ||||||
Minus space | \(-\) | \(936\) | \(44\) | \(892\) | \(900\) | \(44\) | \(856\) | \(36\) | \(0\) | \(36\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(8700))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(8700))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(8700)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(29))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(58))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(75))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(87))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(100))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(116))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(145))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(150))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(174))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(290))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(300))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(348))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(435))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(580))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(725))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(870))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1450))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1740))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2175))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2900))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(4350))\)\(^{\oplus 2}\)