Properties

Label 867.2.i.h.503.3
Level $867$
Weight $2$
Character 867.503
Analytic conductor $6.923$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [867,2,Mod(65,867)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(867, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([8, 9])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("867.65"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 867 = 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 867.i (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,8,-16,0,8,16,0,-8,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.92302985525\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{16})\)
Twist minimal: no (minimal twist has level 51)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 503.3
Character \(\chi\) \(=\) 867.503
Dual form 867.2.i.h.131.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.774648 + 0.320870i) q^{2} +(-0.00133765 - 1.73205i) q^{3} +(-0.917091 - 0.917091i) q^{4} +(0.159652 + 0.802626i) q^{5} +(0.554726 - 1.34216i) q^{6} +(-0.191449 - 0.0380817i) q^{7} +(-1.05790 - 2.55399i) q^{8} +(-3.00000 + 0.00463376i) q^{9} +(-0.133864 + 0.672980i) q^{10} +(-3.67179 + 2.45341i) q^{11} +(-1.58722 + 1.58968i) q^{12} +(-3.75023 + 3.75023i) q^{13} +(-0.136087 - 0.0909302i) q^{14} +(1.38998 - 0.277599i) q^{15} +0.276039i q^{16} +(-2.32543 - 0.959018i) q^{18} +(0.210831 - 0.508991i) q^{19} +(0.589666 - 0.882497i) q^{20} +(-0.0657033 + 0.331651i) q^{21} +(-3.63157 + 0.722364i) q^{22} +(-2.29752 - 3.43849i) q^{23} +(-4.42222 + 1.83574i) q^{24} +(4.00068 - 1.65713i) q^{25} +(-4.10844 + 1.70177i) q^{26} +(0.0120389 + 5.19614i) q^{27} +(0.140652 + 0.210501i) q^{28} +(-0.606965 + 0.120733i) q^{29} +(1.16581 + 0.230959i) q^{30} +(-0.369997 + 0.553739i) q^{31} +(-2.20436 + 5.32181i) q^{32} +(4.25434 + 6.35644i) q^{33} -0.159742i q^{35} +(2.75552 + 2.74702i) q^{36} +(-1.63319 - 1.09126i) q^{37} +(0.326640 - 0.326640i) q^{38} +(6.50060 + 6.49057i) q^{39} +(1.88100 - 1.25684i) q^{40} +(-1.55975 + 7.84141i) q^{41} +(-0.157314 + 0.235831i) q^{42} +(-2.95422 - 7.13212i) q^{43} +(5.61737 + 1.11736i) q^{44} +(-0.482675 - 2.40714i) q^{45} +(-0.676466 - 3.40082i) q^{46} +(7.05884 + 7.05884i) q^{47} +(0.478114 - 0.000369245i) q^{48} +(-6.43195 - 2.66420i) q^{49} +3.63084 q^{50} +6.87860 q^{52} +(-10.7049 - 4.43410i) q^{53} +(-1.65796 + 4.02904i) q^{54} +(-2.55538 - 2.55538i) q^{55} +(0.105274 + 0.529246i) q^{56} +(-0.881880 - 0.364489i) q^{57} +(-0.508924 - 0.101231i) q^{58} +(-0.0995233 - 0.240270i) q^{59} +(-1.52932 - 1.02015i) q^{60} +(2.05830 - 10.3478i) q^{61} +(-0.464295 + 0.310232i) q^{62} +(0.574524 + 0.113358i) q^{63} +(-3.02483 + 3.02483i) q^{64} +(-3.60876 - 2.41130i) q^{65} +(1.25603 + 6.28910i) q^{66} -5.40994i q^{67} +(-5.95256 + 3.98403i) q^{69} +(0.0512564 - 0.123744i) q^{70} +(-3.61943 + 5.41686i) q^{71} +(3.18552 + 7.65705i) q^{72} +(-11.3822 + 2.26406i) q^{73} +(-0.914994 - 1.36939i) q^{74} +(-2.87559 - 6.92716i) q^{75} +(-0.660143 + 0.273440i) q^{76} +(0.796392 - 0.329876i) q^{77} +(2.95305 + 7.11375i) q^{78} +(-6.00531 - 8.98758i) q^{79} +(-0.221556 + 0.0440703i) q^{80} +(8.99996 - 0.0278025i) q^{81} +(-3.72433 + 5.57385i) q^{82} +(1.05744 - 2.55289i) q^{83} +(0.364410 - 0.243898i) q^{84} -6.47280i q^{86} +(0.209927 + 1.05113i) q^{87} +(10.1503 + 6.78225i) q^{88} +(-3.69661 + 3.69661i) q^{89} +(0.398473 - 2.01956i) q^{90} +(0.860794 - 0.575164i) q^{91} +(-1.04637 + 5.26045i) q^{92} +(0.959599 + 0.640112i) q^{93} +(3.20315 + 7.73308i) q^{94} +(0.442189 + 0.0879569i) q^{95} +(9.22058 + 3.81095i) q^{96} +(-0.481692 - 2.42163i) q^{97} +(-4.12764 - 4.12764i) q^{98} +(11.0040 - 7.37724i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 8 q^{3} - 16 q^{4} + 8 q^{6} + 16 q^{7} - 8 q^{9} + 16 q^{10} - 16 q^{12} - 16 q^{13} + 16 q^{15} + 16 q^{18} - 16 q^{19} + 16 q^{21} + 16 q^{22} - 16 q^{24} + 16 q^{25} + 8 q^{27} - 32 q^{28} - 8 q^{30}+ \cdots + 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/867\mathbb{Z}\right)^\times\).

\(n\) \(290\) \(292\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.774648 + 0.320870i 0.547759 + 0.226889i 0.639361 0.768907i \(-0.279199\pi\)
−0.0916024 + 0.995796i \(0.529199\pi\)
\(3\) −0.00133765 1.73205i −0.000772294 1.00000i
\(4\) −0.917091 0.917091i −0.458546 0.458546i
\(5\) 0.159652 + 0.802626i 0.0713987 + 0.358945i 0.999924 0.0123235i \(-0.00392281\pi\)
−0.928525 + 0.371269i \(0.878923\pi\)
\(6\) 0.554726 1.34216i 0.226466 0.547934i
\(7\) −0.191449 0.0380817i −0.0723611 0.0143935i 0.158777 0.987314i \(-0.449245\pi\)
−0.231138 + 0.972921i \(0.574245\pi\)
\(8\) −1.05790 2.55399i −0.374023 0.902970i
\(9\) −3.00000 + 0.00463376i −0.999999 + 0.00154459i
\(10\) −0.133864 + 0.672980i −0.0423316 + 0.212815i
\(11\) −3.67179 + 2.45341i −1.10709 + 0.739731i −0.968100 0.250563i \(-0.919384\pi\)
−0.138986 + 0.990294i \(0.544384\pi\)
\(12\) −1.58722 + 1.58968i −0.458191 + 0.458900i
\(13\) −3.75023 + 3.75023i −1.04013 + 1.04013i −0.0409655 + 0.999161i \(0.513043\pi\)
−0.999161 + 0.0409655i \(0.986957\pi\)
\(14\) −0.136087 0.0909302i −0.0363707 0.0243021i
\(15\) 1.38998 0.277599i 0.358890 0.0716759i
\(16\) 0.276039i 0.0690098i
\(17\) 0 0
\(18\) −2.32543 0.959018i −0.548109 0.226043i
\(19\) 0.210831 0.508991i 0.0483680 0.116771i −0.897849 0.440304i \(-0.854871\pi\)
0.946217 + 0.323533i \(0.104871\pi\)
\(20\) 0.589666 0.882497i 0.131853 0.197332i
\(21\) −0.0657033 + 0.331651i −0.0143376 + 0.0723722i
\(22\) −3.63157 + 0.722364i −0.774253 + 0.154009i
\(23\) −2.29752 3.43849i −0.479067 0.716974i 0.510686 0.859768i \(-0.329392\pi\)
−0.989753 + 0.142793i \(0.954392\pi\)
\(24\) −4.42222 + 1.83574i −0.902681 + 0.374720i
\(25\) 4.00068 1.65713i 0.800136 0.331427i
\(26\) −4.10844 + 1.70177i −0.805732 + 0.333745i
\(27\) 0.0120389 + 5.19614i 0.00231688 + 0.999997i
\(28\) 0.140652 + 0.210501i 0.0265808 + 0.0397810i
\(29\) −0.606965 + 0.120733i −0.112711 + 0.0224195i −0.251123 0.967955i \(-0.580800\pi\)
0.138413 + 0.990375i \(0.455800\pi\)
\(30\) 1.16581 + 0.230959i 0.212848 + 0.0421672i
\(31\) −0.369997 + 0.553739i −0.0664533 + 0.0994545i −0.863208 0.504849i \(-0.831548\pi\)
0.796755 + 0.604303i \(0.206548\pi\)
\(32\) −2.20436 + 5.32181i −0.389680 + 0.940771i
\(33\) 4.25434 + 6.35644i 0.740586 + 1.10651i
\(34\) 0 0
\(35\) 0.159742i 0.0270014i
\(36\) 2.75552 + 2.74702i 0.459253 + 0.457837i
\(37\) −1.63319 1.09126i −0.268495 0.179402i 0.414034 0.910262i \(-0.364120\pi\)
−0.682528 + 0.730859i \(0.739120\pi\)
\(38\) 0.326640 0.326640i 0.0529880 0.0529880i
\(39\) 6.50060 + 6.49057i 1.04093 + 1.03932i
\(40\) 1.88100 1.25684i 0.297412 0.198725i
\(41\) −1.55975 + 7.84141i −0.243592 + 1.22462i 0.644373 + 0.764712i \(0.277119\pi\)
−0.887965 + 0.459911i \(0.847881\pi\)
\(42\) −0.157314 + 0.235831i −0.0242740 + 0.0363895i
\(43\) −2.95422 7.13212i −0.450514 1.08764i −0.972127 0.234455i \(-0.924669\pi\)
0.521613 0.853182i \(-0.325331\pi\)
\(44\) 5.61737 + 1.11736i 0.846850 + 0.168449i
\(45\) −0.482675 2.40714i −0.0719530 0.358835i
\(46\) −0.676466 3.40082i −0.0997395 0.501424i
\(47\) 7.05884 + 7.05884i 1.02964 + 1.02964i 0.999547 + 0.0300900i \(0.00957939\pi\)
0.0300900 + 0.999547i \(0.490421\pi\)
\(48\) 0.478114 0.000369245i 0.0690098 5.32959e-5i
\(49\) −6.43195 2.66420i −0.918851 0.380600i
\(50\) 3.63084 0.513479
\(51\) 0 0
\(52\) 6.87860 0.953891
\(53\) −10.7049 4.43410i −1.47043 0.609071i −0.503471 0.864012i \(-0.667944\pi\)
−0.966957 + 0.254941i \(0.917944\pi\)
\(54\) −1.65796 + 4.02904i −0.225619 + 0.548283i
\(55\) −2.55538 2.55538i −0.344568 0.344568i
\(56\) 0.105274 + 0.529246i 0.0140678 + 0.0707234i
\(57\) −0.881880 0.364489i −0.116808 0.0482778i
\(58\) −0.508924 0.101231i −0.0668249 0.0132923i
\(59\) −0.0995233 0.240270i −0.0129568 0.0312805i 0.917269 0.398269i \(-0.130389\pi\)
−0.930226 + 0.366988i \(0.880389\pi\)
\(60\) −1.52932 1.02015i −0.197434 0.131701i
\(61\) 2.05830 10.3478i 0.263539 1.32490i −0.591488 0.806314i \(-0.701459\pi\)
0.855026 0.518584i \(-0.173541\pi\)
\(62\) −0.464295 + 0.310232i −0.0589655 + 0.0393995i
\(63\) 0.574524 + 0.113358i 0.0723832 + 0.0142817i
\(64\) −3.02483 + 3.02483i −0.378104 + 0.378104i
\(65\) −3.60876 2.41130i −0.447612 0.299085i
\(66\) 1.25603 + 6.28910i 0.154606 + 0.774134i
\(67\) 5.40994i 0.660929i −0.943818 0.330465i \(-0.892795\pi\)
0.943818 0.330465i \(-0.107205\pi\)
\(68\) 0 0
\(69\) −5.95256 + 3.98403i −0.716604 + 0.479621i
\(70\) 0.0512564 0.123744i 0.00612632 0.0147902i
\(71\) −3.61943 + 5.41686i −0.429548 + 0.642864i −0.981601 0.190945i \(-0.938845\pi\)
0.552053 + 0.833809i \(0.313845\pi\)
\(72\) 3.18552 + 7.65705i 0.375417 + 0.902392i
\(73\) −11.3822 + 2.26406i −1.33218 + 0.264988i −0.809290 0.587409i \(-0.800148\pi\)
−0.522895 + 0.852397i \(0.675148\pi\)
\(74\) −0.914994 1.36939i −0.106366 0.159188i
\(75\) −2.87559 6.92716i −0.332045 0.799879i
\(76\) −0.660143 + 0.273440i −0.0757236 + 0.0313657i
\(77\) 0.796392 0.329876i 0.0907573 0.0375929i
\(78\) 2.95305 + 7.11375i 0.334367 + 0.805474i
\(79\) −6.00531 8.98758i −0.675650 1.01118i −0.997916 0.0645322i \(-0.979444\pi\)
0.322266 0.946649i \(-0.395556\pi\)
\(80\) −0.221556 + 0.0440703i −0.0247708 + 0.00492721i
\(81\) 8.99996 0.0278025i 0.999995 0.00308917i
\(82\) −3.72433 + 5.57385i −0.411283 + 0.615529i
\(83\) 1.05744 2.55289i 0.116069 0.280216i −0.855159 0.518365i \(-0.826541\pi\)
0.971229 + 0.238149i \(0.0765408\pi\)
\(84\) 0.364410 0.243898i 0.0397604 0.0266115i
\(85\) 0 0
\(86\) 6.47280i 0.697980i
\(87\) 0.209927 + 1.05113i 0.0225066 + 0.112693i
\(88\) 10.1503 + 6.78225i 1.08203 + 0.722990i
\(89\) −3.69661 + 3.69661i −0.391839 + 0.391839i −0.875343 0.483503i \(-0.839364\pi\)
0.483503 + 0.875343i \(0.339364\pi\)
\(90\) 0.398473 2.01956i 0.0420028 0.212880i
\(91\) 0.860794 0.575164i 0.0902357 0.0602936i
\(92\) −1.04637 + 5.26045i −0.109091 + 0.548440i
\(93\) 0.959599 + 0.640112i 0.0995057 + 0.0663765i
\(94\) 3.20315 + 7.73308i 0.330379 + 0.797606i
\(95\) 0.442189 + 0.0879569i 0.0453677 + 0.00902419i
\(96\) 9.22058 + 3.81095i 0.941072 + 0.388953i
\(97\) −0.481692 2.42163i −0.0489084 0.245879i 0.948595 0.316491i \(-0.102505\pi\)
−0.997504 + 0.0706120i \(0.977505\pi\)
\(98\) −4.12764 4.12764i −0.416954 0.416954i
\(99\) 11.0040 7.37724i 1.10594 0.741441i
\(100\) −5.18873 2.14924i −0.518873 0.214924i
\(101\) −6.79257 −0.675886 −0.337943 0.941167i \(-0.609731\pi\)
−0.337943 + 0.941167i \(0.609731\pi\)
\(102\) 0 0
\(103\) 2.47763 0.244128 0.122064 0.992522i \(-0.461049\pi\)
0.122064 + 0.992522i \(0.461049\pi\)
\(104\) 13.5454 + 5.61068i 1.32823 + 0.550172i
\(105\) −0.276681 0.000213679i −0.0270013 2.08530e-5i
\(106\) −6.86974 6.86974i −0.667248 0.667248i
\(107\) −0.802606 4.03497i −0.0775909 0.390076i −0.999993 0.00384387i \(-0.998776\pi\)
0.922402 0.386232i \(-0.126224\pi\)
\(108\) 4.75429 4.77637i 0.457482 0.459607i
\(109\) 12.4053 + 2.46757i 1.18821 + 0.236350i 0.749332 0.662195i \(-0.230375\pi\)
0.438881 + 0.898545i \(0.355375\pi\)
\(110\) −1.15958 2.79947i −0.110561 0.266919i
\(111\) −1.88794 + 2.83023i −0.179195 + 0.268633i
\(112\) 0.0105120 0.0528476i 0.000993294 0.00499363i
\(113\) −1.02794 + 0.686845i −0.0967001 + 0.0646130i −0.602980 0.797756i \(-0.706020\pi\)
0.506280 + 0.862369i \(0.331020\pi\)
\(114\) −0.566193 0.565320i −0.0530289 0.0529470i
\(115\) 2.39302 2.39302i 0.223150 0.223150i
\(116\) 0.667365 + 0.445919i 0.0619633 + 0.0414026i
\(117\) 11.2333 11.2680i 1.03852 1.04173i
\(118\) 0.218059i 0.0200740i
\(119\) 0 0
\(120\) −2.17943 3.25631i −0.198954 0.297259i
\(121\) 3.25330 7.85415i 0.295754 0.714014i
\(122\) 4.91475 7.35545i 0.444961 0.665931i
\(123\) 13.5838 + 2.69108i 1.22481 + 0.242647i
\(124\) 0.847150 0.168509i 0.0760763 0.0151325i
\(125\) 4.24203 + 6.34865i 0.379419 + 0.567841i
\(126\) 0.408681 + 0.272160i 0.0364082 + 0.0242459i
\(127\) −8.17992 + 3.38823i −0.725850 + 0.300657i −0.714845 0.699282i \(-0.753503\pi\)
−0.0110047 + 0.999939i \(0.503503\pi\)
\(128\) 7.32985 3.03612i 0.647873 0.268358i
\(129\) −12.3492 + 5.12640i −1.08729 + 0.451354i
\(130\) −2.02181 3.02585i −0.177324 0.265385i
\(131\) 9.64343 1.91820i 0.842551 0.167594i 0.245098 0.969498i \(-0.421180\pi\)
0.597452 + 0.801904i \(0.296180\pi\)
\(132\) 1.92782 9.73106i 0.167795 0.846980i
\(133\) −0.0597467 + 0.0894173i −0.00518070 + 0.00775346i
\(134\) 1.73589 4.19080i 0.149958 0.362030i
\(135\) −4.16863 + 0.839238i −0.358779 + 0.0722301i
\(136\) 0 0
\(137\) 12.6644i 1.08200i 0.841024 + 0.540998i \(0.181953\pi\)
−0.841024 + 0.540998i \(0.818047\pi\)
\(138\) −5.88949 + 1.17622i −0.501347 + 0.100127i
\(139\) −9.89935 6.61453i −0.839652 0.561038i 0.0597233 0.998215i \(-0.480978\pi\)
−0.899375 + 0.437177i \(0.855978\pi\)
\(140\) −0.146498 + 0.146498i −0.0123814 + 0.0123814i
\(141\) 12.2168 12.2357i 1.02884 1.03043i
\(142\) −4.54189 + 3.03480i −0.381147 + 0.254675i
\(143\) 4.56920 22.9709i 0.382095 1.92092i
\(144\) −0.00127910 0.828117i −0.000106592 0.0690097i
\(145\) −0.193807 0.467891i −0.0160948 0.0388562i
\(146\) −9.54366 1.89835i −0.789839 0.157109i
\(147\) −4.60593 + 11.1440i −0.379891 + 0.919144i
\(148\) 0.496997 + 2.49857i 0.0408529 + 0.205381i
\(149\) −8.98104 8.98104i −0.735756 0.735756i 0.235998 0.971754i \(-0.424164\pi\)
−0.971754 + 0.235998i \(0.924164\pi\)
\(150\) −0.00485680 6.28880i −0.000396556 0.513478i
\(151\) 0.732249 + 0.303307i 0.0595895 + 0.0246828i 0.412279 0.911058i \(-0.364733\pi\)
−0.352690 + 0.935740i \(0.614733\pi\)
\(152\) −1.52299 −0.123531
\(153\) 0 0
\(154\) 0.722771 0.0582426
\(155\) −0.503516 0.208563i −0.0404434 0.0167522i
\(156\) −0.00920118 11.9141i −0.000736684 0.953890i
\(157\) −1.66767 1.66767i −0.133095 0.133095i 0.637421 0.770516i \(-0.280001\pi\)
−0.770516 + 0.637421i \(0.780001\pi\)
\(158\) −1.76816 8.88913i −0.140667 0.707181i
\(159\) −7.66577 + 18.5473i −0.607935 + 1.47090i
\(160\) −4.62335 0.919642i −0.365508 0.0727041i
\(161\) 0.308916 + 0.745790i 0.0243460 + 0.0587765i
\(162\) 6.98072 + 2.86628i 0.548457 + 0.225196i
\(163\) 3.14715 15.8218i 0.246504 1.23926i −0.637012 0.770854i \(-0.719830\pi\)
0.883515 0.468403i \(-0.155170\pi\)
\(164\) 8.62172 5.76085i 0.673243 0.449847i
\(165\) −4.42263 + 4.42947i −0.344301 + 0.344834i
\(166\) 1.63829 1.63829i 0.127156 0.127156i
\(167\) 7.62247 + 5.09317i 0.589844 + 0.394121i 0.814369 0.580347i \(-0.197083\pi\)
−0.224525 + 0.974468i \(0.572083\pi\)
\(168\) 0.916539 0.183047i 0.0707125 0.0141224i
\(169\) 15.1284i 1.16372i
\(170\) 0 0
\(171\) −0.630134 + 1.52795i −0.0481875 + 0.116845i
\(172\) −3.83151 + 9.25009i −0.292150 + 0.705313i
\(173\) 0.647630 0.969247i 0.0492384 0.0736905i −0.806034 0.591870i \(-0.798390\pi\)
0.855272 + 0.518179i \(0.173390\pi\)
\(174\) −0.174657 + 0.881617i −0.0132407 + 0.0668352i
\(175\) −0.829034 + 0.164905i −0.0626691 + 0.0124657i
\(176\) −0.677238 1.01356i −0.0510487 0.0763998i
\(177\) −0.416027 + 0.172701i −0.0312705 + 0.0129810i
\(178\) −4.04970 + 1.67744i −0.303538 + 0.125729i
\(179\) 9.50468 3.93697i 0.710413 0.294263i 0.00193768 0.999998i \(-0.499383\pi\)
0.708476 + 0.705735i \(0.249383\pi\)
\(180\) −1.76491 + 2.65022i −0.131548 + 0.197536i
\(181\) 7.15635 + 10.7102i 0.531928 + 0.796086i 0.995966 0.0897290i \(-0.0286001\pi\)
−0.464039 + 0.885815i \(0.653600\pi\)
\(182\) 0.851365 0.169347i 0.0631074 0.0125528i
\(183\) −17.9256 3.55124i −1.32510 0.262515i
\(184\) −6.35131 + 9.50541i −0.468225 + 0.700748i
\(185\) 0.615133 1.48506i 0.0452255 0.109184i
\(186\) 0.537959 + 0.803768i 0.0394450 + 0.0589351i
\(187\) 0 0
\(188\) 12.9472i 0.944271i
\(189\) 0.195573 0.995256i 0.0142258 0.0723942i
\(190\) 0.314318 + 0.210021i 0.0228031 + 0.0152365i
\(191\) 11.7655 11.7655i 0.851319 0.851319i −0.138977 0.990296i \(-0.544381\pi\)
0.990296 + 0.138977i \(0.0443814\pi\)
\(192\) 5.24321 + 5.23512i 0.378396 + 0.377812i
\(193\) 2.47380 1.65294i 0.178068 0.118981i −0.463342 0.886180i \(-0.653350\pi\)
0.641410 + 0.767198i \(0.278350\pi\)
\(194\) 0.403886 2.03047i 0.0289973 0.145779i
\(195\) −4.17166 + 6.25379i −0.298739 + 0.447843i
\(196\) 3.45537 + 8.34201i 0.246812 + 0.595858i
\(197\) −13.3085 2.64722i −0.948190 0.188607i −0.303311 0.952892i \(-0.598092\pi\)
−0.644879 + 0.764285i \(0.723092\pi\)
\(198\) 10.8914 2.18392i 0.774015 0.155204i
\(199\) 0.839234 + 4.21912i 0.0594917 + 0.299085i 0.999064 0.0432667i \(-0.0137765\pi\)
−0.939572 + 0.342352i \(0.888777\pi\)
\(200\) −8.46460 8.46460i −0.598538 0.598538i
\(201\) −9.37029 + 0.00723662i −0.660929 + 0.000510432i
\(202\) −5.26185 2.17953i −0.370223 0.153351i
\(203\) 0.120801 0.00847855
\(204\) 0 0
\(205\) −6.54274 −0.456965
\(206\) 1.91929 + 0.794996i 0.133723 + 0.0553900i
\(207\) 6.90850 + 10.3048i 0.480174 + 0.716234i
\(208\) −1.03521 1.03521i −0.0717789 0.0717789i
\(209\) 0.474638 + 2.38616i 0.0328314 + 0.165054i
\(210\) −0.214399 0.0886132i −0.0147950 0.00611489i
\(211\) 15.2290 + 3.02923i 1.04840 + 0.208541i 0.689090 0.724676i \(-0.258011\pi\)
0.359314 + 0.933217i \(0.383011\pi\)
\(212\) 5.75087 + 13.8838i 0.394971 + 0.953545i
\(213\) 9.38712 + 6.26179i 0.643195 + 0.429051i
\(214\) 0.672964 3.38322i 0.0460029 0.231272i
\(215\) 5.25278 3.50979i 0.358236 0.239366i
\(216\) 13.2581 5.52772i 0.902101 0.376114i
\(217\) 0.0919229 0.0919229i 0.00624014 0.00624014i
\(218\) 8.81798 + 5.89198i 0.597229 + 0.399056i
\(219\) 3.93669 + 19.7115i 0.266017 + 1.33198i
\(220\) 4.68704i 0.316000i
\(221\) 0 0
\(222\) −2.37062 + 1.58665i −0.159106 + 0.106489i
\(223\) 6.37645 15.3941i 0.426999 1.03087i −0.553235 0.833025i \(-0.686607\pi\)
0.980234 0.197841i \(-0.0633931\pi\)
\(224\) 0.624687 0.934911i 0.0417387 0.0624664i
\(225\) −11.9943 + 4.98994i −0.799623 + 0.332662i
\(226\) −1.01668 + 0.202230i −0.0676283 + 0.0134521i
\(227\) 10.6940 + 16.0046i 0.709783 + 1.06227i 0.994610 + 0.103687i \(0.0330640\pi\)
−0.284827 + 0.958579i \(0.591936\pi\)
\(228\) 0.474495 + 1.14303i 0.0314242 + 0.0756993i
\(229\) 10.1448 4.20213i 0.670391 0.277685i −0.0214129 0.999771i \(-0.506816\pi\)
0.691803 + 0.722086i \(0.256816\pi\)
\(230\) 2.62159 1.08590i 0.172863 0.0716020i
\(231\) −0.572428 1.37895i −0.0376630 0.0907283i
\(232\) 0.950455 + 1.42246i 0.0624004 + 0.0933889i
\(233\) −23.0354 + 4.58203i −1.50910 + 0.300179i −0.879183 0.476484i \(-0.841911\pi\)
−0.629917 + 0.776662i \(0.716911\pi\)
\(234\) 12.3174 5.12435i 0.805215 0.334989i
\(235\) −4.53865 + 6.79257i −0.296069 + 0.443098i
\(236\) −0.129078 + 0.311622i −0.00840226 + 0.0202849i
\(237\) −15.5589 + 10.4135i −1.01066 + 0.676431i
\(238\) 0 0
\(239\) 13.7217i 0.887582i 0.896130 + 0.443791i \(0.146367\pi\)
−0.896130 + 0.443791i \(0.853633\pi\)
\(240\) 0.0766283 + 0.383688i 0.00494634 + 0.0247669i
\(241\) −3.55549 2.37570i −0.229029 0.153032i 0.435761 0.900062i \(-0.356479\pi\)
−0.664790 + 0.747030i \(0.731479\pi\)
\(242\) 5.04032 5.04032i 0.324004 0.324004i
\(243\) −0.0601942 15.5883i −0.00386146 0.999993i
\(244\) −11.3775 + 7.60221i −0.728371 + 0.486682i
\(245\) 1.11148 5.58780i 0.0710100 0.356992i
\(246\) 9.65918 + 6.44327i 0.615847 + 0.410808i
\(247\) 1.11817 + 2.69950i 0.0711474 + 0.171765i
\(248\) 1.80566 + 0.359168i 0.114659 + 0.0228072i
\(249\) −4.42314 1.82813i −0.280305 0.115853i
\(250\) 1.24899 + 6.27911i 0.0789932 + 0.397126i
\(251\) 6.57161 + 6.57161i 0.414796 + 0.414796i 0.883406 0.468609i \(-0.155245\pi\)
−0.468609 + 0.883406i \(0.655245\pi\)
\(252\) −0.422932 0.630851i −0.0266422 0.0397398i
\(253\) 16.8721 + 6.98863i 1.06074 + 0.439372i
\(254\) −7.42374 −0.465807
\(255\) 0 0
\(256\) 15.2078 0.950486
\(257\) −14.5315 6.01912i −0.906447 0.375463i −0.119752 0.992804i \(-0.538210\pi\)
−0.786696 + 0.617341i \(0.788210\pi\)
\(258\) −11.2112 + 0.00865836i −0.697980 + 0.000539046i
\(259\) 0.271116 + 0.271116i 0.0168463 + 0.0168463i
\(260\) 1.09818 + 5.52095i 0.0681065 + 0.342395i
\(261\) 1.82033 0.365010i 0.112676 0.0225936i
\(262\) 8.08576 + 1.60836i 0.499540 + 0.0993647i
\(263\) 5.90932 + 14.2664i 0.364384 + 0.879701i 0.994648 + 0.103320i \(0.0329466\pi\)
−0.630264 + 0.776381i \(0.717053\pi\)
\(264\) 11.7336 17.5900i 0.722154 1.08259i
\(265\) 1.84987 9.29993i 0.113637 0.571290i
\(266\) −0.0749740 + 0.0500960i −0.00459695 + 0.00307158i
\(267\) 6.40765 + 6.39776i 0.392142 + 0.391537i
\(268\) −4.96141 + 4.96141i −0.303066 + 0.303066i
\(269\) −20.2365 13.5216i −1.23384 0.824426i −0.244444 0.969663i \(-0.578605\pi\)
−0.989397 + 0.145237i \(0.953605\pi\)
\(270\) −3.49851 0.687475i −0.212913 0.0418384i
\(271\) 5.62528i 0.341711i 0.985296 + 0.170856i \(0.0546532\pi\)
−0.985296 + 0.170856i \(0.945347\pi\)
\(272\) 0 0
\(273\) −0.997365 1.49017i −0.0603633 0.0901891i
\(274\) −4.06363 + 9.81047i −0.245493 + 0.592672i
\(275\) −10.6240 + 15.9000i −0.640652 + 0.958804i
\(276\) 9.11276 + 1.80533i 0.548524 + 0.108668i
\(277\) 8.69401 1.72935i 0.522373 0.103906i 0.0731408 0.997322i \(-0.476698\pi\)
0.449232 + 0.893415i \(0.351698\pi\)
\(278\) −5.54611 8.30034i −0.332633 0.497821i
\(279\) 1.10742 1.66293i 0.0662996 0.0995570i
\(280\) −0.407979 + 0.168991i −0.0243814 + 0.0100991i
\(281\) −6.66883 + 2.76232i −0.397829 + 0.164786i −0.572623 0.819819i \(-0.694074\pi\)
0.174794 + 0.984605i \(0.444074\pi\)
\(282\) 13.3898 5.55836i 0.797351 0.330995i
\(283\) −2.74547 4.10889i −0.163201 0.244248i 0.740851 0.671669i \(-0.234422\pi\)
−0.904053 + 0.427421i \(0.859422\pi\)
\(284\) 8.28711 1.64841i 0.491750 0.0978151i
\(285\) 0.151754 0.766012i 0.00898915 0.0453746i
\(286\) 10.9102 16.3282i 0.645133 0.965509i
\(287\) 0.597228 1.44184i 0.0352532 0.0851088i
\(288\) 6.58842 15.9756i 0.388227 0.941372i
\(289\) 0 0
\(290\) 0.424637i 0.0249356i
\(291\) −4.19374 + 0.837554i −0.245841 + 0.0490983i
\(292\) 12.5149 + 8.36216i 0.732377 + 0.489359i
\(293\) −13.5083 + 13.5083i −0.789165 + 0.789165i −0.981357 0.192192i \(-0.938440\pi\)
0.192192 + 0.981357i \(0.438440\pi\)
\(294\) −7.14376 + 7.15480i −0.416632 + 0.417276i
\(295\) 0.176958 0.118240i 0.0103029 0.00688418i
\(296\) −1.05932 + 5.32559i −0.0615720 + 0.309543i
\(297\) −12.7925 19.0496i −0.742294 1.10537i
\(298\) −4.07540 9.83889i −0.236082 0.569952i
\(299\) 21.5114 + 4.27887i 1.24403 + 0.247454i
\(300\) −3.71566 + 8.99002i −0.214523 + 0.519039i
\(301\) 0.293981 + 1.47794i 0.0169448 + 0.0851872i
\(302\) 0.469913 + 0.469913i 0.0270404 + 0.0270404i
\(303\) 0.00908610 + 11.7651i 0.000521983 + 0.675886i
\(304\) 0.140502 + 0.0581977i 0.00805832 + 0.00333786i
\(305\) 8.63402 0.494382
\(306\) 0 0
\(307\) −4.98811 −0.284687 −0.142343 0.989817i \(-0.545464\pi\)
−0.142343 + 0.989817i \(0.545464\pi\)
\(308\) −1.03289 0.427838i −0.0588544 0.0243783i
\(309\) −0.00331421 4.29138i −0.000188539 0.244128i
\(310\) −0.323126 0.323126i −0.0183523 0.0183523i
\(311\) 2.04185 + 10.2651i 0.115783 + 0.582080i 0.994500 + 0.104737i \(0.0334000\pi\)
−0.878717 + 0.477343i \(0.841600\pi\)
\(312\) 9.69986 23.4688i 0.549146 1.32866i
\(313\) −23.5532 4.68503i −1.33131 0.264814i −0.522375 0.852716i \(-0.674954\pi\)
−0.808932 + 0.587902i \(0.799954\pi\)
\(314\) −0.756754 1.82697i −0.0427061 0.103102i
\(315\) 0.000740207 0.479226i 4.17060e−5 0.0270013i
\(316\) −2.73501 + 13.7498i −0.153857 + 0.773489i
\(317\) 8.17832 5.46458i 0.459340 0.306921i −0.304285 0.952581i \(-0.598418\pi\)
0.763625 + 0.645660i \(0.223418\pi\)
\(318\) −11.8895 + 11.9079i −0.666733 + 0.667763i
\(319\) 1.93244 1.93244i 0.108196 0.108196i
\(320\) −2.91073 1.94489i −0.162715 0.108723i
\(321\) −6.98771 + 1.39555i −0.390016 + 0.0778921i
\(322\) 0.676847i 0.0377192i
\(323\) 0 0
\(324\) −8.27928 8.22829i −0.459960 0.457127i
\(325\) −8.78882 + 21.2181i −0.487516 + 1.17697i
\(326\) 7.51466 11.2465i 0.416198 0.622885i
\(327\) 4.25736 21.4899i 0.235432 1.18839i
\(328\) 21.6769 4.31180i 1.19691 0.238080i
\(329\) −1.08260 1.62022i −0.0596856 0.0893258i
\(330\) −4.84727 + 2.01219i −0.266833 + 0.110767i
\(331\) −3.87936 + 1.60689i −0.213229 + 0.0883224i −0.486741 0.873546i \(-0.661815\pi\)
0.273512 + 0.961869i \(0.411815\pi\)
\(332\) −3.31100 + 1.37146i −0.181715 + 0.0752687i
\(333\) 4.90462 + 3.26622i 0.268772 + 0.178988i
\(334\) 4.27048 + 6.39123i 0.233671 + 0.349713i
\(335\) 4.34216 0.863709i 0.237238 0.0471895i
\(336\) −0.0915487 0.0181367i −0.00499439 0.000989437i
\(337\) 3.21434 4.81060i 0.175096 0.262050i −0.733533 0.679654i \(-0.762130\pi\)
0.908629 + 0.417604i \(0.137130\pi\)
\(338\) 4.85425 11.7192i 0.264036 0.637440i
\(339\) 1.19103 + 1.77952i 0.0646876 + 0.0966502i
\(340\) 0 0
\(341\) 2.94097i 0.159262i
\(342\) −0.978404 + 0.981432i −0.0529061 + 0.0530697i
\(343\) 2.26606 + 1.51413i 0.122356 + 0.0817554i
\(344\) −15.0901 + 15.0901i −0.813602 + 0.813602i
\(345\) −4.14802 4.14162i −0.223322 0.222977i
\(346\) 0.812687 0.543020i 0.0436903 0.0291930i
\(347\) −0.00369437 + 0.0185728i −0.000198324 + 0.000997042i −0.980884 0.194592i \(-0.937662\pi\)
0.980686 + 0.195589i \(0.0626618\pi\)
\(348\) 0.771462 1.15651i 0.0413547 0.0619953i
\(349\) 2.37825 + 5.74159i 0.127305 + 0.307340i 0.974662 0.223682i \(-0.0718078\pi\)
−0.847358 + 0.531023i \(0.821808\pi\)
\(350\) −0.695123 0.138268i −0.0371559 0.00739076i
\(351\) −19.5319 19.4416i −1.04253 1.03771i
\(352\) −4.96262 24.9488i −0.264508 1.32977i
\(353\) 8.61113 + 8.61113i 0.458324 + 0.458324i 0.898105 0.439781i \(-0.144944\pi\)
−0.439781 + 0.898105i \(0.644944\pi\)
\(354\) −0.377689 0.000291687i −0.0200740 1.55030e-5i
\(355\) −4.92557 2.04024i −0.261422 0.108285i
\(356\) 6.78025 0.359352
\(357\) 0 0
\(358\) 8.62604 0.455900
\(359\) 29.4053 + 12.1801i 1.55195 + 0.642840i 0.983668 0.179992i \(-0.0576073\pi\)
0.568284 + 0.822832i \(0.307607\pi\)
\(360\) −5.63717 + 3.77924i −0.297105 + 0.199184i
\(361\) 13.2204 + 13.2204i 0.695811 + 0.695811i
\(362\) 2.10706 + 10.5929i 0.110745 + 0.556752i
\(363\) −13.6081 5.62437i −0.714242 0.295203i
\(364\) −1.31690 0.261949i −0.0690246 0.0137298i
\(365\) −3.63439 8.77418i −0.190232 0.459262i
\(366\) −12.7466 8.50276i −0.666274 0.444446i
\(367\) −6.56004 + 32.9795i −0.342431 + 1.72152i 0.298928 + 0.954276i \(0.403371\pi\)
−0.641359 + 0.767241i \(0.721629\pi\)
\(368\) 0.949158 0.634207i 0.0494783 0.0330603i
\(369\) 4.64292 23.5314i 0.241701 1.22500i
\(370\) 0.953024 0.953024i 0.0495453 0.0495453i
\(371\) 1.88058 + 1.25657i 0.0976351 + 0.0652377i
\(372\) −0.292999 1.46708i −0.0151913 0.0760646i
\(373\) 15.2764i 0.790981i −0.918470 0.395490i \(-0.870575\pi\)
0.918470 0.395490i \(-0.129425\pi\)
\(374\) 0 0
\(375\) 10.9905 7.35591i 0.567547 0.379857i
\(376\) 10.5607 25.4957i 0.544624 1.31484i
\(377\) 1.82348 2.72903i 0.0939140 0.140552i
\(378\) 0.470848 0.708220i 0.0242178 0.0364269i
\(379\) −37.2855 + 7.41655i −1.91523 + 0.380963i −0.999770 0.0214486i \(-0.993172\pi\)
−0.915459 + 0.402411i \(0.868172\pi\)
\(380\) −0.324864 0.486193i −0.0166651 0.0249412i
\(381\) 5.87953 + 14.1635i 0.301217 + 0.725618i
\(382\) 12.8893 5.33891i 0.659472 0.273162i
\(383\) −31.8268 + 13.1831i −1.62627 + 0.673624i −0.994807 0.101781i \(-0.967546\pi\)
−0.631465 + 0.775404i \(0.717546\pi\)
\(384\) −5.26852 12.6916i −0.268858 0.647666i
\(385\) 0.391913 + 0.586540i 0.0199738 + 0.0298928i
\(386\) 2.44670 0.486680i 0.124534 0.0247714i
\(387\) 8.89570 + 21.3826i 0.452194 + 1.08694i
\(388\) −1.77910 + 2.66261i −0.0903201 + 0.135174i
\(389\) −0.288821 + 0.697275i −0.0146438 + 0.0353532i −0.931032 0.364937i \(-0.881091\pi\)
0.916389 + 0.400290i \(0.131091\pi\)
\(390\) −5.23822 + 3.50592i −0.265248 + 0.177529i
\(391\) 0 0
\(392\) 19.2456i 0.972048i
\(393\) −3.33532 16.7003i −0.168244 0.842421i
\(394\) −9.45998 6.32096i −0.476587 0.318445i
\(395\) 6.25490 6.25490i 0.314718 0.314718i
\(396\) −16.8573 3.32606i −0.847110 0.167141i
\(397\) 16.7515 11.1930i 0.840734 0.561761i −0.0589706 0.998260i \(-0.518782\pi\)
0.899705 + 0.436499i \(0.143782\pi\)
\(398\) −0.703675 + 3.53761i −0.0352720 + 0.177325i
\(399\) 0.154955 + 0.103365i 0.00775746 + 0.00517471i
\(400\) 0.457434 + 1.10434i 0.0228717 + 0.0552172i
\(401\) −15.4656 3.07630i −0.772315 0.153623i −0.206825 0.978378i \(-0.566313\pi\)
−0.565490 + 0.824755i \(0.691313\pi\)
\(402\) −7.26100 3.00104i −0.362146 0.149678i
\(403\) −0.689076 3.46422i −0.0343253 0.172565i
\(404\) 6.22941 + 6.22941i 0.309925 + 0.309925i
\(405\) 1.45918 + 7.21916i 0.0725072 + 0.358723i
\(406\) 0.0935781 + 0.0387613i 0.00464420 + 0.00192369i
\(407\) 8.67405 0.429957
\(408\) 0 0
\(409\) −28.3555 −1.40209 −0.701045 0.713117i \(-0.747283\pi\)
−0.701045 + 0.713117i \(0.747283\pi\)
\(410\) −5.06832 2.09937i −0.250306 0.103680i
\(411\) 21.9354 0.0169406i 1.08199 0.000835618i
\(412\) −2.27221 2.27221i −0.111944 0.111944i
\(413\) 0.00990378 + 0.0497897i 0.000487333 + 0.00244999i
\(414\) 2.04515 + 10.1993i 0.100514 + 0.501270i
\(415\) 2.21784 + 0.441155i 0.108869 + 0.0216555i
\(416\) −11.6911 28.2248i −0.573204 1.38384i
\(417\) −11.4435 + 17.1550i −0.560389 + 0.840085i
\(418\) −0.397971 + 2.00073i −0.0194654 + 0.0978591i
\(419\) −29.2939 + 19.5736i −1.43110 + 0.956231i −0.432595 + 0.901588i \(0.642402\pi\)
−0.998506 + 0.0546430i \(0.982598\pi\)
\(420\) 0.253938 + 0.253546i 0.0123909 + 0.0123718i
\(421\) −0.00892902 + 0.00892902i −0.000435174 + 0.000435174i −0.707324 0.706889i \(-0.750098\pi\)
0.706889 + 0.707324i \(0.250098\pi\)
\(422\) 10.8251 + 7.23309i 0.526957 + 0.352102i
\(423\) −21.2092 21.1438i −1.03123 1.02805i
\(424\) 32.0309i 1.55556i
\(425\) 0 0
\(426\) 5.26250 + 7.86273i 0.254969 + 0.380951i
\(427\) −0.788122 + 1.90269i −0.0381399 + 0.0920779i
\(428\) −2.96438 + 4.43650i −0.143289 + 0.214447i
\(429\) −39.7929 7.88335i −1.92122 0.380612i
\(430\) 5.19524 1.03340i 0.250537 0.0498349i
\(431\) −6.58741 9.85875i −0.317304 0.474879i 0.638194 0.769875i \(-0.279682\pi\)
−0.955499 + 0.294996i \(0.904682\pi\)
\(432\) −1.43434 + 0.00332320i −0.0690096 + 0.000159887i
\(433\) −0.501414 + 0.207692i −0.0240964 + 0.00998106i −0.394699 0.918810i \(-0.629151\pi\)
0.370603 + 0.928791i \(0.379151\pi\)
\(434\) 0.100703 0.0417126i 0.00483391 0.00200227i
\(435\) −0.810151 + 0.336309i −0.0388438 + 0.0161248i
\(436\) −9.11381 13.6398i −0.436472 0.653227i
\(437\) −2.23455 + 0.444480i −0.106893 + 0.0212623i
\(438\) −3.27528 + 16.5326i −0.156499 + 0.789960i
\(439\) 16.9177 25.3191i 0.807436 1.20841i −0.167487 0.985874i \(-0.553565\pi\)
0.974924 0.222540i \(-0.0714347\pi\)
\(440\) −3.82308 + 9.22974i −0.182258 + 0.440010i
\(441\) 19.3082 + 7.96279i 0.919437 + 0.379181i
\(442\) 0 0
\(443\) 40.2451i 1.91210i −0.293203 0.956050i \(-0.594721\pi\)
0.293203 0.956050i \(-0.405279\pi\)
\(444\) 4.32699 0.864166i 0.205350 0.0410115i
\(445\) −3.55716 2.37682i −0.168626 0.112672i
\(446\) 9.87902 9.87902i 0.467785 0.467785i
\(447\) −15.5436 + 15.5676i −0.735187 + 0.736324i
\(448\) 0.694294 0.463912i 0.0328023 0.0219178i
\(449\) −7.10838 + 35.7362i −0.335465 + 1.68650i 0.333139 + 0.942878i \(0.391892\pi\)
−0.668604 + 0.743619i \(0.733108\pi\)
\(450\) −10.8925 + 0.0168245i −0.513478 + 0.000793112i
\(451\) −13.5111 32.6187i −0.636214 1.53596i
\(452\) 1.57261 + 0.312812i 0.0739694 + 0.0147134i
\(453\) 0.524364 1.26870i 0.0246368 0.0596086i
\(454\) 3.14865 + 15.8293i 0.147774 + 0.742908i
\(455\) 0.599070 + 0.599070i 0.0280848 + 0.0280848i
\(456\) 0.00203724 + 2.63790i 9.54023e−5 + 0.123531i
\(457\) −19.6921 8.15675i −0.921160 0.381557i −0.128842 0.991665i \(-0.541126\pi\)
−0.792318 + 0.610108i \(0.791126\pi\)
\(458\) 9.20703 0.430216
\(459\) 0 0
\(460\) −4.38923 −0.204649
\(461\) 5.67952 + 2.35253i 0.264521 + 0.109568i 0.511002 0.859579i \(-0.329274\pi\)
−0.246481 + 0.969148i \(0.579274\pi\)
\(462\) −0.000966816 1.25188i −4.49804e−5 0.0582425i
\(463\) 25.6637 + 25.6637i 1.19270 + 1.19270i 0.976307 + 0.216388i \(0.0694277\pi\)
0.216388 + 0.976307i \(0.430572\pi\)
\(464\) −0.0333270 0.167546i −0.00154717 0.00777813i
\(465\) −0.360569 + 0.872394i −0.0167210 + 0.0404563i
\(466\) −19.3146 3.84191i −0.894730 0.177973i
\(467\) −2.94293 7.10485i −0.136182 0.328773i 0.841046 0.540964i \(-0.181940\pi\)
−0.977228 + 0.212190i \(0.931940\pi\)
\(468\) −20.6358 + 0.0318738i −0.953889 + 0.00147337i
\(469\) −0.206020 + 1.03573i −0.00951310 + 0.0478256i
\(470\) −5.69538 + 3.80553i −0.262708 + 0.175536i
\(471\) −2.88626 + 2.89073i −0.132992 + 0.133198i
\(472\) −0.508362 + 0.508362i −0.0233993 + 0.0233993i
\(473\) 28.3453 + 18.9397i 1.30332 + 0.870849i
\(474\) −15.3941 + 3.07443i −0.707072 + 0.141213i
\(475\) 2.38569i 0.109463i
\(476\) 0 0
\(477\) 32.1351 + 13.2527i 1.47137 + 0.606799i
\(478\) −4.40287 + 10.6295i −0.201383 + 0.486181i
\(479\) 1.27558 1.90904i 0.0582826 0.0872260i −0.801184 0.598418i \(-0.795796\pi\)
0.859466 + 0.511192i \(0.170796\pi\)
\(480\) −1.58668 + 8.00911i −0.0724218 + 0.365564i
\(481\) 10.2173 2.03235i 0.465870 0.0926672i
\(482\) −1.99196 2.98118i −0.0907313 0.135789i
\(483\) 1.29133 0.536056i 0.0587577 0.0243914i
\(484\) −10.1865 + 4.21940i −0.463025 + 0.191791i
\(485\) 1.86676 0.773237i 0.0847652 0.0351109i
\(486\) 4.95520 12.0948i 0.224772 0.548631i
\(487\) 15.5987 + 23.3450i 0.706842 + 1.05786i 0.994960 + 0.100269i \(0.0319705\pi\)
−0.288118 + 0.957595i \(0.593030\pi\)
\(488\) −28.6056 + 5.69000i −1.29491 + 0.257574i
\(489\) −27.4083 5.42985i −1.23945 0.245546i
\(490\) 2.65396 3.97194i 0.119894 0.179434i
\(491\) −5.17526 + 12.4942i −0.233556 + 0.563854i −0.996591 0.0825033i \(-0.973709\pi\)
0.763035 + 0.646357i \(0.223709\pi\)
\(492\) −9.98962 14.9256i −0.450367 0.672896i
\(493\) 0 0
\(494\) 2.44995i 0.110228i
\(495\) 7.67798 + 7.65430i 0.345099 + 0.344035i
\(496\) −0.152854 0.102134i −0.00686333 0.00458593i
\(497\) 0.899222 0.899222i 0.0403356 0.0403356i
\(498\) −2.83979 2.83541i −0.127254 0.127058i
\(499\) 12.6659 8.46309i 0.567004 0.378860i −0.238776 0.971075i \(-0.576746\pi\)
0.805780 + 0.592215i \(0.201746\pi\)
\(500\) 1.93196 9.71263i 0.0863999 0.434362i
\(501\) 8.81143 13.2093i 0.393666 0.590148i
\(502\) 2.98205 + 7.19931i 0.133096 + 0.321321i
\(503\) 23.9263 + 4.75924i 1.06682 + 0.212204i 0.697126 0.716949i \(-0.254462\pi\)
0.369696 + 0.929153i \(0.379462\pi\)
\(504\) −0.318273 1.58725i −0.0141770 0.0707016i
\(505\) −1.08445 5.45190i −0.0482574 0.242606i
\(506\) 10.8275 + 10.8275i 0.481339 + 0.481339i
\(507\) −26.2032 + 0.0202366i −1.16372 + 0.000898737i
\(508\) 10.6090 + 4.39441i 0.470700 + 0.194971i
\(509\) 18.8631 0.836090 0.418045 0.908426i \(-0.362715\pi\)
0.418045 + 0.908426i \(0.362715\pi\)
\(510\) 0 0
\(511\) 2.26533 0.100212
\(512\) −2.87903 1.19253i −0.127236 0.0527030i
\(513\) 2.64733 + 1.08938i 0.116882 + 0.0480973i
\(514\) −9.32541 9.32541i −0.411326 0.411326i
\(515\) 0.395559 + 1.98861i 0.0174304 + 0.0876286i
\(516\) 16.0268 + 6.62400i 0.705538 + 0.291605i
\(517\) −43.2368 8.60033i −1.90155 0.378242i
\(518\) 0.123027 + 0.297013i 0.00540548 + 0.0130500i
\(519\) −1.67965 1.12043i −0.0737285 0.0491815i
\(520\) −2.34073 + 11.7676i −0.102648 + 0.516045i
\(521\) 27.4188 18.3207i 1.20124 0.802643i 0.216433 0.976298i \(-0.430558\pi\)
0.984807 + 0.173655i \(0.0555578\pi\)
\(522\) 1.52724 + 0.301335i 0.0668454 + 0.0131891i
\(523\) 9.24397 9.24397i 0.404211 0.404211i −0.475503 0.879714i \(-0.657734\pi\)
0.879714 + 0.475503i \(0.157734\pi\)
\(524\) −10.6031 7.08475i −0.463197 0.309499i
\(525\) 0.286733 + 1.43571i 0.0125141 + 0.0626594i
\(526\) 12.9475i 0.564539i
\(527\) 0 0
\(528\) −1.75463 + 1.17437i −0.0763604 + 0.0511077i
\(529\) 2.25714 5.44921i 0.0981363 0.236922i
\(530\) 4.41706 6.61060i 0.191865 0.287146i
\(531\) 0.299683 + 0.720349i 0.0130051 + 0.0312605i
\(532\) 0.136797 0.0272106i 0.00593090 0.00117973i
\(533\) −23.5576 35.2565i −1.02039 1.52713i
\(534\) 2.91083 + 7.01203i 0.125964 + 0.303440i
\(535\) 3.11044 1.28839i 0.134476 0.0557018i
\(536\) −13.8169 + 5.72315i −0.596800 + 0.247202i
\(537\) −6.83174 16.4573i −0.294811 0.710186i
\(538\) −11.3375 16.9678i −0.488794 0.731532i
\(539\) 30.1532 5.99784i 1.29879 0.258345i
\(540\) 4.59268 + 3.05336i 0.197637 + 0.131396i
\(541\) −9.26903 + 13.8721i −0.398507 + 0.596408i −0.975408 0.220406i \(-0.929262\pi\)
0.576901 + 0.816814i \(0.304262\pi\)
\(542\) −1.80498 + 4.35761i −0.0775306 + 0.187176i
\(543\) 18.5411 12.4095i 0.795675 0.532542i
\(544\) 0 0
\(545\) 10.3508i 0.443379i
\(546\) −0.294456 1.47438i −0.0126016 0.0630977i
\(547\) −9.01564 6.02406i −0.385481 0.257570i 0.347697 0.937607i \(-0.386964\pi\)
−0.733178 + 0.680037i \(0.761964\pi\)
\(548\) 11.6144 11.6144i 0.496144 0.496144i
\(549\) −6.12695 + 31.0529i −0.261492 + 1.32530i
\(550\) −13.3317 + 8.90795i −0.568465 + 0.379836i
\(551\) −0.0665151 + 0.334394i −0.00283364 + 0.0142457i
\(552\) 16.4723 + 10.9881i 0.701109 + 0.467683i
\(553\) 0.807451 + 1.94936i 0.0343363 + 0.0828952i
\(554\) 7.28969 + 1.45001i 0.309709 + 0.0616050i
\(555\) −2.57303 1.06346i −0.109219 0.0451412i
\(556\) 3.01248 + 15.1447i 0.127757 + 0.642280i
\(557\) 8.63556 + 8.63556i 0.365900 + 0.365900i 0.865980 0.500079i \(-0.166696\pi\)
−0.500079 + 0.865980i \(0.666696\pi\)
\(558\) 1.39145 0.932847i 0.0589046 0.0394905i
\(559\) 37.8261 + 15.6681i 1.59987 + 0.662689i
\(560\) 0.0440951 0.00186336
\(561\) 0 0
\(562\) −6.05234 −0.255302
\(563\) −21.7414 9.00559i −0.916292 0.379541i −0.125830 0.992052i \(-0.540159\pi\)
−0.790462 + 0.612511i \(0.790159\pi\)
\(564\) −22.4252 + 0.0173188i −0.944271 + 0.000729255i
\(565\) −0.715392 0.715392i −0.0300968 0.0300968i
\(566\) −0.808357 4.06388i −0.0339778 0.170818i
\(567\) −1.72410 0.337411i −0.0724052 0.0141699i
\(568\) 17.6636 + 3.51350i 0.741147 + 0.147423i
\(569\) −0.717701 1.73268i −0.0300876 0.0726379i 0.908122 0.418707i \(-0.137516\pi\)
−0.938209 + 0.346069i \(0.887516\pi\)
\(570\) 0.363346 0.544696i 0.0152189 0.0228148i
\(571\) −7.81421 + 39.2847i −0.327014 + 1.64401i 0.371512 + 0.928428i \(0.378839\pi\)
−0.698526 + 0.715584i \(0.746161\pi\)
\(572\) −25.2568 + 16.8760i −1.05604 + 0.705623i
\(573\) −20.3941 20.3626i −0.851976 0.850661i
\(574\) 0.925283 0.925283i 0.0386205 0.0386205i
\(575\) −14.8897 9.94898i −0.620943 0.414901i
\(576\) 9.06047 9.08851i 0.377520 0.378688i
\(577\) 31.8433i 1.32565i 0.748773 + 0.662826i \(0.230643\pi\)
−0.748773 + 0.662826i \(0.769357\pi\)
\(578\) 0 0
\(579\) −2.86629 4.28254i −0.119119 0.177976i
\(580\) −0.251360 + 0.606837i −0.0104372 + 0.0251975i
\(581\) −0.299665 + 0.448480i −0.0124322 + 0.0186061i
\(582\) −3.51742 0.696834i −0.145802 0.0288847i
\(583\) 50.1847 9.98236i 2.07844 0.413427i
\(584\) 17.8235 + 26.6748i 0.737544 + 1.10381i
\(585\) 10.8375 + 7.21717i 0.448073 + 0.298393i
\(586\) −14.7986 + 6.12978i −0.611325 + 0.253219i
\(587\) 11.6364 4.81996i 0.480286 0.198941i −0.129387 0.991594i \(-0.541301\pi\)
0.609673 + 0.792653i \(0.291301\pi\)
\(588\) 14.4442 5.99604i 0.595667 0.247272i
\(589\) 0.203842 + 0.305070i 0.00839914 + 0.0125702i
\(590\) 0.175020 0.0348136i 0.00720546 0.00143325i
\(591\) −4.56732 + 23.0545i −0.187874 + 0.948336i
\(592\) 0.301231 0.450825i 0.0123805 0.0185288i
\(593\) −7.05301 + 17.0275i −0.289632 + 0.699234i −0.999989 0.00460731i \(-0.998533\pi\)
0.710357 + 0.703841i \(0.248533\pi\)
\(594\) −3.79722 18.8614i −0.155802 0.773895i
\(595\) 0 0
\(596\) 16.4729i 0.674755i
\(597\) 7.30660 1.45924i 0.299039 0.0597227i
\(598\) 15.2908 + 10.2170i 0.625286 + 0.417803i
\(599\) −12.3968 + 12.3968i −0.506519 + 0.506519i −0.913456 0.406937i \(-0.866597\pi\)
0.406937 + 0.913456i \(0.366597\pi\)
\(600\) −14.6498 + 14.6724i −0.598075 + 0.599000i
\(601\) 11.2873 7.54195i 0.460419 0.307642i −0.303642 0.952786i \(-0.598203\pi\)
0.764061 + 0.645144i \(0.223203\pi\)
\(602\) −0.246495 + 1.23921i −0.0100464 + 0.0505066i
\(603\) 0.0250684 + 16.2298i 0.00102086 + 0.660929i
\(604\) −0.393378 0.949699i −0.0160063 0.0386427i
\(605\) 6.82334 + 1.35725i 0.277408 + 0.0551800i
\(606\) −3.76802 + 9.11671i −0.153065 + 0.370341i
\(607\) 0.807003 + 4.05708i 0.0327552 + 0.164672i 0.993701 0.112066i \(-0.0357468\pi\)
−0.960946 + 0.276737i \(0.910747\pi\)
\(608\) 2.24400 + 2.24400i 0.0910064 + 0.0910064i
\(609\) −0.000161589 0.209233i −6.54793e−6 0.00847855i
\(610\) 6.68833 + 2.77040i 0.270802 + 0.112170i
\(611\) −52.9445 −2.14190
\(612\) 0 0
\(613\) −27.1330 −1.09589 −0.547947 0.836513i \(-0.684590\pi\)
−0.547947 + 0.836513i \(0.684590\pi\)
\(614\) −3.86403 1.60053i −0.155940 0.0645923i
\(615\) 0.00875191 + 11.3323i 0.000352911 + 0.456964i
\(616\) −1.68500 1.68500i −0.0678906 0.0678906i
\(617\) −2.48894 12.5128i −0.100201 0.503745i −0.997993 0.0633250i \(-0.979830\pi\)
0.897792 0.440420i \(-0.145170\pi\)
\(618\) 1.37441 3.32537i 0.0552867 0.133766i
\(619\) 3.81263 + 0.758379i 0.153243 + 0.0304818i 0.271115 0.962547i \(-0.412608\pi\)
−0.117873 + 0.993029i \(0.537608\pi\)
\(620\) 0.270499 + 0.653042i 0.0108635 + 0.0262268i
\(621\) 17.8392 11.9797i 0.715863 0.480727i
\(622\) −1.71204 + 8.60700i −0.0686465 + 0.345109i
\(623\) 0.848486 0.566940i 0.0339939 0.0227140i
\(624\) −1.79165 + 1.79442i −0.0717235 + 0.0718343i
\(625\) 10.8916 10.8916i 0.435663 0.435663i
\(626\) −16.7422 11.1868i −0.669152 0.447113i
\(627\) 4.13232 0.825288i 0.165029 0.0329588i
\(628\) 3.05882i 0.122060i
\(629\) 0 0
\(630\) −0.153196 + 0.371469i −0.00610346 + 0.0147997i
\(631\) −13.4198 + 32.3983i −0.534234 + 1.28976i 0.394461 + 0.918913i \(0.370931\pi\)
−0.928696 + 0.370843i \(0.879069\pi\)
\(632\) −16.6012 + 24.8454i −0.660359 + 0.988296i
\(633\) 5.22640 26.3814i 0.207731 1.04857i
\(634\) 8.08874 1.60895i 0.321245 0.0638996i
\(635\) −4.02543 6.02448i −0.159744 0.239074i
\(636\) 24.0398 9.97937i 0.953240 0.395708i
\(637\) 34.1127 14.1299i 1.35159 0.559848i
\(638\) 2.11702 0.876899i 0.0838137 0.0347168i
\(639\) 10.8332 16.2673i 0.428554 0.643526i
\(640\) 3.60710 + 5.39841i 0.142583 + 0.213391i
\(641\) −2.19355 + 0.436325i −0.0866402 + 0.0172338i −0.238220 0.971211i \(-0.576564\pi\)
0.151580 + 0.988445i \(0.451564\pi\)
\(642\) −5.86080 1.16108i −0.231307 0.0458242i
\(643\) −2.03342 + 3.04323i −0.0801904 + 0.120013i −0.869397 0.494115i \(-0.835492\pi\)
0.789206 + 0.614128i \(0.210492\pi\)
\(644\) 0.400653 0.967262i 0.0157879 0.0381155i
\(645\) −6.08617 9.09338i −0.239643 0.358051i
\(646\) 0 0
\(647\) 28.3391i 1.11413i −0.830470 0.557063i \(-0.811928\pi\)
0.830470 0.557063i \(-0.188072\pi\)
\(648\) −9.59202 22.9564i −0.376810 0.901811i
\(649\) 0.954911 + 0.638051i 0.0374835 + 0.0250457i
\(650\) −13.6165 + 13.6165i −0.534082 + 0.534082i
\(651\) −0.159338 0.159092i −0.00624495 0.00623532i
\(652\) −17.3962 + 11.6238i −0.681289 + 0.455223i
\(653\) −1.98888 + 9.99878i −0.0778309 + 0.391282i 0.922159 + 0.386811i \(0.126423\pi\)
−0.999990 + 0.00447157i \(0.998577\pi\)
\(654\) 10.1934 15.2811i 0.398594 0.597537i
\(655\) 3.07919 + 7.43383i 0.120314 + 0.290464i
\(656\) −2.16454 0.430553i −0.0845109 0.0168103i
\(657\) 34.1360 6.84491i 1.33177 0.267045i
\(658\) −0.318752 1.60248i −0.0124263 0.0624710i
\(659\) −27.6176 27.6176i −1.07583 1.07583i −0.996879 0.0789501i \(-0.974843\pi\)
−0.0789501 0.996879i \(-0.525157\pi\)
\(660\) 8.11819 0.00626963i 0.316000 0.000244045i
\(661\) 1.89254 + 0.783917i 0.0736114 + 0.0304909i 0.419185 0.907901i \(-0.362316\pi\)
−0.345574 + 0.938392i \(0.612316\pi\)
\(662\) −3.52074 −0.136838
\(663\) 0 0
\(664\) −7.63870 −0.296439
\(665\) −0.0813074 0.0336786i −0.00315296 0.00130600i
\(666\) 2.75132 + 4.10391i 0.106612 + 0.159023i
\(667\) 1.80965 + 1.80965i 0.0700701 + 0.0700701i
\(668\) −2.31960 11.6614i −0.0897479 0.451193i
\(669\) −26.6719 11.0237i −1.03120 0.426203i
\(670\) 3.64078 + 0.724197i 0.140656 + 0.0279782i
\(671\) 17.8297 + 43.0448i 0.688309 + 1.66172i
\(672\) −1.62015 1.08074i −0.0624986 0.0416904i
\(673\) 3.31745 16.6779i 0.127878 0.642887i −0.862675 0.505759i \(-0.831213\pi\)
0.990553 0.137129i \(-0.0437874\pi\)
\(674\) 4.03356 2.69514i 0.155367 0.103813i
\(675\) 8.65887 + 20.7681i 0.333280 + 0.799366i
\(676\) −13.8741 + 13.8741i −0.533621 + 0.533621i
\(677\) −18.2198 12.1741i −0.700245 0.467889i 0.153791 0.988103i \(-0.450852\pi\)
−0.854035 + 0.520215i \(0.825852\pi\)
\(678\) 0.351632 + 1.76066i 0.0135043 + 0.0676179i
\(679\) 0.481963i 0.0184960i
\(680\) 0 0
\(681\) 27.7066 18.5439i 1.06172 0.710603i
\(682\) 0.943667 2.27821i 0.0361349 0.0872373i
\(683\) 20.1716 30.1890i 0.771847 1.15515i −0.212198 0.977227i \(-0.568062\pi\)
0.984044 0.177923i \(-0.0569379\pi\)
\(684\) 1.97916 0.823378i 0.0756750 0.0314827i
\(685\) −10.1648 + 2.02190i −0.388377 + 0.0772530i
\(686\) 1.26956 + 1.90003i 0.0484720 + 0.0725434i
\(687\) −7.29188 17.5658i −0.278202 0.670176i
\(688\) 1.96874 0.815481i 0.0750577 0.0310899i
\(689\) 56.7746 23.5168i 2.16294 0.895919i
\(690\) −1.88434 4.53928i −0.0717355 0.172807i
\(691\) −1.59686 2.38987i −0.0607475 0.0909151i 0.799852 0.600197i \(-0.204911\pi\)
−0.860600 + 0.509282i \(0.829911\pi\)
\(692\) −1.48282 + 0.294952i −0.0563685 + 0.0112124i
\(693\) −2.38765 + 0.993319i −0.0906991 + 0.0377331i
\(694\) −0.00882130 + 0.0132020i −0.000334852 + 0.000501141i
\(695\) 3.72855 9.00150i 0.141432 0.341447i
\(696\) 2.46250 1.64814i 0.0933406 0.0624725i
\(697\) 0 0
\(698\) 5.21082i 0.197232i
\(699\) 7.96712 + 39.8924i 0.301344 + 1.50887i
\(700\) 0.911533 + 0.609067i 0.0344527 + 0.0230206i
\(701\) −3.87452 + 3.87452i −0.146339 + 0.146339i −0.776480 0.630142i \(-0.782997\pi\)
0.630142 + 0.776480i \(0.282997\pi\)
\(702\) −8.89210 21.3275i −0.335611 0.804956i
\(703\) −0.899770 + 0.601207i −0.0339355 + 0.0226750i
\(704\) 3.68539 18.5277i 0.138898 0.698290i
\(705\) 11.7711 + 7.85208i 0.443327 + 0.295726i
\(706\) 3.90754 + 9.43364i 0.147062 + 0.355040i
\(707\) 1.30043 + 0.258672i 0.0489079 + 0.00972838i
\(708\) 0.539917 + 0.223153i 0.0202913 + 0.00838659i
\(709\) 7.32963 + 36.8486i 0.275270 + 1.38388i 0.832733 + 0.553675i \(0.186775\pi\)
−0.557463 + 0.830202i \(0.688225\pi\)
\(710\) −3.16093 3.16093i −0.118628 0.118628i
\(711\) 18.0575 + 26.9349i 0.677211 + 1.01014i
\(712\) 13.3517 + 5.53046i 0.500376 + 0.207263i
\(713\) 2.75410 0.103142
\(714\) 0 0
\(715\) 19.1665 0.716788
\(716\) −12.3272 5.10610i −0.460690 0.190824i
\(717\) 23.7667 0.0183548i 0.887582 0.000685474i
\(718\) 18.8705 + 18.8705i 0.704242 + 0.704242i
\(719\) 4.79617 + 24.1120i 0.178867 + 0.899225i 0.961092 + 0.276229i \(0.0890848\pi\)
−0.782225 + 0.622996i \(0.785915\pi\)
\(720\) 0.664464 0.133237i 0.0247631 0.00496546i
\(721\) −0.474341 0.0943522i −0.0176654 0.00351386i
\(722\) 5.99913 + 14.4832i 0.223265 + 0.539009i
\(723\) −4.11008 + 6.16146i −0.152855 + 0.229147i
\(724\) 3.25924 16.3853i 0.121129 0.608955i
\(725\) −2.22820 + 1.48884i −0.0827533 + 0.0552940i
\(726\) −8.73683 8.72334i −0.324254 0.323754i
\(727\) 26.6720 26.6720i 0.989211 0.989211i −0.0107310 0.999942i \(-0.503416\pi\)
0.999942 + 0.0107310i \(0.00341584\pi\)
\(728\) −2.37959 1.58999i −0.0881935 0.0589290i
\(729\) −26.9997 + 0.125111i −0.999989 + 0.00463375i
\(730\) 7.96307i 0.294726i
\(731\) 0 0
\(732\) 13.1826 + 19.6963i 0.487244 + 0.727995i
\(733\) 7.27415 17.5613i 0.268677 0.648643i −0.730745 0.682651i \(-0.760827\pi\)
0.999422 + 0.0340076i \(0.0108270\pi\)
\(734\) −15.6638 + 23.4426i −0.578163 + 0.865282i
\(735\) −9.67984 1.91767i −0.357046 0.0707343i
\(736\) 23.3635 4.64730i 0.861192 0.171302i
\(737\) 13.2728 + 19.8642i 0.488910 + 0.731706i
\(738\) 11.1471 16.7388i 0.410332 0.616164i
\(739\) −33.5289 + 13.8881i −1.23338 + 0.510884i −0.901640 0.432487i \(-0.857636\pi\)
−0.331742 + 0.943370i \(0.607636\pi\)
\(740\) −1.92607 + 0.797805i −0.0708038 + 0.0293279i
\(741\) 4.67417 1.94034i 0.171710 0.0712800i
\(742\) 1.05360 + 1.57682i 0.0386788 + 0.0578868i
\(743\) 0.174867 0.0347832i 0.00641525 0.00127607i −0.191882 0.981418i \(-0.561459\pi\)
0.198297 + 0.980142i \(0.436459\pi\)
\(744\) 0.619682 3.12797i 0.0227186 0.114677i
\(745\) 5.77458 8.64227i 0.211564 0.316628i
\(746\) 4.90173 11.8338i 0.179465 0.433267i
\(747\) −3.16049 + 7.66355i −0.115636 + 0.280395i
\(748\) 0 0
\(749\) 0.803058i 0.0293431i
\(750\) 10.8741 2.17172i 0.397065 0.0792999i
\(751\) −31.5832 21.1032i −1.15249 0.770067i −0.175734 0.984438i \(-0.556230\pi\)
−0.976752 + 0.214371i \(0.931230\pi\)
\(752\) −1.94852 + 1.94852i −0.0710551 + 0.0710551i
\(753\) 11.3736 11.3911i 0.414476 0.415116i
\(754\) 2.28822 1.52894i 0.0833320 0.0556807i
\(755\) −0.126537 + 0.636146i −0.00460516 + 0.0231517i
\(756\) −1.09210 + 0.733383i −0.0397193 + 0.0266729i
\(757\) −7.33808 17.7157i −0.266707 0.643888i 0.732617 0.680641i \(-0.238299\pi\)
−0.999324 + 0.0367531i \(0.988299\pi\)
\(758\) −31.2629 6.21858i −1.13552 0.225869i
\(759\) 12.0821 29.2326i 0.438552 1.06108i
\(760\) −0.243149 1.22239i −0.00881996 0.0443409i
\(761\) −21.9157 21.9157i −0.794443 0.794443i 0.187770 0.982213i \(-0.439874\pi\)
−0.982213 + 0.187770i \(0.939874\pi\)
\(762\) 0.00993038 + 12.8583i 0.000359740 + 0.465807i
\(763\) −2.28102 0.944829i −0.0825785 0.0342051i
\(764\) −21.5800 −0.780737
\(765\) 0 0
\(766\) −28.8846 −1.04364
\(767\) 1.27430 + 0.527834i 0.0460124 + 0.0190590i
\(768\) −0.0203427 26.3406i −0.000734055 0.950486i
\(769\) −13.1164 13.1164i −0.472990 0.472990i 0.429891 0.902881i \(-0.358552\pi\)
−0.902881 + 0.429891i \(0.858552\pi\)
\(770\) 0.115392 + 0.580115i 0.00415844 + 0.0209059i
\(771\) −10.4060 + 25.1773i −0.374763 + 0.906737i
\(772\) −3.78460 0.752804i −0.136211 0.0270940i
\(773\) −15.6889 37.8763i −0.564289 1.36232i −0.906306 0.422621i \(-0.861110\pi\)
0.342017 0.939694i \(-0.388890\pi\)
\(774\) 0.0299934 + 19.4184i 0.00107809 + 0.697979i
\(775\) −0.562617 + 2.82847i −0.0202098 + 0.101601i
\(776\) −5.67523 + 3.79206i −0.203729 + 0.136127i
\(777\) 0.469224 0.469950i 0.0168333 0.0168593i
\(778\) −0.447469 + 0.447469i −0.0160425 + 0.0160425i
\(779\) 3.66236 + 2.44711i 0.131218 + 0.0876769i
\(780\) 9.56109 1.90950i 0.342342 0.0683709i
\(781\) 28.7696i 1.02946i
\(782\) 0 0
\(783\) −0.634651 3.15242i −0.0226806 0.112658i
\(784\) 0.735425 1.77547i 0.0262652 0.0634097i
\(785\) 1.07227 1.60477i 0.0382710 0.0572766i
\(786\) 2.77494 14.0071i 0.0989788 0.499616i
\(787\) 14.7477 2.93350i 0.525700 0.104568i 0.0748960 0.997191i \(-0.476138\pi\)
0.450804 + 0.892623i \(0.351138\pi\)
\(788\) 9.77735 + 14.6328i 0.348304 + 0.521273i
\(789\) 24.7021 10.2543i 0.879419 0.365063i
\(790\) 6.85236 2.83834i 0.243796 0.100984i
\(791\) 0.222954 0.0923506i 0.00792734 0.00328361i
\(792\) −30.4824 20.2997i −1.08315 0.721318i
\(793\) 31.0875 + 46.5257i 1.10395 + 1.65217i
\(794\) 16.5680 3.29558i 0.587977 0.116956i
\(795\) −16.1104 3.19163i −0.571378 0.113195i
\(796\) 3.09966 4.63897i 0.109865 0.164424i
\(797\) 6.21185 14.9967i 0.220035 0.531211i −0.774859 0.632134i \(-0.782179\pi\)
0.994894 + 0.100922i \(0.0321794\pi\)
\(798\) 0.0868691 + 0.129792i 0.00307513 + 0.00459458i
\(799\) 0 0
\(800\) 24.9438i 0.881895i
\(801\) 11.0727 11.1069i 0.391234 0.392444i
\(802\) −10.9933 7.34549i −0.388187 0.259378i
\(803\) 36.2384 36.2384i 1.27882 1.27882i
\(804\) 8.60005 + 8.58677i 0.303300 + 0.302832i
\(805\) −0.549272 + 0.367012i −0.0193593 + 0.0129355i
\(806\) 0.577772 2.90465i 0.0203511 0.102312i
\(807\) −23.3930 + 35.0687i −0.823473 + 1.23448i
\(808\) 7.18583 + 17.3481i 0.252797 + 0.610305i
\(809\) −37.0970 7.37905i −1.30426 0.259434i −0.506412 0.862292i \(-0.669028\pi\)
−0.797848 + 0.602858i \(0.794028\pi\)
\(810\) −1.18606 + 6.06052i −0.0416739 + 0.212945i
\(811\) −6.74744 33.9217i −0.236935 1.19115i −0.897717 0.440573i \(-0.854775\pi\)
0.660782 0.750578i \(-0.270225\pi\)
\(812\) −0.110785 0.110785i −0.00388780 0.00388780i
\(813\) 9.74327 0.00752467i 0.341711 0.000263902i
\(814\) 6.71933 + 2.78324i 0.235513 + 0.0975525i
\(815\) 13.2014 0.462426
\(816\) 0 0
\(817\) −4.25303 −0.148795
\(818\) −21.9656 9.09843i −0.768007 0.318119i
\(819\) −2.57971 + 1.72948i −0.0901425 + 0.0604329i
\(820\) 6.00029 + 6.00029i 0.209539 + 0.209539i
\(821\) −9.82356 49.3864i −0.342845 1.72360i −0.639657 0.768660i \(-0.720924\pi\)
0.296813 0.954936i \(-0.404076\pi\)
\(822\) 16.9977 + 7.02529i 0.592862 + 0.245035i
\(823\) 23.4287 + 4.66026i 0.816674 + 0.162447i 0.585715 0.810517i \(-0.300814\pi\)
0.230959 + 0.972963i \(0.425814\pi\)
\(824\) −2.62107 6.32783i −0.0913094 0.220440i
\(825\) 27.5537 + 18.3801i 0.959298 + 0.639912i
\(826\) −0.00830405 + 0.0417473i −0.000288935 + 0.00145257i
\(827\) −5.58417 + 3.73122i −0.194181 + 0.129747i −0.648860 0.760908i \(-0.724754\pi\)
0.454679 + 0.890655i \(0.349754\pi\)
\(828\) 3.11472 15.7862i 0.108244 0.548607i
\(829\) 17.6880 17.6880i 0.614331 0.614331i −0.329741 0.944072i \(-0.606961\pi\)
0.944072 + 0.329741i \(0.106961\pi\)
\(830\) 1.57649 + 1.05338i 0.0547208 + 0.0365632i
\(831\) −3.00694 15.0562i −0.104310 0.522292i
\(832\) 22.6876i 0.786552i
\(833\) 0 0
\(834\) −14.3692 + 9.61724i −0.497564 + 0.333018i
\(835\) −2.87097 + 6.93113i −0.0993539 + 0.239862i
\(836\) 1.75304 2.62362i 0.0606303 0.0907397i
\(837\) −2.88176 1.91589i −0.0996082 0.0662227i
\(838\) −28.9730 + 5.76309i −1.00086 + 0.199083i
\(839\) 24.4659 + 36.6159i 0.844658 + 1.26412i 0.962553 + 0.271094i \(0.0873854\pi\)
−0.117895 + 0.993026i \(0.537615\pi\)
\(840\) 0.293246 + 0.706415i 0.0101179 + 0.0243736i
\(841\) −26.4387 + 10.9513i −0.911679 + 0.377630i
\(842\) −0.00978190 + 0.00405180i −0.000337107 + 0.000139634i
\(843\) 4.79339 + 11.5470i 0.165093 + 0.397701i
\(844\) −11.1883 16.7444i −0.385116 0.576367i
\(845\) 12.1425 2.41529i 0.417713 0.0830884i
\(846\) −9.64526 23.1844i −0.331611 0.797095i
\(847\) −0.921941 + 1.37978i −0.0316783 + 0.0474099i
\(848\) 1.22399 2.95497i 0.0420319 0.101474i
\(849\) −7.11313 + 4.76079i −0.244122 + 0.163390i
\(850\) 0 0
\(851\) 8.12291i 0.278450i
\(852\) −2.86621 14.3515i −0.0981948 0.491674i
\(853\) 26.9089 + 17.9800i 0.921344 + 0.615623i 0.923177 0.384376i \(-0.125583\pi\)
−0.00183231 + 0.999998i \(0.500583\pi\)
\(854\) −1.22103 + 1.22103i −0.0417829 + 0.0417829i
\(855\) −1.32697 0.261821i −0.0453816 0.00895411i
\(856\) −9.45620 + 6.31843i −0.323206 + 0.215959i
\(857\) 4.83803 24.3224i 0.165264 0.830838i −0.805831 0.592145i \(-0.798281\pi\)
0.971095 0.238693i \(-0.0767189\pi\)
\(858\) −28.2959 18.8751i −0.966007 0.644387i
\(859\) 16.0644 + 38.7830i 0.548112 + 1.32326i 0.918881 + 0.394534i \(0.129094\pi\)
−0.370770 + 0.928725i \(0.620906\pi\)
\(860\) −8.03608 1.59848i −0.274028 0.0545076i
\(861\) −2.49813 1.03250i −0.0851360 0.0351875i
\(862\) −1.93955 9.75076i −0.0660613 0.332112i
\(863\) −0.148288 0.148288i −0.00504779 0.00504779i 0.704578 0.709626i \(-0.251136\pi\)
−0.709626 + 0.704578i \(0.751136\pi\)
\(864\) −27.6794 11.3901i −0.941671 0.387499i
\(865\) 0.881339 + 0.365062i 0.0299664 + 0.0124125i
\(866\) −0.455061 −0.0154636
\(867\) 0 0
\(868\) −0.168603 −0.00572278
\(869\) 44.1005 + 18.2670i 1.49601 + 0.619666i
\(870\) −0.735493 0.000568017i −0.0249355 1.92576e-5i
\(871\) 20.2885 + 20.2885i 0.687450 + 0.687450i
\(872\) −6.82138 34.2934i −0.231001 1.16132i
\(873\) 1.45630 + 7.26265i 0.0492881 + 0.245803i
\(874\) −1.87361 0.372684i −0.0633758 0.0126062i
\(875\) −0.570368 1.37699i −0.0192820 0.0465507i
\(876\) 14.4669 21.6876i 0.488793 0.732755i
\(877\) −1.44266 + 7.25275i −0.0487152 + 0.244908i −0.997468 0.0711099i \(-0.977346\pi\)
0.948753 + 0.316018i \(0.102346\pi\)
\(878\) 21.2294 14.1850i 0.716456 0.478721i
\(879\) 23.4152 + 23.3790i 0.789774 + 0.788555i
\(880\) 0.705386 0.705386i 0.0237786 0.0237786i
\(881\) 41.3971 + 27.6606i 1.39470 + 0.931911i 0.999914 + 0.0131394i \(0.00418253\pi\)
0.394790 + 0.918772i \(0.370817\pi\)
\(882\) 12.4020 + 12.3638i 0.417598 + 0.416310i
\(883\) 28.6327i 0.963566i 0.876291 + 0.481783i \(0.160011\pi\)
−0.876291 + 0.481783i \(0.839989\pi\)
\(884\) 0 0
\(885\) −0.205034 0.306342i −0.00689214 0.0102976i
\(886\) 12.9134 31.1758i 0.433835 1.04737i
\(887\) 23.7610 35.5608i 0.797816 1.19402i −0.179818 0.983700i \(-0.557551\pi\)
0.977634 0.210315i \(-0.0674491\pi\)
\(888\) 9.22560 + 1.82768i 0.309591 + 0.0613329i
\(889\) 1.69507 0.337170i 0.0568508 0.0113083i
\(890\) −1.99290 2.98259i −0.0668022 0.0999765i
\(891\) −32.9777 + 22.1827i −1.10480 + 0.743148i
\(892\) −19.9656 + 8.27003i −0.668498 + 0.276901i
\(893\) 5.08111 2.10466i 0.170033 0.0704299i
\(894\) −17.0360 + 7.07196i −0.569769 + 0.236522i
\(895\) 4.67736 + 7.00016i 0.156347 + 0.233990i
\(896\) −1.51892 + 0.302131i −0.0507434 + 0.0100935i
\(897\) 7.38245 37.2645i 0.246493 1.24422i
\(898\) −16.9732 + 25.4021i −0.566402 + 0.847680i
\(899\) 0.157720 0.380771i 0.00526027 0.0126994i
\(900\) 15.5761 + 6.42368i 0.519204 + 0.214123i
\(901\) 0 0
\(902\) 29.6033i 0.985683i
\(903\) 2.55948 0.511167i 0.0851740 0.0170106i
\(904\) 2.84164 + 1.89872i 0.0945116 + 0.0631506i
\(905\) −7.45379 + 7.45379i −0.247772 + 0.247772i
\(906\) 0.813284 0.814541i 0.0270196 0.0270613i
\(907\) −6.76450 + 4.51990i −0.224612 + 0.150081i −0.662785 0.748810i \(-0.730626\pi\)
0.438173 + 0.898891i \(0.355626\pi\)
\(908\) 4.87038 24.4851i 0.161629 0.812565i
\(909\) 20.3777 0.0314752i 0.675885 0.00104396i
\(910\) 0.271845 + 0.656291i 0.00901157 + 0.0217558i
\(911\) −2.90793 0.578423i −0.0963440 0.0191640i 0.146683 0.989184i \(-0.453140\pi\)
−0.243027 + 0.970020i \(0.578140\pi\)
\(912\) 0.100613 0.243434i 0.00333164 0.00806089i
\(913\) 2.38058 + 11.9680i 0.0787858 + 0.396083i
\(914\) −12.6372 12.6372i −0.418002 0.418002i
\(915\) −0.0115493 14.9546i −0.000381809 0.494382i
\(916\) −13.1575 5.45001i −0.434736 0.180073i
\(917\) −1.91928 −0.0633802
\(918\) 0 0
\(919\) 36.7672 1.21284 0.606418 0.795146i \(-0.292606\pi\)
0.606418 + 0.795146i \(0.292606\pi\)
\(920\) −8.64329 3.58017i −0.284961 0.118035i
\(921\) 0.00667236 + 8.63966i 0.000219862 + 0.284687i
\(922\) 3.64477 + 3.64477i 0.120034 + 0.120034i
\(923\) −6.74078 33.8882i −0.221875 1.11544i
\(924\) −0.739655 + 1.78959i −0.0243328 + 0.0588733i
\(925\) −8.34224 1.65937i −0.274291 0.0545599i
\(926\) 11.6457 + 28.1151i 0.382700 + 0.923919i
\(927\) −7.43288 + 0.0114807i −0.244128 + 0.000377077i
\(928\) 0.695455 3.49629i 0.0228294 0.114771i
\(929\) 23.4065 15.6397i 0.767941 0.513122i −0.108812 0.994062i \(-0.534705\pi\)
0.876753 + 0.480940i \(0.159705\pi\)
\(930\) −0.559239 + 0.560103i −0.0183382 + 0.0183665i
\(931\) −2.71211 + 2.71211i −0.0888859 + 0.0888859i
\(932\) 25.3277 + 16.9234i 0.829637 + 0.554346i
\(933\) 17.7769 3.55032i 0.581990 0.116232i
\(934\) 6.44805i 0.210987i
\(935\) 0 0
\(936\) −40.6621 16.7693i −1.32908 0.548120i
\(937\) −14.2493 + 34.4010i −0.465506 + 1.12383i 0.500599 + 0.865679i \(0.333113\pi\)
−0.966105 + 0.258151i \(0.916887\pi\)
\(938\) −0.491927 + 0.736221i −0.0160620 + 0.0240385i
\(939\) −8.08320 + 40.8017i −0.263785 + 1.33151i
\(940\) 10.3918 2.06705i 0.338942 0.0674197i
\(941\) −25.2665 37.8140i −0.823664 1.23270i −0.969913 0.243452i \(-0.921720\pi\)
0.146249 0.989248i \(-0.453280\pi\)
\(942\) −3.16339 + 1.31318i −0.103069 + 0.0427857i
\(943\) 30.5462 12.6526i 0.994720 0.412026i
\(944\) 0.0663241 0.0274723i 0.00215867 0.000894148i
\(945\) 0.830043 0.00192311i 0.0270013 6.25589e-5i
\(946\) 15.8804 + 23.7668i 0.516318 + 0.772724i
\(947\) −16.1310 + 3.20866i −0.524188 + 0.104267i −0.450089 0.892983i \(-0.648608\pi\)
−0.0740985 + 0.997251i \(0.523608\pi\)
\(948\) 23.8191 + 4.71879i 0.773608 + 0.153259i
\(949\) 34.1951 51.1766i 1.11002 1.66126i
\(950\) 0.765494 1.84807i 0.0248359 0.0599592i
\(951\) −9.47587 14.1580i −0.307276 0.459103i
\(952\) 0 0
\(953\) 15.3092i 0.495915i 0.968771 + 0.247958i \(0.0797593\pi\)
−0.968771 + 0.247958i \(0.920241\pi\)
\(954\) 20.6410 + 20.5774i 0.668278 + 0.666217i
\(955\) 11.3216 + 7.56488i 0.366360 + 0.244794i
\(956\) 12.5840 12.5840i 0.406997 0.406997i
\(957\) −3.34967 3.34450i −0.108279 0.108112i
\(958\) 1.60067 1.06954i 0.0517154 0.0345552i
\(959\) 0.482282 2.42460i 0.0155737 0.0782943i
\(960\) −3.36475 + 5.04414i −0.108597 + 0.162799i
\(961\) 11.6935 + 28.2305i 0.377208 + 0.910661i
\(962\) 8.56694 + 1.70407i 0.276209 + 0.0549415i
\(963\) 2.42651 + 12.1012i 0.0781933 + 0.389955i
\(964\) 1.08197 + 5.43944i 0.0348480 + 0.175193i
\(965\) 1.72164 + 1.72164i 0.0554216 + 0.0554216i
\(966\) 1.17233 0.000905386i 0.0377192 2.91303e-5i
\(967\) −44.6169 18.4809i −1.43478 0.594306i −0.476255 0.879307i \(-0.658006\pi\)
−0.958527 + 0.285001i \(0.908006\pi\)
\(968\) −23.5010 −0.755352
\(969\) 0 0
\(970\) 1.69419 0.0543972
\(971\) −3.06636 1.27013i −0.0984041 0.0407603i 0.332938 0.942949i \(-0.391960\pi\)
−0.431342 + 0.902188i \(0.641960\pi\)
\(972\) −14.2407 + 14.3511i −0.456772 + 0.460313i
\(973\) 1.64333 + 1.64333i 0.0526828 + 0.0526828i
\(974\) 4.59275 + 23.0893i 0.147161 + 0.739829i
\(975\) 36.7625 + 15.1943i 1.17734 + 0.486607i
\(976\) 2.85640 + 0.568172i 0.0914310 + 0.0181868i
\(977\) −11.3473 27.3947i −0.363031 0.876434i −0.994854 0.101321i \(-0.967693\pi\)
0.631823 0.775113i \(-0.282307\pi\)
\(978\) −19.4895 13.0007i −0.623206 0.415717i
\(979\) 4.50386 22.6425i 0.143944 0.723656i
\(980\) −6.14386 + 4.10519i −0.196258 + 0.131136i
\(981\) −37.2273 7.34521i −1.18858 0.234515i
\(982\) −8.01800 + 8.01800i −0.255865 + 0.255865i
\(983\) −2.07918 1.38926i −0.0663155 0.0443106i 0.521971 0.852964i \(-0.325197\pi\)
−0.588286 + 0.808653i \(0.700197\pi\)
\(984\) −7.49726 37.5397i −0.239004 1.19672i
\(985\) 11.1044i 0.353815i
\(986\) 0 0
\(987\) −2.80486 + 1.87728i −0.0892797 + 0.0597545i
\(988\) 1.45022 3.50115i 0.0461377 0.111386i
\(989\) −17.7363 + 26.5443i −0.563982 + 0.844059i
\(990\) 3.49170 + 8.39302i 0.110973 + 0.266748i
\(991\) −37.4243 + 7.44416i −1.18882 + 0.236471i −0.749590 0.661902i \(-0.769749\pi\)
−0.439232 + 0.898374i \(0.644749\pi\)
\(992\) −2.13128 3.18969i −0.0676683 0.101273i
\(993\) 2.78840 + 6.71711i 0.0884871 + 0.213161i
\(994\) 0.985113 0.408047i 0.0312459 0.0129425i
\(995\) −3.25239 + 1.34718i −0.103108 + 0.0427086i
\(996\) 2.37987 + 5.73299i 0.0754090 + 0.181657i
\(997\) −24.8311 37.1624i −0.786410 1.17695i −0.980607 0.195984i \(-0.937210\pi\)
0.194197 0.980963i \(-0.437790\pi\)
\(998\) 12.5272 2.49181i 0.396541 0.0788769i
\(999\) 5.65069 8.49942i 0.178780 0.268910i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 867.2.i.h.503.3 32
3.2 odd 2 inner 867.2.i.h.503.2 32
17.2 even 8 867.2.i.f.329.2 32
17.3 odd 16 867.2.i.d.158.3 32
17.4 even 4 867.2.i.d.653.2 32
17.5 odd 16 51.2.i.a.29.2 32
17.6 odd 16 867.2.i.f.224.3 32
17.7 odd 16 867.2.i.b.65.2 32
17.8 even 8 867.2.i.i.827.3 32
17.9 even 8 867.2.i.b.827.3 32
17.10 odd 16 867.2.i.i.65.2 32
17.11 odd 16 867.2.i.g.224.3 32
17.12 odd 16 inner 867.2.i.h.131.2 32
17.13 even 4 867.2.i.c.653.2 32
17.14 odd 16 867.2.i.c.158.3 32
17.15 even 8 867.2.i.g.329.2 32
17.16 even 2 51.2.i.a.44.3 yes 32
51.2 odd 8 867.2.i.f.329.3 32
51.5 even 16 51.2.i.a.29.3 yes 32
51.8 odd 8 867.2.i.i.827.2 32
51.11 even 16 867.2.i.g.224.2 32
51.14 even 16 867.2.i.c.158.2 32
51.20 even 16 867.2.i.d.158.2 32
51.23 even 16 867.2.i.f.224.2 32
51.26 odd 8 867.2.i.b.827.2 32
51.29 even 16 inner 867.2.i.h.131.3 32
51.32 odd 8 867.2.i.g.329.3 32
51.38 odd 4 867.2.i.d.653.3 32
51.41 even 16 867.2.i.b.65.3 32
51.44 even 16 867.2.i.i.65.3 32
51.47 odd 4 867.2.i.c.653.3 32
51.50 odd 2 51.2.i.a.44.2 yes 32
68.39 even 16 816.2.cj.c.641.1 32
68.67 odd 2 816.2.cj.c.401.2 32
204.107 odd 16 816.2.cj.c.641.2 32
204.203 even 2 816.2.cj.c.401.1 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.2.i.a.29.2 32 17.5 odd 16
51.2.i.a.29.3 yes 32 51.5 even 16
51.2.i.a.44.2 yes 32 51.50 odd 2
51.2.i.a.44.3 yes 32 17.16 even 2
816.2.cj.c.401.1 32 204.203 even 2
816.2.cj.c.401.2 32 68.67 odd 2
816.2.cj.c.641.1 32 68.39 even 16
816.2.cj.c.641.2 32 204.107 odd 16
867.2.i.b.65.2 32 17.7 odd 16
867.2.i.b.65.3 32 51.41 even 16
867.2.i.b.827.2 32 51.26 odd 8
867.2.i.b.827.3 32 17.9 even 8
867.2.i.c.158.2 32 51.14 even 16
867.2.i.c.158.3 32 17.14 odd 16
867.2.i.c.653.2 32 17.13 even 4
867.2.i.c.653.3 32 51.47 odd 4
867.2.i.d.158.2 32 51.20 even 16
867.2.i.d.158.3 32 17.3 odd 16
867.2.i.d.653.2 32 17.4 even 4
867.2.i.d.653.3 32 51.38 odd 4
867.2.i.f.224.2 32 51.23 even 16
867.2.i.f.224.3 32 17.6 odd 16
867.2.i.f.329.2 32 17.2 even 8
867.2.i.f.329.3 32 51.2 odd 8
867.2.i.g.224.2 32 51.11 even 16
867.2.i.g.224.3 32 17.11 odd 16
867.2.i.g.329.2 32 17.15 even 8
867.2.i.g.329.3 32 51.32 odd 8
867.2.i.h.131.2 32 17.12 odd 16 inner
867.2.i.h.131.3 32 51.29 even 16 inner
867.2.i.h.503.2 32 3.2 odd 2 inner
867.2.i.h.503.3 32 1.1 even 1 trivial
867.2.i.i.65.2 32 17.10 odd 16
867.2.i.i.65.3 32 51.44 even 16
867.2.i.i.827.2 32 51.8 odd 8
867.2.i.i.827.3 32 17.8 even 8