Properties

Label 867.2.i.b.65.3
Level $867$
Weight $2$
Character 867.65
Analytic conductor $6.923$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [867,2,Mod(65,867)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(867, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([8, 9])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("867.65"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 867 = 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 867.i (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,-8,16,0,16,0,0,-24,-32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.92302985525\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{16})\)
Twist minimal: no (minimal twist has level 51)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 65.3
Character \(\chi\) \(=\) 867.65
Dual form 867.2.i.b.827.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.320870 + 0.774648i) q^{2} +(1.22380 + 1.22569i) q^{3} +(0.917091 - 0.917091i) q^{4} +(0.454651 + 0.680434i) q^{5} +(-0.556799 + 1.34130i) q^{6} +(0.162303 + 0.108447i) q^{7} +(2.55399 + 1.05790i) q^{8} +(-0.00463376 + 3.00000i) q^{9} +(-0.381213 + 0.570525i) q^{10} +(-0.861524 - 4.33117i) q^{11} +(2.24641 + 0.00173489i) q^{12} +(3.75023 + 3.75023i) q^{13} +(-0.0319304 + 0.160525i) q^{14} +(-0.277599 + 1.38998i) q^{15} -0.276039i q^{16} +(-2.32543 + 0.959018i) q^{18} +(-0.508991 + 0.210831i) q^{19} +(1.04098 + 0.207063i) q^{20} +(0.0657033 + 0.331651i) q^{21} +(3.07870 - 2.05712i) q^{22} +(-4.05597 + 0.806783i) q^{23} +(1.82891 + 4.42505i) q^{24} +(1.65713 - 4.00068i) q^{25} +(-1.70177 + 4.10844i) q^{26} +(-3.68274 + 3.66571i) q^{27} +(0.248303 - 0.0493905i) q^{28} +(0.514560 - 0.343818i) q^{29} +(-1.16581 + 0.230959i) q^{30} +(-0.653180 - 0.129926i) q^{31} +(5.32181 - 2.20436i) q^{32} +(4.25434 - 6.35644i) q^{33} +0.159742i q^{35} +(2.74702 + 2.75552i) q^{36} +(-0.383200 + 1.92648i) q^{37} +(-0.326640 - 0.326640i) q^{38} +(-0.00709440 + 9.18614i) q^{39} +(0.441345 + 2.21879i) q^{40} +(-4.44180 + 6.64762i) q^{41} +(-0.235831 + 0.157314i) q^{42} +(7.13212 + 2.95422i) q^{43} +(-4.76218 - 3.18198i) q^{44} +(-2.04341 + 1.36080i) q^{45} +(-1.92641 - 2.88308i) q^{46} +(-7.05884 + 7.05884i) q^{47} +(0.338339 - 0.337817i) q^{48} +(-2.66420 - 6.43195i) q^{49} +3.63084 q^{50} +6.87860 q^{52} +(-4.43410 - 10.7049i) q^{53} +(-4.02132 - 1.67661i) q^{54} +(2.55538 - 2.55538i) q^{55} +(0.299794 + 0.448673i) q^{56} +(-0.881316 - 0.365851i) q^{57} +(0.431445 + 0.288282i) q^{58} +(0.240270 + 0.0995233i) q^{59} +(1.02015 + 1.52932i) q^{60} +(5.86155 - 8.77243i) q^{61} +(-0.108939 - 0.547674i) q^{62} +(-0.326094 + 0.486406i) q^{63} +(3.02483 + 3.02483i) q^{64} +(-0.846735 + 4.25683i) q^{65} +(6.28910 + 1.25603i) q^{66} +5.40994i q^{67} +(-5.95256 - 3.98403i) q^{69} +(-0.123744 + 0.0512564i) q^{70} +(-6.38963 - 1.27098i) q^{71} +(-3.18552 + 7.65705i) q^{72} +(9.64936 - 6.44749i) q^{73} +(-1.61530 + 0.321303i) q^{74} +(6.93159 - 2.86489i) q^{75} +(-0.273440 + 0.660143i) q^{76} +(0.329876 - 0.796392i) q^{77} +(-7.11830 + 2.94206i) q^{78} +(-10.6016 + 2.10878i) q^{79} +(0.187826 - 0.125502i) q^{80} +(-8.99996 - 0.0278025i) q^{81} +(-6.57481 - 1.30781i) q^{82} +(-2.55289 + 1.05744i) q^{83} +(0.364410 + 0.243898i) q^{84} +6.47280i q^{86} +(1.05113 + 0.209927i) q^{87} +(2.38161 - 11.9732i) q^{88} +(3.69661 + 3.69661i) q^{89} +(-1.70981 - 1.14628i) q^{90} +(0.201971 + 1.01538i) q^{91} +(-2.97980 + 4.45959i) q^{92} +(-0.640112 - 0.959599i) q^{93} +(-7.73308 - 3.20315i) q^{94} +(-0.374870 - 0.250480i) q^{95} +(9.21469 + 3.82519i) q^{96} +(-1.37174 - 2.05296i) q^{97} +(4.12764 - 4.12764i) q^{98} +(12.9975 - 2.56450i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 8 q^{3} + 16 q^{4} + 16 q^{6} - 24 q^{9} - 32 q^{10} - 40 q^{12} + 16 q^{13} - 16 q^{15} + 16 q^{18} - 32 q^{19} - 16 q^{21} + 32 q^{22} - 16 q^{24} + 16 q^{27} - 32 q^{28} + 8 q^{30} + 24 q^{36}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/867\mathbb{Z}\right)^\times\).

\(n\) \(290\) \(292\)
\(\chi(n)\) \(-1\) \(e\left(\frac{9}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.320870 + 0.774648i 0.226889 + 0.547759i 0.995796 0.0916024i \(-0.0291989\pi\)
−0.768907 + 0.639361i \(0.779199\pi\)
\(3\) 1.22380 + 1.22569i 0.706560 + 0.707653i
\(4\) 0.917091 0.917091i 0.458546 0.458546i
\(5\) 0.454651 + 0.680434i 0.203326 + 0.304299i 0.919093 0.394040i \(-0.128923\pi\)
−0.715767 + 0.698339i \(0.753923\pi\)
\(6\) −0.556799 + 1.34130i −0.227312 + 0.547583i
\(7\) 0.162303 + 0.108447i 0.0613448 + 0.0409893i 0.585864 0.810409i \(-0.300755\pi\)
−0.524520 + 0.851398i \(0.675755\pi\)
\(8\) 2.55399 + 1.05790i 0.902970 + 0.374023i
\(9\) −0.00463376 + 3.00000i −0.00154459 + 0.999999i
\(10\) −0.381213 + 0.570525i −0.120550 + 0.180416i
\(11\) −0.861524 4.33117i −0.259759 1.30590i −0.861725 0.507376i \(-0.830616\pi\)
0.601966 0.798522i \(-0.294384\pi\)
\(12\) 2.24641 + 0.00173489i 0.648481 + 0.000500818i
\(13\) 3.75023 + 3.75023i 1.04013 + 1.04013i 0.999161 + 0.0409655i \(0.0130434\pi\)
0.0409655 + 0.999161i \(0.486957\pi\)
\(14\) −0.0319304 + 0.160525i −0.00853377 + 0.0429022i
\(15\) −0.277599 + 1.38998i −0.0716759 + 0.358890i
\(16\) 0.276039i 0.0690098i
\(17\) 0 0
\(18\) −2.32543 + 0.959018i −0.548109 + 0.226043i
\(19\) −0.508991 + 0.210831i −0.116771 + 0.0483680i −0.440304 0.897849i \(-0.645129\pi\)
0.323533 + 0.946217i \(0.395129\pi\)
\(20\) 1.04098 + 0.207063i 0.232769 + 0.0463007i
\(21\) 0.0657033 + 0.331651i 0.0143376 + 0.0723722i
\(22\) 3.07870 2.05712i 0.656380 0.438579i
\(23\) −4.05597 + 0.806783i −0.845729 + 0.168226i −0.598891 0.800831i \(-0.704392\pi\)
−0.246838 + 0.969057i \(0.579392\pi\)
\(24\) 1.82891 + 4.42505i 0.373325 + 0.903259i
\(25\) 1.65713 4.00068i 0.331427 0.800136i
\(26\) −1.70177 + 4.10844i −0.333745 + 0.805732i
\(27\) −3.68274 + 3.66571i −0.708743 + 0.705467i
\(28\) 0.248303 0.0493905i 0.0469248 0.00933393i
\(29\) 0.514560 0.343818i 0.0955514 0.0638454i −0.506877 0.862019i \(-0.669200\pi\)
0.602428 + 0.798173i \(0.294200\pi\)
\(30\) −1.16581 + 0.230959i −0.212848 + 0.0421672i
\(31\) −0.653180 0.129926i −0.117315 0.0233353i 0.136084 0.990697i \(-0.456548\pi\)
−0.253398 + 0.967362i \(0.581548\pi\)
\(32\) 5.32181 2.20436i 0.940771 0.389680i
\(33\) 4.25434 6.35644i 0.740586 1.10651i
\(34\) 0 0
\(35\) 0.159742i 0.0270014i
\(36\) 2.74702 + 2.75552i 0.457837 + 0.459253i
\(37\) −0.383200 + 1.92648i −0.0629978 + 0.316711i −0.999416 0.0341751i \(-0.989120\pi\)
0.936418 + 0.350886i \(0.114120\pi\)
\(38\) −0.326640 0.326640i −0.0529880 0.0529880i
\(39\) −0.00709440 + 9.18614i −0.00113601 + 1.47096i
\(40\) 0.441345 + 2.21879i 0.0697828 + 0.350822i
\(41\) −4.44180 + 6.64762i −0.693693 + 1.03818i 0.302680 + 0.953092i \(0.402119\pi\)
−0.996373 + 0.0850923i \(0.972881\pi\)
\(42\) −0.235831 + 0.157314i −0.0363895 + 0.0242740i
\(43\) 7.13212 + 2.95422i 1.08764 + 0.450514i 0.853182 0.521613i \(-0.174669\pi\)
0.234455 + 0.972127i \(0.424669\pi\)
\(44\) −4.76218 3.18198i −0.717925 0.479702i
\(45\) −2.04341 + 1.36080i −0.304613 + 0.202856i
\(46\) −1.92641 2.88308i −0.284034 0.425087i
\(47\) −7.05884 + 7.05884i −1.02964 + 1.02964i −0.0300900 + 0.999547i \(0.509579\pi\)
−0.999547 + 0.0300900i \(0.990421\pi\)
\(48\) 0.338339 0.337817i 0.0488350 0.0487596i
\(49\) −2.66420 6.43195i −0.380600 0.918851i
\(50\) 3.63084 0.513479
\(51\) 0 0
\(52\) 6.87860 0.953891
\(53\) −4.43410 10.7049i −0.609071 1.47043i −0.864012 0.503471i \(-0.832056\pi\)
0.254941 0.966957i \(-0.417944\pi\)
\(54\) −4.02132 1.67661i −0.547232 0.228158i
\(55\) 2.55538 2.55538i 0.344568 0.344568i
\(56\) 0.299794 + 0.448673i 0.0400616 + 0.0599564i
\(57\) −0.881316 0.365851i −0.116733 0.0484581i
\(58\) 0.431445 + 0.288282i 0.0566514 + 0.0378533i
\(59\) 0.240270 + 0.0995233i 0.0312805 + 0.0129568i 0.398269 0.917269i \(-0.369611\pi\)
−0.366988 + 0.930226i \(0.619611\pi\)
\(60\) 1.02015 + 1.52932i 0.131701 + 0.197434i
\(61\) 5.86155 8.77243i 0.750495 1.12319i −0.237900 0.971290i \(-0.576459\pi\)
0.988395 0.151905i \(-0.0485408\pi\)
\(62\) −0.108939 0.547674i −0.0138353 0.0695546i
\(63\) −0.326094 + 0.486406i −0.0410840 + 0.0612814i
\(64\) 3.02483 + 3.02483i 0.378104 + 0.378104i
\(65\) −0.846735 + 4.25683i −0.105025 + 0.527994i
\(66\) 6.28910 + 1.25603i 0.774134 + 0.154606i
\(67\) 5.40994i 0.660929i 0.943818 + 0.330465i \(0.107205\pi\)
−0.943818 + 0.330465i \(0.892795\pi\)
\(68\) 0 0
\(69\) −5.95256 3.98403i −0.716604 0.479621i
\(70\) −0.123744 + 0.0512564i −0.0147902 + 0.00612632i
\(71\) −6.38963 1.27098i −0.758309 0.150837i −0.199232 0.979952i \(-0.563845\pi\)
−0.559078 + 0.829115i \(0.688845\pi\)
\(72\) −3.18552 + 7.65705i −0.375417 + 0.902392i
\(73\) 9.64936 6.44749i 1.12937 0.754622i 0.156894 0.987616i \(-0.449852\pi\)
0.972478 + 0.232993i \(0.0748520\pi\)
\(74\) −1.61530 + 0.321303i −0.187775 + 0.0373507i
\(75\) 6.93159 2.86489i 0.800391 0.330809i
\(76\) −0.273440 + 0.660143i −0.0313657 + 0.0757236i
\(77\) 0.329876 0.796392i 0.0375929 0.0907573i
\(78\) −7.11830 + 2.94206i −0.805989 + 0.333123i
\(79\) −10.6016 + 2.10878i −1.19277 + 0.237257i −0.751264 0.660002i \(-0.770556\pi\)
−0.441506 + 0.897258i \(0.645556\pi\)
\(80\) 0.187826 0.125502i 0.0209996 0.0140315i
\(81\) −8.99996 0.0278025i −0.999995 0.00308917i
\(82\) −6.57481 1.30781i −0.726066 0.144424i
\(83\) −2.55289 + 1.05744i −0.280216 + 0.116069i −0.518365 0.855159i \(-0.673459\pi\)
0.238149 + 0.971229i \(0.423459\pi\)
\(84\) 0.364410 + 0.243898i 0.0397604 + 0.0266115i
\(85\) 0 0
\(86\) 6.47280i 0.697980i
\(87\) 1.05113 + 0.209927i 0.112693 + 0.0225066i
\(88\) 2.38161 11.9732i 0.253880 1.27634i
\(89\) 3.69661 + 3.69661i 0.391839 + 0.391839i 0.875343 0.483503i \(-0.160636\pi\)
−0.483503 + 0.875343i \(0.660636\pi\)
\(90\) −1.70981 1.14628i −0.180230 0.120829i
\(91\) 0.201971 + 1.01538i 0.0211723 + 0.106440i
\(92\) −2.97980 + 4.45959i −0.310666 + 0.464945i
\(93\) −0.640112 0.959599i −0.0663765 0.0995057i
\(94\) −7.73308 3.20315i −0.797606 0.330379i
\(95\) −0.374870 0.250480i −0.0384609 0.0256987i
\(96\) 9.21469 + 3.82519i 0.940470 + 0.390407i
\(97\) −1.37174 2.05296i −0.139279 0.208446i 0.755272 0.655411i \(-0.227505\pi\)
−0.894551 + 0.446965i \(0.852505\pi\)
\(98\) 4.12764 4.12764i 0.416954 0.416954i
\(99\) 12.9975 2.56450i 1.30630 0.257742i
\(100\) −2.14924 5.18873i −0.214924 0.518873i
\(101\) −6.79257 −0.675886 −0.337943 0.941167i \(-0.609731\pi\)
−0.337943 + 0.941167i \(0.609731\pi\)
\(102\) 0 0
\(103\) 2.47763 0.244128 0.122064 0.992522i \(-0.461049\pi\)
0.122064 + 0.992522i \(0.461049\pi\)
\(104\) 5.61068 + 13.5454i 0.550172 + 1.32823i
\(105\) −0.195794 + 0.195492i −0.0191076 + 0.0190781i
\(106\) 6.86974 6.86974i 0.667248 0.667248i
\(107\) −2.28563 3.42069i −0.220960 0.330690i 0.704384 0.709820i \(-0.251224\pi\)
−0.925344 + 0.379129i \(0.876224\pi\)
\(108\) −0.0156140 + 6.73920i −0.00150245 + 0.648480i
\(109\) −10.5167 7.02704i −1.00732 0.673068i −0.0616150 0.998100i \(-0.519625\pi\)
−0.945703 + 0.325032i \(0.894625\pi\)
\(110\) 2.79947 + 1.15958i 0.266919 + 0.110561i
\(111\) −2.83023 + 1.88794i −0.268633 + 0.179195i
\(112\) 0.0299357 0.0448020i 0.00282866 0.00423339i
\(113\) −0.241188 1.21253i −0.0226891 0.114066i 0.967781 0.251793i \(-0.0810202\pi\)
−0.990470 + 0.137727i \(0.956020\pi\)
\(114\) 0.000617913 0.800100i 5.78728e−5 0.0749363i
\(115\) −2.39302 2.39302i −0.223150 0.223150i
\(116\) 0.156586 0.787211i 0.0145386 0.0730907i
\(117\) −11.2680 + 11.2333i −1.04173 + 1.03852i
\(118\) 0.218059i 0.0200740i
\(119\) 0 0
\(120\) −2.17943 + 3.25631i −0.198954 + 0.297259i
\(121\) −7.85415 + 3.25330i −0.714014 + 0.295754i
\(122\) 8.67634 + 1.72583i 0.785519 + 0.156249i
\(123\) −13.5838 + 2.69108i −1.22481 + 0.242647i
\(124\) −0.718179 + 0.479872i −0.0644944 + 0.0430938i
\(125\) 7.48875 1.48960i 0.669814 0.133234i
\(126\) −0.481427 0.0965351i −0.0428889 0.00860003i
\(127\) −3.38823 + 8.17992i −0.300657 + 0.725850i 0.699282 + 0.714845i \(0.253503\pi\)
−0.999939 + 0.0110047i \(0.996497\pi\)
\(128\) 3.03612 7.32985i 0.268358 0.647873i
\(129\) 5.10732 + 12.3571i 0.449674 + 1.08799i
\(130\) −3.56923 + 0.709965i −0.313043 + 0.0622680i
\(131\) −8.17531 + 5.46257i −0.714280 + 0.477267i −0.858850 0.512228i \(-0.828820\pi\)
0.144569 + 0.989495i \(0.453820\pi\)
\(132\) −1.92782 9.73106i −0.167795 0.846980i
\(133\) −0.105475 0.0209803i −0.00914583 0.00181922i
\(134\) −4.19080 + 1.73589i −0.362030 + 0.149958i
\(135\) −4.16863 0.839238i −0.358779 0.0722301i
\(136\) 0 0
\(137\) 12.6644i 1.08200i −0.841024 0.540998i \(-0.818047\pi\)
0.841024 0.540998i \(-0.181953\pi\)
\(138\) 1.17622 5.88949i 0.100127 0.501347i
\(139\) −2.32272 + 11.6771i −0.197010 + 0.990437i 0.748075 + 0.663614i \(0.230978\pi\)
−0.945085 + 0.326823i \(0.894022\pi\)
\(140\) 0.146498 + 0.146498i 0.0123814 + 0.0123814i
\(141\) −17.2905 0.0133534i −1.45613 0.00112456i
\(142\) −1.06568 5.35753i −0.0894298 0.449594i
\(143\) 13.0120 19.4738i 1.08812 1.62848i
\(144\) 0.828117 + 0.00127910i 0.0690097 + 0.000106592i
\(145\) 0.467891 + 0.193807i 0.0388562 + 0.0160948i
\(146\) 8.09073 + 5.40605i 0.669593 + 0.447408i
\(147\) 4.62314 11.1369i 0.381310 0.918556i
\(148\) 1.41533 + 2.11819i 0.116339 + 0.174114i
\(149\) 8.98104 8.98104i 0.735756 0.735756i −0.235998 0.971754i \(-0.575836\pi\)
0.971754 + 0.235998i \(0.0758358\pi\)
\(150\) 4.44342 + 4.45029i 0.362804 + 0.363364i
\(151\) 0.303307 + 0.732249i 0.0246828 + 0.0595895i 0.935740 0.352690i \(-0.114733\pi\)
−0.911058 + 0.412279i \(0.864733\pi\)
\(152\) −1.52299 −0.123531
\(153\) 0 0
\(154\) 0.722771 0.0582426
\(155\) −0.208563 0.503516i −0.0167522 0.0404434i
\(156\) 8.41803 + 8.43104i 0.673981 + 0.675023i
\(157\) 1.66767 1.66767i 0.133095 0.133095i −0.637421 0.770516i \(-0.719999\pi\)
0.770516 + 0.637421i \(0.219999\pi\)
\(158\) −5.03529 7.53584i −0.400586 0.599519i
\(159\) 7.69441 18.5354i 0.610206 1.46996i
\(160\) 3.91949 + 2.61892i 0.309863 + 0.207044i
\(161\) −0.745790 0.308916i −0.0587765 0.0243460i
\(162\) −2.86628 6.98072i −0.225196 0.548457i
\(163\) 8.96232 13.4131i 0.701983 1.05059i −0.293529 0.955950i \(-0.594830\pi\)
0.995511 0.0946411i \(-0.0301704\pi\)
\(164\) 2.02294 + 10.1700i 0.157965 + 0.794145i
\(165\) 6.25938 + 0.00483408i 0.487292 + 0.000376333i
\(166\) −1.63829 1.63829i −0.127156 0.127156i
\(167\) 1.78848 8.99131i 0.138397 0.695769i −0.847816 0.530290i \(-0.822083\pi\)
0.986213 0.165479i \(-0.0529169\pi\)
\(168\) −0.183047 + 0.916539i −0.0141224 + 0.0707125i
\(169\) 15.1284i 1.16372i
\(170\) 0 0
\(171\) −0.630134 1.52795i −0.0481875 0.116845i
\(172\) 9.25009 3.83151i 0.705313 0.292150i
\(173\) 1.14330 + 0.227417i 0.0869239 + 0.0172902i 0.238361 0.971177i \(-0.423390\pi\)
−0.151437 + 0.988467i \(0.548390\pi\)
\(174\) 0.174657 + 0.881617i 0.0132407 + 0.0668352i
\(175\) 0.702821 0.469610i 0.0531283 0.0354992i
\(176\) −1.19557 + 0.237814i −0.0901197 + 0.0179259i
\(177\) 0.172058 + 0.416294i 0.0129327 + 0.0312905i
\(178\) −1.67744 + 4.04970i −0.125729 + 0.303538i
\(179\) 3.93697 9.50468i 0.294263 0.710413i −0.705735 0.708476i \(-0.749383\pi\)
0.999998 0.00193768i \(-0.000616785\pi\)
\(180\) −0.626012 + 3.12197i −0.0466602 + 0.232698i
\(181\) 12.6336 2.51298i 0.939047 0.186788i 0.298241 0.954491i \(-0.403600\pi\)
0.640806 + 0.767702i \(0.278600\pi\)
\(182\) −0.721753 + 0.482260i −0.0534999 + 0.0357475i
\(183\) 17.9256 3.55124i 1.32510 0.262515i
\(184\) −11.2124 2.23028i −0.826588 0.164419i
\(185\) −1.48506 + 0.615133i −0.109184 + 0.0452255i
\(186\) 0.537959 0.803768i 0.0394450 0.0589351i
\(187\) 0 0
\(188\) 12.9472i 0.944271i
\(189\) −0.995256 + 0.195573i −0.0723942 + 0.0142258i
\(190\) 0.0737495 0.370764i 0.00535035 0.0268980i
\(191\) −11.7655 11.7655i −0.851319 0.851319i 0.138977 0.990296i \(-0.455619\pi\)
−0.990296 + 0.138977i \(0.955619\pi\)
\(192\) −0.00572216 + 7.40930i −0.000412961 + 0.534720i
\(193\) 0.580436 + 2.91805i 0.0417807 + 0.210046i 0.996036 0.0889458i \(-0.0283498\pi\)
−0.954256 + 0.298991i \(0.903350\pi\)
\(194\) 1.15017 1.72135i 0.0825773 0.123586i
\(195\) −6.25379 + 4.17166i −0.447843 + 0.298739i
\(196\) −8.34201 3.45537i −0.595858 0.246812i
\(197\) 11.2824 + 7.53865i 0.803837 + 0.537107i 0.888270 0.459323i \(-0.151908\pi\)
−0.0844326 + 0.996429i \(0.526908\pi\)
\(198\) 6.15709 + 9.24561i 0.437565 + 0.657057i
\(199\) 2.38994 + 3.57679i 0.169418 + 0.253552i 0.906457 0.422298i \(-0.138777\pi\)
−0.737039 + 0.675850i \(0.763777\pi\)
\(200\) 8.46460 8.46460i 0.598538 0.598538i
\(201\) −6.63091 + 6.62068i −0.467708 + 0.466987i
\(202\) −2.17953 5.26185i −0.153351 0.370223i
\(203\) 0.120801 0.00847855
\(204\) 0 0
\(205\) −6.54274 −0.456965
\(206\) 0.794996 + 1.91929i 0.0553900 + 0.133723i
\(207\) −2.40155 12.1716i −0.166919 0.845988i
\(208\) 1.03521 1.03521i 0.0717789 0.0717789i
\(209\) 1.35165 + 2.02289i 0.0934958 + 0.139926i
\(210\) −0.214262 0.0889442i −0.0147855 0.00613774i
\(211\) −12.9105 8.62651i −0.888794 0.593873i 0.0251632 0.999683i \(-0.491989\pi\)
−0.913957 + 0.405810i \(0.866989\pi\)
\(212\) −13.8838 5.75087i −0.953545 0.394971i
\(213\) −6.26179 9.38712i −0.429051 0.643195i
\(214\) 1.91644 2.86815i 0.131005 0.196063i
\(215\) 1.23248 + 6.19607i 0.0840541 + 0.422569i
\(216\) −13.2836 + 5.46623i −0.903835 + 0.371930i
\(217\) −0.0919229 0.0919229i −0.00624014 0.00624014i
\(218\) 2.06899 10.4015i 0.140130 0.704479i
\(219\) 19.7115 + 3.93669i 1.33198 + 0.266017i
\(220\) 4.68704i 0.316000i
\(221\) 0 0
\(222\) −2.37062 1.58665i −0.159106 0.106489i
\(223\) −15.3941 + 6.37645i −1.03087 + 0.426999i −0.833025 0.553235i \(-0.813393\pi\)
−0.197841 + 0.980234i \(0.563393\pi\)
\(224\) 1.10280 + 0.219361i 0.0736841 + 0.0146567i
\(225\) 11.9943 + 4.98994i 0.799623 + 0.332662i
\(226\) 0.861897 0.575901i 0.0573325 0.0383084i
\(227\) 18.8788 3.75522i 1.25303 0.249243i 0.476415 0.879221i \(-0.341936\pi\)
0.776613 + 0.629978i \(0.216936\pi\)
\(228\) −1.14377 + 0.472729i −0.0757478 + 0.0313072i
\(229\) 4.20213 10.1448i 0.277685 0.670391i −0.722086 0.691803i \(-0.756816\pi\)
0.999771 + 0.0214129i \(0.00681647\pi\)
\(230\) 1.08590 2.62159i 0.0716020 0.172863i
\(231\) 1.37983 0.570297i 0.0907863 0.0375228i
\(232\) 1.67790 0.333755i 0.110160 0.0219121i
\(233\) 19.5285 13.0485i 1.27935 0.854837i 0.284752 0.958601i \(-0.408089\pi\)
0.994602 + 0.103765i \(0.0330889\pi\)
\(234\) −12.3174 5.12435i −0.805215 0.334989i
\(235\) −8.01238 1.59376i −0.522670 0.103966i
\(236\) 0.311622 0.129078i 0.0202849 0.00840226i
\(237\) −15.5589 10.4135i −1.01066 0.676431i
\(238\) 0 0
\(239\) 13.7217i 0.887582i −0.896130 0.443791i \(-0.853633\pi\)
0.896130 0.443791i \(-0.146367\pi\)
\(240\) 0.383688 + 0.0766283i 0.0247669 + 0.00494634i
\(241\) −0.834235 + 4.19398i −0.0537378 + 0.270158i −0.998308 0.0581522i \(-0.981479\pi\)
0.944570 + 0.328310i \(0.106479\pi\)
\(242\) −5.04032 5.04032i −0.324004 0.324004i
\(243\) −10.9801 11.0652i −0.704371 0.709832i
\(244\) −2.66954 13.4207i −0.170900 0.859172i
\(245\) 3.16523 4.73711i 0.202219 0.302643i
\(246\) −6.44327 9.65918i −0.410808 0.615847i
\(247\) −2.69950 1.11817i −0.171765 0.0711474i
\(248\) −1.53076 1.02282i −0.0972036 0.0649494i
\(249\) −4.42032 1.83496i −0.280126 0.116286i
\(250\) 3.55683 + 5.32317i 0.224954 + 0.336667i
\(251\) −6.57161 + 6.57161i −0.414796 + 0.414796i −0.883406 0.468609i \(-0.844755\pi\)
0.468609 + 0.883406i \(0.344755\pi\)
\(252\) 0.147021 + 0.745137i 0.00926144 + 0.0469392i
\(253\) 6.98863 + 16.8721i 0.439372 + 1.06074i
\(254\) −7.42374 −0.465807
\(255\) 0 0
\(256\) 15.2078 0.950486
\(257\) −6.01912 14.5315i −0.375463 0.906447i −0.992804 0.119752i \(-0.961790\pi\)
0.617341 0.786696i \(-0.288210\pi\)
\(258\) −7.93365 + 7.92141i −0.493927 + 0.493165i
\(259\) −0.271116 + 0.271116i −0.0168463 + 0.0168463i
\(260\) 3.12737 + 4.68043i 0.193951 + 0.290268i
\(261\) 1.02907 + 1.54527i 0.0636977 + 0.0956499i
\(262\) −6.85478 4.58021i −0.423489 0.282967i
\(263\) −14.2664 5.90932i −0.879701 0.364384i −0.103320 0.994648i \(-0.532947\pi\)
−0.776381 + 0.630264i \(0.782947\pi\)
\(264\) 17.5900 11.7336i 1.08259 0.722154i
\(265\) 5.26799 7.88410i 0.323610 0.484316i
\(266\) −0.0175914 0.0884379i −0.00107860 0.00542247i
\(267\) −0.00699296 + 9.05479i −0.000427962 + 0.554144i
\(268\) 4.96141 + 4.96141i 0.303066 + 0.303066i
\(269\) −4.74815 + 23.8706i −0.289500 + 1.45541i 0.512807 + 0.858504i \(0.328605\pi\)
−0.802307 + 0.596911i \(0.796395\pi\)
\(270\) −0.687475 3.49851i −0.0418384 0.212913i
\(271\) 5.62528i 0.341711i −0.985296 0.170856i \(-0.945347\pi\)
0.985296 0.170856i \(-0.0546532\pi\)
\(272\) 0 0
\(273\) −0.997365 + 1.49017i −0.0603633 + 0.0901891i
\(274\) 9.81047 4.06363i 0.592672 0.245493i
\(275\) −18.7553 3.73066i −1.13099 0.224967i
\(276\) −9.11276 + 1.80533i −0.548524 + 0.108668i
\(277\) −7.37043 + 4.92476i −0.442846 + 0.295900i −0.756931 0.653495i \(-0.773302\pi\)
0.314085 + 0.949395i \(0.398302\pi\)
\(278\) −9.79092 + 1.94753i −0.587220 + 0.116805i
\(279\) 0.392803 1.95893i 0.0235165 0.117278i
\(280\) −0.168991 + 0.407979i −0.0100991 + 0.0243814i
\(281\) −2.76232 + 6.66883i −0.164786 + 0.397829i −0.984605 0.174794i \(-0.944074\pi\)
0.819819 + 0.572623i \(0.194074\pi\)
\(282\) −5.53767 13.3984i −0.329763 0.797861i
\(283\) −4.84677 + 0.964082i −0.288110 + 0.0573087i −0.337030 0.941494i \(-0.609422\pi\)
0.0489193 + 0.998803i \(0.484422\pi\)
\(284\) −7.02547 + 4.69427i −0.416885 + 0.278554i
\(285\) −0.151754 0.766012i −0.00898915 0.0453746i
\(286\) 19.2605 + 3.83115i 1.13890 + 0.226541i
\(287\) −1.44184 + 0.597228i −0.0851088 + 0.0352532i
\(288\) 6.58842 + 15.9756i 0.388227 + 0.941372i
\(289\) 0 0
\(290\) 0.424637i 0.0249356i
\(291\) 0.837554 4.19374i 0.0490983 0.245841i
\(292\) 2.93640 14.7623i 0.171840 0.863897i
\(293\) 13.5083 + 13.5083i 0.789165 + 0.789165i 0.981357 0.192192i \(-0.0615598\pi\)
−0.192192 + 0.981357i \(0.561560\pi\)
\(294\) 10.1106 + 0.00780836i 0.589662 + 0.000455393i
\(295\) 0.0415203 + 0.208736i 0.00241740 + 0.0121531i
\(296\) −3.01670 + 4.51481i −0.175342 + 0.262418i
\(297\) 19.0496 + 12.7925i 1.10537 + 0.742294i
\(298\) 9.83889 + 4.07540i 0.569952 + 0.236082i
\(299\) −18.2364 12.1852i −1.05464 0.704688i
\(300\) 3.72954 8.98427i 0.215325 0.518707i
\(301\) 0.837187 + 1.25294i 0.0482546 + 0.0722182i
\(302\) −0.469913 + 0.469913i −0.0270404 + 0.0270404i
\(303\) −8.31274 8.32559i −0.477554 0.478293i
\(304\) 0.0581977 + 0.140502i 0.00333786 + 0.00805832i
\(305\) 8.63402 0.494382
\(306\) 0 0
\(307\) −4.98811 −0.284687 −0.142343 0.989817i \(-0.545464\pi\)
−0.142343 + 0.989817i \(0.545464\pi\)
\(308\) −0.427838 1.03289i −0.0243783 0.0588544i
\(309\) 3.03212 + 3.03681i 0.172491 + 0.172758i
\(310\) 0.323126 0.323126i 0.0183523 0.0183523i
\(311\) 5.81470 + 8.70232i 0.329722 + 0.493463i 0.958879 0.283814i \(-0.0916000\pi\)
−0.629158 + 0.777278i \(0.716600\pi\)
\(312\) −9.73610 + 23.4538i −0.551198 + 1.32781i
\(313\) 19.9675 + 13.3418i 1.12863 + 0.754125i 0.972336 0.233586i \(-0.0750459\pi\)
0.156292 + 0.987711i \(0.450046\pi\)
\(314\) 1.82697 + 0.756754i 0.103102 + 0.0427061i
\(315\) −0.479226 0.000740207i −0.0270013 4.17060e-5i
\(316\) −7.78866 + 11.6566i −0.438146 + 0.655732i
\(317\) 1.91890 + 9.64699i 0.107776 + 0.541829i 0.996515 + 0.0834143i \(0.0265825\pi\)
−0.888739 + 0.458414i \(0.848418\pi\)
\(318\) 16.8274 + 0.0129957i 0.943631 + 0.000728761i
\(319\) −1.93244 1.93244i −0.108196 0.108196i
\(320\) −0.682954 + 3.43344i −0.0381783 + 0.191935i
\(321\) 1.39555 6.98771i 0.0778921 0.390016i
\(322\) 0.676847i 0.0377192i
\(323\) 0 0
\(324\) −8.27928 + 8.22829i −0.459960 + 0.457127i
\(325\) 21.2181 8.78882i 1.17697 0.487516i
\(326\) 13.2661 + 2.63880i 0.734743 + 0.146149i
\(327\) −4.25736 21.4899i −0.235432 1.18839i
\(328\) −18.3768 + 12.2790i −1.01469 + 0.677993i
\(329\) −1.91118 + 0.380158i −0.105367 + 0.0209588i
\(330\) 2.00470 + 4.85037i 0.110355 + 0.267004i
\(331\) −1.60689 + 3.87936i −0.0883224 + 0.213229i −0.961869 0.273512i \(-0.911815\pi\)
0.873546 + 0.486741i \(0.161815\pi\)
\(332\) −1.37146 + 3.31100i −0.0752687 + 0.181715i
\(333\) −5.77765 1.15853i −0.316613 0.0634869i
\(334\) 7.53897 1.49959i 0.412514 0.0820542i
\(335\) −3.68110 + 2.45964i −0.201120 + 0.134384i
\(336\) 0.0915487 0.0181367i 0.00499439 0.000989437i
\(337\) 5.67449 + 1.12873i 0.309109 + 0.0614856i 0.347207 0.937788i \(-0.387130\pi\)
−0.0380983 + 0.999274i \(0.512130\pi\)
\(338\) −11.7192 + 4.85425i −0.637440 + 0.264036i
\(339\) 1.19103 1.77952i 0.0646876 0.0966502i
\(340\) 0 0
\(341\) 2.94097i 0.159262i
\(342\) 0.981432 0.978404i 0.0530697 0.0529061i
\(343\) 0.531692 2.67300i 0.0287087 0.144328i
\(344\) 15.0901 + 15.0901i 0.813602 + 0.813602i
\(345\) 0.00452693 5.86167i 0.000243722 0.315581i
\(346\) 0.190683 + 0.958630i 0.0102512 + 0.0515363i
\(347\) −0.0105207 + 0.0157453i −0.000564779 + 0.000845252i −0.831752 0.555148i \(-0.812662\pi\)
0.831187 + 0.555993i \(0.187662\pi\)
\(348\) 1.15651 0.771462i 0.0619953 0.0413547i
\(349\) −5.74159 2.37825i −0.307340 0.127305i 0.223682 0.974662i \(-0.428192\pi\)
−0.531023 + 0.847358i \(0.678192\pi\)
\(350\) 0.589297 + 0.393755i 0.0314992 + 0.0210471i
\(351\) −27.5584 0.0638496i −1.47096 0.00340804i
\(352\) −14.1323 21.1505i −0.753256 1.12733i
\(353\) −8.61113 + 8.61113i −0.458324 + 0.458324i −0.898105 0.439781i \(-0.855056\pi\)
0.439781 + 0.898105i \(0.355056\pi\)
\(354\) −0.267273 + 0.266860i −0.0142054 + 0.0141835i
\(355\) −2.04024 4.92557i −0.108285 0.261422i
\(356\) 6.78025 0.359352
\(357\) 0 0
\(358\) 8.62604 0.455900
\(359\) 12.1801 + 29.4053i 0.642840 + 1.55195i 0.822832 + 0.568284i \(0.192393\pi\)
−0.179992 + 0.983668i \(0.557607\pi\)
\(360\) −6.65841 + 1.31375i −0.350929 + 0.0692408i
\(361\) −13.2204 + 13.2204i −0.695811 + 0.695811i
\(362\) 6.00041 + 8.98025i 0.315375 + 0.471991i
\(363\) −13.5994 5.64538i −0.713785 0.296306i
\(364\) 1.11642 + 0.745967i 0.0585162 + 0.0390993i
\(365\) 8.77418 + 3.63439i 0.459262 + 0.190232i
\(366\) 8.50276 + 12.7466i 0.444446 + 0.666274i
\(367\) −18.6814 + 27.9587i −0.975161 + 1.45943i −0.0890125 + 0.996031i \(0.528371\pi\)
−0.886149 + 0.463401i \(0.846629\pi\)
\(368\) 0.222704 + 1.11961i 0.0116092 + 0.0583636i
\(369\) −19.9223 13.3562i −1.03711 0.695295i
\(370\) −0.953024 0.953024i −0.0495453 0.0495453i
\(371\) 0.441247 2.21830i 0.0229084 0.115168i
\(372\) −1.46708 0.292999i −0.0760646 0.0151913i
\(373\) 15.2764i 0.790981i 0.918470 + 0.395490i \(0.129425\pi\)
−0.918470 + 0.395490i \(0.870575\pi\)
\(374\) 0 0
\(375\) 10.9905 + 7.35591i 0.567547 + 0.379857i
\(376\) −25.4957 + 10.5607i −1.31484 + 0.544624i
\(377\) 3.21911 + 0.640321i 0.165793 + 0.0329782i
\(378\) −0.470848 0.708220i −0.0242178 0.0364269i
\(379\) 31.6091 21.1206i 1.62365 1.08489i 0.691778 0.722111i \(-0.256828\pi\)
0.931875 0.362779i \(-0.118172\pi\)
\(380\) −0.573503 + 0.114077i −0.0294201 + 0.00585202i
\(381\) −14.1726 + 5.85765i −0.726082 + 0.300096i
\(382\) 5.33891 12.8893i 0.273162 0.659472i
\(383\) −13.1831 + 31.8268i −0.673624 + 1.62627i 0.101781 + 0.994807i \(0.467546\pi\)
−0.775404 + 0.631465i \(0.782454\pi\)
\(384\) 12.6997 5.24891i 0.648080 0.267858i
\(385\) 0.691871 0.137622i 0.0352610 0.00701385i
\(386\) −2.07422 + 1.38595i −0.105575 + 0.0705428i
\(387\) −8.89570 + 21.3826i −0.452194 + 1.08694i
\(388\) −3.14076 0.624737i −0.159448 0.0317162i
\(389\) 0.697275 0.288821i 0.0353532 0.0146438i −0.364937 0.931032i \(-0.618909\pi\)
0.400290 + 0.916389i \(0.368909\pi\)
\(390\) −5.23822 3.50592i −0.265248 0.177529i
\(391\) 0 0
\(392\) 19.2456i 0.972048i
\(393\) −16.7003 3.33532i −0.842421 0.168244i
\(394\) −2.21962 + 11.1588i −0.111823 + 0.562172i
\(395\) −6.25490 6.25490i −0.314718 0.314718i
\(396\) 9.56801 14.2718i 0.480811 0.717183i
\(397\) 3.93046 + 19.7598i 0.197264 + 0.991713i 0.944839 + 0.327536i \(0.106218\pi\)
−0.747575 + 0.664178i \(0.768782\pi\)
\(398\) −2.00390 + 2.99904i −0.100446 + 0.150329i
\(399\) −0.103365 0.154955i −0.00517471 0.00775746i
\(400\) −1.10434 0.457434i −0.0552172 0.0228717i
\(401\) 13.1111 + 8.76056i 0.654737 + 0.437481i 0.838065 0.545570i \(-0.183687\pi\)
−0.183328 + 0.983052i \(0.558687\pi\)
\(402\) −7.25635 3.01225i −0.361914 0.150237i
\(403\) −1.96232 2.93682i −0.0977502 0.146294i
\(404\) −6.22941 + 6.22941i −0.309925 + 0.309925i
\(405\) −4.07292 6.13651i −0.202385 0.304926i
\(406\) 0.0387613 + 0.0935781i 0.00192369 + 0.00464420i
\(407\) 8.67405 0.429957
\(408\) 0 0
\(409\) −28.3555 −1.40209 −0.701045 0.713117i \(-0.747283\pi\)
−0.701045 + 0.713117i \(0.747283\pi\)
\(410\) −2.09937 5.06832i −0.103680 0.250306i
\(411\) 15.5227 15.4987i 0.765677 0.764495i
\(412\) 2.27221 2.27221i 0.111944 0.111944i
\(413\) 0.0282036 + 0.0422096i 0.00138781 + 0.00207700i
\(414\) 8.65815 5.76587i 0.425525 0.283377i
\(415\) −1.88019 1.25630i −0.0922950 0.0616695i
\(416\) 28.2248 + 11.6911i 1.38384 + 0.573204i
\(417\) −17.1550 + 11.4435i −0.840085 + 0.560389i
\(418\) −1.13332 + 1.69614i −0.0554327 + 0.0829610i
\(419\) −6.87332 34.5545i −0.335784 1.68810i −0.667412 0.744689i \(-0.732598\pi\)
0.331628 0.943410i \(-0.392402\pi\)
\(420\) −0.000277134 0.358846i −1.35228e−5 0.0175099i
\(421\) 0.00892902 + 0.00892902i 0.000435174 + 0.000435174i 0.707324 0.706889i \(-0.249902\pi\)
−0.706889 + 0.707324i \(0.749902\pi\)
\(422\) 2.53992 12.7691i 0.123642 0.621588i
\(423\) −21.1438 21.2092i −1.02805 1.03123i
\(424\) 32.0309i 1.55556i
\(425\) 0 0
\(426\) 5.26250 7.86273i 0.254969 0.380951i
\(427\) 1.90269 0.788122i 0.0920779 0.0381399i
\(428\) −5.23321 1.04095i −0.252957 0.0503163i
\(429\) 39.7929 7.88335i 1.92122 0.380612i
\(430\) −4.40431 + 2.94287i −0.212395 + 0.141918i
\(431\) −11.6292 + 2.31319i −0.560159 + 0.111422i −0.467046 0.884233i \(-0.654682\pi\)
−0.0931127 + 0.995656i \(0.529682\pi\)
\(432\) 1.01188 + 1.01658i 0.0486841 + 0.0489102i
\(433\) −0.207692 + 0.501414i −0.00998106 + 0.0240964i −0.928791 0.370603i \(-0.879151\pi\)
0.918810 + 0.394699i \(0.129151\pi\)
\(434\) 0.0417126 0.100703i 0.00200227 0.00483391i
\(435\) 0.335057 + 0.810669i 0.0160647 + 0.0388686i
\(436\) −16.0892 + 3.20035i −0.770534 + 0.153269i
\(437\) 1.89436 1.26577i 0.0906195 0.0605500i
\(438\) 3.27528 + 16.5326i 0.156499 + 0.789960i
\(439\) 29.8659 + 5.94070i 1.42542 + 0.283534i 0.846734 0.532016i \(-0.178565\pi\)
0.578687 + 0.815550i \(0.303565\pi\)
\(440\) 9.22974 3.82308i 0.440010 0.182258i
\(441\) 19.3082 7.96279i 0.919437 0.379181i
\(442\) 0 0
\(443\) 40.2451i 1.91210i 0.293203 + 0.956050i \(0.405279\pi\)
−0.293203 + 0.956050i \(0.594721\pi\)
\(444\) −0.864166 + 4.32699i −0.0410115 + 0.205350i
\(445\) −0.834628 + 4.19596i −0.0395652 + 0.198908i
\(446\) −9.87902 9.87902i −0.467785 0.467785i
\(447\) 21.9990 + 0.0169897i 1.04052 + 0.000803584i
\(448\) 0.162904 + 0.818975i 0.00769650 + 0.0386929i
\(449\) −20.2429 + 30.2957i −0.955323 + 1.42974i −0.0530433 + 0.998592i \(0.516892\pi\)
−0.902280 + 0.431150i \(0.858108\pi\)
\(450\) −0.0168245 + 10.8925i −0.000793112 + 0.513478i
\(451\) 32.6187 + 13.5111i 1.53596 + 0.636214i
\(452\) −1.33320 0.890813i −0.0627082 0.0419003i
\(453\) −0.526323 + 1.26789i −0.0247288 + 0.0595705i
\(454\) 8.96660 + 13.4195i 0.420823 + 0.629807i
\(455\) −0.599070 + 0.599070i −0.0280848 + 0.0280848i
\(456\) −1.86384 1.86672i −0.0872822 0.0874171i
\(457\) −8.15675 19.6921i −0.381557 0.921160i −0.991665 0.128842i \(-0.958874\pi\)
0.610108 0.792318i \(-0.291126\pi\)
\(458\) 9.20703 0.430216
\(459\) 0 0
\(460\) −4.38923 −0.204649
\(461\) 2.35253 + 5.67952i 0.109568 + 0.264521i 0.969148 0.246481i \(-0.0792743\pi\)
−0.859579 + 0.511002i \(0.829274\pi\)
\(462\) 0.884526 + 0.885894i 0.0411519 + 0.0412155i
\(463\) −25.6637 + 25.6637i −1.19270 + 1.19270i −0.216388 + 0.976307i \(0.569428\pi\)
−0.976307 + 0.216388i \(0.930572\pi\)
\(464\) −0.0949073 0.142039i −0.00440596 0.00659398i
\(465\) 0.361916 0.871836i 0.0167834 0.0404304i
\(466\) 16.3741 + 10.9408i 0.758516 + 0.506824i
\(467\) 7.10485 + 2.94293i 0.328773 + 0.136182i 0.540964 0.841046i \(-0.318060\pi\)
−0.212190 + 0.977228i \(0.568060\pi\)
\(468\) −0.0318738 + 20.6358i −0.00147337 + 0.953889i
\(469\) −0.586694 + 0.878050i −0.0270910 + 0.0405446i
\(470\) −1.33633 6.71816i −0.0616401 0.309886i
\(471\) 4.08495 + 0.00315478i 0.188224 + 0.000145365i
\(472\) 0.508362 + 0.508362i 0.0233993 + 0.0233993i
\(473\) 6.65075 33.4356i 0.305802 1.53737i
\(474\) 3.07443 15.3941i 0.141213 0.707072i
\(475\) 2.38569i 0.109463i
\(476\) 0 0
\(477\) 32.1351 13.2527i 1.47137 0.606799i
\(478\) 10.6295 4.40287i 0.486181 0.201383i
\(479\) 2.25186 + 0.447923i 0.102890 + 0.0204661i 0.246267 0.969202i \(-0.420796\pi\)
−0.143377 + 0.989668i \(0.545796\pi\)
\(480\) 1.58668 + 8.00911i 0.0724218 + 0.365564i
\(481\) −8.66182 + 5.78764i −0.394945 + 0.263894i
\(482\) −3.51654 + 0.699483i −0.160174 + 0.0318606i
\(483\) −0.534061 1.29216i −0.0243006 0.0587953i
\(484\) −4.21940 + 10.1865i −0.191791 + 0.463025i
\(485\) 0.773237 1.86676i 0.0351109 0.0847652i
\(486\) 5.04846 12.0562i 0.229003 0.546879i
\(487\) 27.5373 5.47752i 1.24784 0.248210i 0.473392 0.880852i \(-0.343030\pi\)
0.774444 + 0.632642i \(0.218030\pi\)
\(488\) 24.2506 16.2038i 1.09777 0.733510i
\(489\) 27.4083 5.42985i 1.23945 0.245546i
\(490\) 4.68522 + 0.931948i 0.211657 + 0.0421011i
\(491\) 12.4942 5.17526i 0.563854 0.233556i −0.0825033 0.996591i \(-0.526291\pi\)
0.646357 + 0.763035i \(0.276291\pi\)
\(492\) −9.98962 + 14.9256i −0.450367 + 0.672896i
\(493\) 0 0
\(494\) 2.44995i 0.110228i
\(495\) 7.65430 + 7.67798i 0.344035 + 0.345099i
\(496\) −0.0358645 + 0.180303i −0.00161037 + 0.00809585i
\(497\) −0.899222 0.899222i −0.0403356 0.0403356i
\(498\) 0.00309919 4.01297i 0.000138878 0.179825i
\(499\) 2.97184 + 14.9405i 0.133038 + 0.668827i 0.988532 + 0.151014i \(0.0482538\pi\)
−0.855494 + 0.517813i \(0.826746\pi\)
\(500\) 5.50176 8.23397i 0.246046 0.368234i
\(501\) 13.2093 8.81143i 0.590148 0.393666i
\(502\) −7.19931 2.98205i −0.321321 0.133096i
\(503\) −20.2838 13.5532i −0.904408 0.604306i 0.0140169 0.999902i \(-0.495538\pi\)
−0.918425 + 0.395596i \(0.870538\pi\)
\(504\) −1.34741 + 0.897301i −0.0600182 + 0.0399689i
\(505\) −3.08825 4.62189i −0.137425 0.205672i
\(506\) −10.8275 + 10.8275i −0.481339 + 0.481339i
\(507\) −18.5428 + 18.5141i −0.823513 + 0.822242i
\(508\) 4.39441 + 10.6090i 0.194971 + 0.470700i
\(509\) 18.8631 0.836090 0.418045 0.908426i \(-0.362715\pi\)
0.418045 + 0.908426i \(0.362715\pi\)
\(510\) 0 0
\(511\) 2.26533 0.100212
\(512\) −1.19253 2.87903i −0.0527030 0.127236i
\(513\) 1.10164 2.64225i 0.0486384 0.116658i
\(514\) 9.32541 9.32541i 0.411326 0.411326i
\(515\) 1.12646 + 1.68586i 0.0496376 + 0.0742880i
\(516\) 16.0165 + 6.64875i 0.705087 + 0.292695i
\(517\) 36.6544 + 24.4917i 1.61206 + 1.07714i
\(518\) −0.297013 0.123027i −0.0130500 0.00540548i
\(519\) 1.12043 + 1.67965i 0.0491815 + 0.0737285i
\(520\) −6.66583 + 9.97612i −0.292316 + 0.437482i
\(521\) 6.43336 + 32.3427i 0.281851 + 1.41696i 0.819156 + 0.573571i \(0.194442\pi\)
−0.537305 + 0.843388i \(0.680558\pi\)
\(522\) −0.866844 + 1.29300i −0.0379407 + 0.0565929i
\(523\) −9.24397 9.24397i −0.404211 0.404211i 0.475503 0.879714i \(-0.342266\pi\)
−0.879714 + 0.475503i \(0.842266\pi\)
\(524\) −2.48783 + 12.5072i −0.108681 + 0.546379i
\(525\) 1.43571 + 0.286733i 0.0626594 + 0.0125141i
\(526\) 12.9475i 0.564539i
\(527\) 0 0
\(528\) −1.75463 1.17437i −0.0763604 0.0511077i
\(529\) −5.44921 + 2.25714i −0.236922 + 0.0981363i
\(530\) 7.79774 + 1.55107i 0.338712 + 0.0673740i
\(531\) −0.299683 + 0.720349i −0.0130051 + 0.0312605i
\(532\) −0.115971 + 0.0774893i −0.00502798 + 0.00335959i
\(533\) −41.5879 + 8.27234i −1.80137 + 0.358315i
\(534\) −7.01652 + 2.89999i −0.303635 + 0.125495i
\(535\) 1.28839 3.11044i 0.0557018 0.134476i
\(536\) −5.72315 + 13.8169i −0.247202 + 0.596800i
\(537\) 16.4679 6.80631i 0.710640 0.293714i
\(538\) −20.0148 + 3.98120i −0.862901 + 0.171642i
\(539\) −25.5626 + 17.0804i −1.10106 + 0.735705i
\(540\) −4.59268 + 3.05336i −0.197637 + 0.131396i
\(541\) −16.3632 3.25485i −0.703511 0.139937i −0.169644 0.985505i \(-0.554262\pi\)
−0.533867 + 0.845568i \(0.679262\pi\)
\(542\) 4.35761 1.80498i 0.187176 0.0775306i
\(543\) 18.5411 + 12.4095i 0.795675 + 0.532542i
\(544\) 0 0
\(545\) 10.3508i 0.443379i
\(546\) −1.47438 0.294456i −0.0630977 0.0126016i
\(547\) −2.11537 + 10.6347i −0.0904466 + 0.454706i 0.908847 + 0.417129i \(0.136964\pi\)
−0.999294 + 0.0375766i \(0.988036\pi\)
\(548\) −11.6144 11.6144i −0.496144 0.496144i
\(549\) 26.2901 + 17.6253i 1.12203 + 0.752229i
\(550\) −3.12806 15.7258i −0.133381 0.670550i
\(551\) −0.189419 + 0.283486i −0.00806952 + 0.0120769i
\(552\) −10.9881 16.4723i −0.467683 0.701109i
\(553\) −1.94936 0.807451i −0.0828952 0.0343363i
\(554\) −6.17990 4.12928i −0.262559 0.175436i
\(555\) −2.57138 1.06743i −0.109149 0.0453098i
\(556\) 8.57881 + 12.8391i 0.363822 + 0.544499i
\(557\) −8.63556 + 8.63556i −0.365900 + 0.365900i −0.865980 0.500079i \(-0.833304\pi\)
0.500079 + 0.865980i \(0.333304\pi\)
\(558\) 1.64352 0.324279i 0.0695759 0.0137278i
\(559\) 15.6681 + 37.8261i 0.662689 + 1.59987i
\(560\) 0.0440951 0.00186336
\(561\) 0 0
\(562\) −6.05234 −0.255302
\(563\) −9.00559 21.7414i −0.379541 0.916292i −0.992052 0.125830i \(-0.959841\pi\)
0.612511 0.790462i \(-0.290159\pi\)
\(564\) −15.8693 + 15.8448i −0.668216 + 0.667185i
\(565\) 0.715392 0.715392i 0.0300968 0.0300968i
\(566\) −2.30200 3.44519i −0.0967605 0.144812i
\(567\) −1.45771 0.980534i −0.0612179 0.0411786i
\(568\) −14.9745 10.0056i −0.628314 0.419826i
\(569\) 1.73268 + 0.717701i 0.0726379 + 0.0300876i 0.418707 0.908122i \(-0.362484\pi\)
−0.346069 + 0.938209i \(0.612484\pi\)
\(570\) 0.544696 0.363346i 0.0228148 0.0152189i
\(571\) −22.2530 + 33.3039i −0.931258 + 1.39373i −0.0120616 + 0.999927i \(0.503839\pi\)
−0.919197 + 0.393799i \(0.871161\pi\)
\(572\) −5.92608 29.7924i −0.247782 1.24568i
\(573\) 0.0222570 28.8194i 0.000929801 1.20395i
\(574\) −0.925283 0.925283i −0.0386205 0.0386205i
\(575\) −3.49362 + 17.5636i −0.145694 + 0.732452i
\(576\) −9.08851 + 9.06047i −0.378688 + 0.377520i
\(577\) 31.8433i 1.32565i −0.748773 0.662826i \(-0.769357\pi\)
0.748773 0.662826i \(-0.230643\pi\)
\(578\) 0 0
\(579\) −2.86629 + 4.28254i −0.119119 + 0.177976i
\(580\) 0.606837 0.251360i 0.0251975 0.0104372i
\(581\) −0.529018 0.105228i −0.0219474 0.00436560i
\(582\) 3.51742 0.696834i 0.145802 0.0288847i
\(583\) −42.5446 + 28.4274i −1.76202 + 1.17734i
\(584\) 31.4651 6.25880i 1.30204 0.258991i
\(585\) −12.7665 2.55993i −0.527832 0.105840i
\(586\) −6.12978 + 14.7986i −0.253219 + 0.611325i
\(587\) 4.81996 11.6364i 0.198941 0.480286i −0.792653 0.609673i \(-0.791301\pi\)
0.991594 + 0.129387i \(0.0413008\pi\)
\(588\) −5.97372 14.4534i −0.246352 0.596048i
\(589\) 0.359855 0.0715796i 0.0148276 0.00294939i
\(590\) −0.148375 + 0.0991408i −0.00610849 + 0.00408156i
\(591\) 4.56732 + 23.0545i 0.187874 + 0.948336i
\(592\) 0.531784 + 0.105778i 0.0218562 + 0.00434746i
\(593\) 17.0275 7.05301i 0.699234 0.289632i −0.00460731 0.999989i \(-0.501467\pi\)
0.703841 + 0.710357i \(0.251467\pi\)
\(594\) −3.79722 + 18.8614i −0.155802 + 0.773895i
\(595\) 0 0
\(596\) 16.4729i 0.674755i
\(597\) −1.45924 + 7.30660i −0.0597227 + 0.299039i
\(598\) 3.58772 18.0367i 0.146713 0.737575i
\(599\) 12.3968 + 12.3968i 0.506519 + 0.506519i 0.913456 0.406937i \(-0.133403\pi\)
−0.406937 + 0.913456i \(0.633403\pi\)
\(600\) 20.7339 + 0.0160127i 0.846460 + 0.000653716i
\(601\) 2.64838 + 13.3143i 0.108030 + 0.543102i 0.996458 + 0.0840872i \(0.0267974\pi\)
−0.888429 + 0.459015i \(0.848203\pi\)
\(602\) −0.701959 + 1.05056i −0.0286097 + 0.0428174i
\(603\) −16.2298 0.0250684i −0.660929 0.00102086i
\(604\) 0.949699 + 0.393378i 0.0386427 + 0.0160063i
\(605\) −5.78455 3.86511i −0.235175 0.157139i
\(606\) 3.78209 9.11088i 0.153637 0.370104i
\(607\) 2.29815 + 3.43942i 0.0932790 + 0.139602i 0.875174 0.483808i \(-0.160747\pi\)
−0.781895 + 0.623410i \(0.785747\pi\)
\(608\) −2.24400 + 2.24400i −0.0910064 + 0.0910064i
\(609\) 0.147836 + 0.148064i 0.00599061 + 0.00599987i
\(610\) 2.77040 + 6.68833i 0.112170 + 0.270802i
\(611\) −52.9445 −2.14190
\(612\) 0 0
\(613\) −27.1330 −1.09589 −0.547947 0.836513i \(-0.684590\pi\)
−0.547947 + 0.836513i \(0.684590\pi\)
\(614\) −1.60053 3.86403i −0.0645923 0.155940i
\(615\) −8.00699 8.01937i −0.322873 0.323372i
\(616\) 1.68500 1.68500i 0.0678906 0.0678906i
\(617\) −7.08791 10.6078i −0.285349 0.427054i 0.660910 0.750465i \(-0.270170\pi\)
−0.946259 + 0.323411i \(0.895170\pi\)
\(618\) −1.37954 + 3.32324i −0.0554933 + 0.133680i
\(619\) −3.23219 2.15968i −0.129913 0.0868049i 0.488916 0.872331i \(-0.337392\pi\)
−0.618829 + 0.785526i \(0.712392\pi\)
\(620\) −0.653042 0.270499i −0.0262268 0.0108635i
\(621\) 11.9797 17.8392i 0.480727 0.715863i
\(622\) −4.87547 + 7.29666i −0.195489 + 0.292569i
\(623\) 0.199083 + 1.00086i 0.00797609 + 0.0400985i
\(624\) 2.53574 + 0.00195833i 0.101511 + 7.83961e-5i
\(625\) −10.8916 10.8916i −0.435663 0.435663i
\(626\) −3.92827 + 19.7488i −0.157005 + 0.789319i
\(627\) −0.825288 + 4.13232i −0.0329588 + 0.165029i
\(628\) 3.05882i 0.122060i
\(629\) 0 0
\(630\) −0.153196 0.371469i −0.00610346 0.0147997i
\(631\) 32.3983 13.4198i 1.28976 0.534234i 0.370843 0.928696i \(-0.379069\pi\)
0.918913 + 0.394461i \(0.129069\pi\)
\(632\) −29.3071 5.82955i −1.16578 0.231887i
\(633\) −5.22640 26.3814i −0.207731 1.04857i
\(634\) −6.85730 + 4.58190i −0.272338 + 0.181971i
\(635\) −7.10635 + 1.41354i −0.282007 + 0.0560947i
\(636\) −9.94222 24.0552i −0.394235 0.953850i
\(637\) 14.1299 34.1127i 0.559848 1.35159i
\(638\) 0.876899 2.11702i 0.0347168 0.0838137i
\(639\) 3.84253 19.1630i 0.152008 0.758075i
\(640\) 6.36785 1.26665i 0.251712 0.0500685i
\(641\) 1.85961 1.24255i 0.0734500 0.0490777i −0.518303 0.855197i \(-0.673436\pi\)
0.591753 + 0.806119i \(0.298436\pi\)
\(642\) 5.86080 1.16108i 0.231307 0.0458242i
\(643\) −3.58974 0.714043i −0.141565 0.0281591i 0.123799 0.992307i \(-0.460492\pi\)
−0.265364 + 0.964148i \(0.585492\pi\)
\(644\) −0.967262 + 0.400653i −0.0381155 + 0.0157879i
\(645\) −6.08617 + 9.09338i −0.239643 + 0.358051i
\(646\) 0 0
\(647\) 28.3391i 1.11413i 0.830470 + 0.557063i \(0.188072\pi\)
−0.830470 + 0.557063i \(0.811928\pi\)
\(648\) −22.9564 9.59202i −0.901811 0.376810i
\(649\) 0.224054 1.12639i 0.00879488 0.0442148i
\(650\) 13.6165 + 13.6165i 0.534082 + 0.534082i
\(651\) 0.000173893 0.225164i 6.81540e−6 0.00882488i
\(652\) −4.08173 20.5203i −0.159853 0.803635i
\(653\) −5.66385 + 8.47655i −0.221644 + 0.331713i −0.925581 0.378548i \(-0.876423\pi\)
0.703938 + 0.710262i \(0.251423\pi\)
\(654\) 15.2811 10.1934i 0.597537 0.398594i
\(655\) −7.43383 3.07919i −0.290464 0.120314i
\(656\) 1.83501 + 1.22611i 0.0716449 + 0.0478716i
\(657\) 19.2977 + 28.9779i 0.752877 + 1.13054i
\(658\) −0.907729 1.35851i −0.0353870 0.0529604i
\(659\) 27.6176 27.6176i 1.07583 1.07583i 0.0789501 0.996879i \(-0.474843\pi\)
0.996879 0.0789501i \(-0.0251568\pi\)
\(660\) 5.74486 5.73599i 0.223618 0.223273i
\(661\) 0.783917 + 1.89254i 0.0304909 + 0.0736114i 0.938392 0.345574i \(-0.112316\pi\)
−0.907901 + 0.419185i \(0.862316\pi\)
\(662\) −3.52074 −0.136838
\(663\) 0 0
\(664\) −7.63870 −0.296439
\(665\) −0.0336786 0.0813074i −0.00130600 0.00315296i
\(666\) −0.956424 4.84738i −0.0370607 0.187832i
\(667\) −1.80965 + 1.80965i −0.0700701 + 0.0700701i
\(668\) −6.60565 9.88606i −0.255580 0.382503i
\(669\) −26.6549 11.0649i −1.03054 0.427795i
\(670\) −3.08651 2.06234i −0.119242 0.0796751i
\(671\) −43.0448 17.8297i −1.66172 0.688309i
\(672\) 1.08074 + 1.62015i 0.0416904 + 0.0624986i
\(673\) 9.44730 14.1389i 0.364167 0.545014i −0.603462 0.797392i \(-0.706213\pi\)
0.967629 + 0.252378i \(0.0812126\pi\)
\(674\) 0.946406 + 4.75791i 0.0364542 + 0.183268i
\(675\) 8.56254 + 20.8080i 0.329572 + 0.800901i
\(676\) 13.8741 + 13.8741i 0.533621 + 0.533621i
\(677\) −4.27498 + 21.4918i −0.164301 + 0.825995i 0.807441 + 0.589948i \(0.200852\pi\)
−0.971742 + 0.236047i \(0.924148\pi\)
\(678\) 1.76066 + 0.351632i 0.0676179 + 0.0135043i
\(679\) 0.481963i 0.0184960i
\(680\) 0 0
\(681\) 27.7066 + 18.5439i 1.06172 + 0.710603i
\(682\) −2.27821 + 0.943667i −0.0872373 + 0.0361349i
\(683\) 35.6104 + 7.08334i 1.36259 + 0.271036i 0.821635 0.570014i \(-0.193062\pi\)
0.540957 + 0.841050i \(0.318062\pi\)
\(684\) −1.97916 0.823378i −0.0756750 0.0314827i
\(685\) 8.61730 5.75790i 0.329250 0.219998i
\(686\) 2.24124 0.445810i 0.0855708 0.0170211i
\(687\) 17.5770 7.26474i 0.670605 0.277167i
\(688\) 0.815481 1.96874i 0.0310899 0.0750577i
\(689\) 23.5168 56.7746i 0.895919 2.16294i
\(690\) 4.54218 1.87732i 0.172918 0.0714685i
\(691\) −2.81905 + 0.560744i −0.107242 + 0.0213317i −0.248419 0.968653i \(-0.579911\pi\)
0.141178 + 0.989984i \(0.454911\pi\)
\(692\) 1.25708 0.839952i 0.0477869 0.0319302i
\(693\) 2.38765 + 0.993319i 0.0906991 + 0.0377331i
\(694\) −0.0155728 0.00309763i −0.000591136 0.000117584i
\(695\) −9.00150 + 3.72855i −0.341447 + 0.141432i
\(696\) 2.46250 + 1.64814i 0.0933406 + 0.0624725i
\(697\) 0 0
\(698\) 5.21082i 0.197232i
\(699\) 39.8924 + 7.96712i 1.50887 + 0.301344i
\(700\) 0.213876 1.07523i 0.00808375 0.0406397i
\(701\) 3.87452 + 3.87452i 0.146339 + 0.146339i 0.776480 0.630142i \(-0.217003\pi\)
−0.630142 + 0.776480i \(0.717003\pi\)
\(702\) −8.79318 21.3685i −0.331877 0.806503i
\(703\) −0.211116 1.06135i −0.00796239 0.0400296i
\(704\) 10.4951 15.7070i 0.395549 0.591981i
\(705\) −7.85208 11.7711i −0.295726 0.443327i
\(706\) −9.43364 3.90754i −0.355040 0.147062i
\(707\) −1.10245 0.736637i −0.0414621 0.0277041i
\(708\) 0.539572 + 0.223986i 0.0202784 + 0.00841793i
\(709\) 20.8730 + 31.2387i 0.783903 + 1.17319i 0.981227 + 0.192856i \(0.0617749\pi\)
−0.197324 + 0.980338i \(0.563225\pi\)
\(710\) 3.16093 3.16093i 0.118628 0.118628i
\(711\) −6.27722 31.8144i −0.235414 1.19313i
\(712\) 5.53046 + 13.3517i 0.207263 + 0.500376i
\(713\) 2.75410 0.103142
\(714\) 0 0
\(715\) 19.1665 0.716788
\(716\) −5.10610 12.3272i −0.190824 0.460690i
\(717\) 16.8185 16.7926i 0.628100 0.627130i
\(718\) −18.8705 + 18.8705i −0.704242 + 0.704242i
\(719\) 13.6583 + 20.4411i 0.509370 + 0.762326i 0.993641 0.112592i \(-0.0359152\pi\)
−0.484271 + 0.874918i \(0.660915\pi\)
\(720\) 0.375634 + 0.564060i 0.0139991 + 0.0210213i
\(721\) 0.402127 + 0.268692i 0.0149760 + 0.0100066i
\(722\) −14.4832 5.99913i −0.539009 0.223265i
\(723\) −6.16146 + 4.11008i −0.229147 + 0.152855i
\(724\) 9.28153 13.8908i 0.344945 0.516247i
\(725\) −0.522810 2.62834i −0.0194167 0.0976141i
\(726\) 0.00953490 12.3462i 0.000353873 0.458211i
\(727\) −26.6720 26.6720i −0.989211 0.989211i 0.0107310 0.999942i \(-0.496584\pi\)
−0.999942 + 0.0107310i \(0.996584\pi\)
\(728\) −0.558331 + 2.80692i −0.0206931 + 0.104031i
\(729\) 0.125111 26.9997i 0.00463375 0.999989i
\(730\) 7.96307i 0.294726i
\(731\) 0 0
\(732\) 13.1826 19.6963i 0.487244 0.727995i
\(733\) −17.5613 + 7.27415i −0.648643 + 0.268677i −0.682651 0.730745i \(-0.739173\pi\)
0.0340076 + 0.999422i \(0.489173\pi\)
\(734\) −27.6524 5.50041i −1.02067 0.203024i
\(735\) 9.67984 1.91767i 0.357046 0.0707343i
\(736\) −19.8067 + 13.2344i −0.730083 + 0.487826i
\(737\) 23.4314 4.66079i 0.863106 0.171682i
\(738\) 3.95389 19.7183i 0.145545 0.725842i
\(739\) −13.8881 + 33.5289i −0.510884 + 1.23338i 0.432487 + 0.901640i \(0.357636\pi\)
−0.943370 + 0.331742i \(0.892364\pi\)
\(740\) −0.797805 + 1.92607i −0.0293279 + 0.0708038i
\(741\) −1.93311 4.67716i −0.0710147 0.171820i
\(742\) 1.85998 0.369974i 0.0682822 0.0135822i
\(743\) −0.148245 + 0.0990543i −0.00543859 + 0.00363395i −0.558287 0.829648i \(-0.688541\pi\)
0.552848 + 0.833282i \(0.313541\pi\)
\(744\) −0.619682 3.12797i −0.0227186 0.114677i
\(745\) 10.1942 + 2.02776i 0.373488 + 0.0742914i
\(746\) −11.8338 + 4.90173i −0.433267 + 0.179465i
\(747\) −3.16049 7.66355i −0.115636 0.280395i
\(748\) 0 0
\(749\) 0.803058i 0.0293431i
\(750\) −2.17172 + 10.8741i −0.0792999 + 0.397065i
\(751\) −7.41046 + 37.2549i −0.270412 + 1.35945i 0.571840 + 0.820365i \(0.306230\pi\)
−0.842251 + 0.539085i \(0.818770\pi\)
\(752\) 1.94852 + 1.94852i 0.0710551 + 0.0710551i
\(753\) −16.0971 0.0124317i −0.586610 0.000453036i
\(754\) 0.536892 + 2.69914i 0.0195525 + 0.0982968i
\(755\) −0.360348 + 0.539298i −0.0131144 + 0.0196271i
\(756\) −0.733383 + 1.09210i −0.0266729 + 0.0397193i
\(757\) 17.7157 + 7.33808i 0.643888 + 0.266707i 0.680641 0.732617i \(-0.261701\pi\)
−0.0367531 + 0.999324i \(0.511701\pi\)
\(758\) 26.5034 + 17.7090i 0.962647 + 0.643220i
\(759\) −12.1272 + 29.2139i −0.440191 + 1.06040i
\(760\) −0.692431 1.03630i −0.0251171 0.0375904i
\(761\) 21.9157 21.9157i 0.794443 0.794443i −0.187770 0.982213i \(-0.560126\pi\)
0.982213 + 0.187770i \(0.0601259\pi\)
\(762\) −9.08516 9.09920i −0.329121 0.329629i
\(763\) −0.944829 2.28102i −0.0342051 0.0825785i
\(764\) −21.5800 −0.780737
\(765\) 0 0
\(766\) −28.8846 −1.04364
\(767\) 0.527834 + 1.27430i 0.0190590 + 0.0460124i
\(768\) 18.6113 + 18.6400i 0.671576 + 0.672614i
\(769\) 13.1164 13.1164i 0.472990 0.472990i −0.429891 0.902881i \(-0.641448\pi\)
0.902881 + 0.429891i \(0.141448\pi\)
\(770\) 0.328609 + 0.491798i 0.0118422 + 0.0177232i
\(771\) 10.4449 25.1612i 0.376163 0.906157i
\(772\) 3.20843 + 2.14380i 0.115474 + 0.0771572i
\(773\) 37.8763 + 15.6889i 1.36232 + 0.564289i 0.939694 0.342017i \(-0.111110\pi\)
0.422621 + 0.906306i \(0.361110\pi\)
\(774\) −19.4184 0.0299934i −0.697979 0.00107809i
\(775\) −1.60220 + 2.39786i −0.0575526 + 0.0861336i
\(776\) −1.33160 6.69439i −0.0478015 0.240314i
\(777\) −0.664096 0.000512878i −0.0238243 1.83994e-5i
\(778\) 0.447469 + 0.447469i 0.0160425 + 0.0160425i
\(779\) 0.859312 4.32005i 0.0307880 0.154782i
\(780\) −1.90950 + 9.56109i −0.0683709 + 0.342342i
\(781\) 28.7696i 1.02946i
\(782\) 0 0
\(783\) −0.634651 + 3.15242i −0.0226806 + 0.112658i
\(784\) −1.77547 + 0.735425i −0.0634097 + 0.0262652i
\(785\) 1.89295 + 0.376531i 0.0675623 + 0.0134390i
\(786\) −2.77494 14.0071i −0.0989788 0.499616i
\(787\) −12.5025 + 8.35391i −0.445667 + 0.297785i −0.758080 0.652161i \(-0.773862\pi\)
0.312414 + 0.949946i \(0.398862\pi\)
\(788\) 17.2606 3.43335i 0.614884 0.122308i
\(789\) −10.2161 24.7179i −0.363705 0.879982i
\(790\) 2.83834 6.85236i 0.100984 0.243796i
\(791\) 0.0923506 0.222954i 0.00328361 0.00792734i
\(792\) 35.9084 + 7.20030i 1.27595 + 0.255851i
\(793\) 54.8808 10.9165i 1.94887 0.387655i
\(794\) −14.0457 + 9.38503i −0.498463 + 0.333062i
\(795\) 16.1104 3.19163i 0.571378 0.113195i
\(796\) 5.47204 + 1.08846i 0.193951 + 0.0385793i
\(797\) −14.9967 + 6.21185i −0.531211 + 0.220035i −0.632134 0.774859i \(-0.717821\pi\)
0.100922 + 0.994894i \(0.467821\pi\)
\(798\) 0.0868691 0.129792i 0.00307513 0.00459458i
\(799\) 0 0
\(800\) 24.9438i 0.881895i
\(801\) −11.1069 + 11.0727i −0.392444 + 0.391234i
\(802\) −2.57939 + 12.9675i −0.0910815 + 0.457898i
\(803\) −36.2384 36.2384i −1.27882 1.27882i
\(804\) −0.00938563 + 12.1529i −0.000331006 + 0.428600i
\(805\) −0.128877 0.647910i −0.00454233 0.0228358i
\(806\) 1.64535 2.46245i 0.0579551 0.0867360i
\(807\) −35.0687 + 23.3930i −1.23448 + 0.823473i
\(808\) −17.3481 7.18583i −0.610305 0.252797i
\(809\) 31.4493 + 21.0138i 1.10570 + 0.738804i 0.967820 0.251645i \(-0.0809715\pi\)
0.137879 + 0.990449i \(0.455972\pi\)
\(810\) 3.44676 5.12410i 0.121107 0.180043i
\(811\) −19.2151 28.7574i −0.674733 1.00981i −0.997982 0.0634956i \(-0.979775\pi\)
0.323249 0.946314i \(-0.395225\pi\)
\(812\) 0.110785 0.110785i 0.00388780 0.00388780i
\(813\) 6.89485 6.88421i 0.241813 0.241440i
\(814\) 2.78324 + 6.71933i 0.0975525 + 0.235513i
\(815\) 13.2014 0.462426
\(816\) 0 0
\(817\) −4.25303 −0.148795
\(818\) −9.09843 21.9656i −0.318119 0.768007i
\(819\) −3.04706 + 0.601207i −0.106473 + 0.0210079i
\(820\) −6.00029 + 6.00029i −0.209539 + 0.209539i
\(821\) −27.9751 41.8677i −0.976339 1.46119i −0.885120 0.465363i \(-0.845924\pi\)
−0.0912190 0.995831i \(-0.529076\pi\)
\(822\) 16.9868 + 7.05154i 0.592483 + 0.245951i
\(823\) −19.8619 13.2713i −0.692343 0.462609i 0.158959 0.987285i \(-0.449186\pi\)
−0.851302 + 0.524676i \(0.824186\pi\)
\(824\) 6.32783 + 2.62107i 0.220440 + 0.0913094i
\(825\) −18.3801 27.5537i −0.639912 0.959298i
\(826\) −0.0236479 + 0.0353916i −0.000822817 + 0.00123143i
\(827\) −1.31023 6.58698i −0.0455612 0.229052i 0.951295 0.308282i \(-0.0997539\pi\)
−0.996856 + 0.0792299i \(0.974754\pi\)
\(828\) −13.3650 8.96007i −0.464464 0.311384i
\(829\) −17.6880 17.6880i −0.614331 0.614331i 0.329741 0.944072i \(-0.393039\pi\)
−0.944072 + 0.329741i \(0.893039\pi\)
\(830\) 0.369897 1.85960i 0.0128393 0.0645475i
\(831\) −15.0562 3.00694i −0.522292 0.104310i
\(832\) 22.6876i 0.786552i
\(833\) 0 0
\(834\) −14.3692 9.61724i −0.497564 0.333018i
\(835\) 6.93113 2.87097i 0.239862 0.0993539i
\(836\) 3.09477 + 0.615587i 0.107035 + 0.0212905i
\(837\) 2.88176 1.91589i 0.0996082 0.0662227i
\(838\) 24.5622 16.4119i 0.848485 0.566940i
\(839\) 43.1914 8.59130i 1.49113 0.296604i 0.618811 0.785540i \(-0.287615\pi\)
0.872320 + 0.488935i \(0.162615\pi\)
\(840\) −0.706867 + 0.292154i −0.0243892 + 0.0100803i
\(841\) −10.9513 + 26.4387i −0.377630 + 0.911679i
\(842\) −0.00405180 + 0.00978190i −0.000139634 + 0.000337107i
\(843\) −11.5544 + 4.77555i −0.397956 + 0.164479i
\(844\) −19.7514 + 3.92880i −0.679871 + 0.135235i
\(845\) −10.2939 + 6.87815i −0.354120 + 0.236616i
\(846\) 9.64526 23.1844i 0.331611 0.797095i
\(847\) −1.62756 0.323743i −0.0559238 0.0111239i
\(848\) −2.95497 + 1.22399i −0.101474 + 0.0420319i
\(849\) −7.11313 4.76079i −0.244122 0.163390i
\(850\) 0 0
\(851\) 8.12291i 0.278450i
\(852\) −14.3515 2.86621i −0.491674 0.0981948i
\(853\) 6.31373 31.7413i 0.216178 1.08680i −0.708401 0.705810i \(-0.750583\pi\)
0.924579 0.380990i \(-0.124417\pi\)
\(854\) 1.22103 + 1.22103i 0.0417829 + 0.0417829i
\(855\) 0.753177 1.12345i 0.0257581 0.0384211i
\(856\) −2.21874 11.1543i −0.0758349 0.381248i
\(857\) 13.7775 20.6196i 0.470632 0.704351i −0.517887 0.855449i \(-0.673281\pi\)
0.988519 + 0.151099i \(0.0482811\pi\)
\(858\) 18.8751 + 28.2959i 0.644387 + 0.966007i
\(859\) −38.7830 16.0644i −1.32326 0.548112i −0.394534 0.918881i \(-0.629094\pi\)
−0.928725 + 0.370770i \(0.879094\pi\)
\(860\) 6.81266 + 4.55207i 0.232310 + 0.155224i
\(861\) −2.49653 1.03636i −0.0850816 0.0353190i
\(862\) −5.52336 8.26630i −0.188127 0.281551i
\(863\) 0.148288 0.148288i 0.00504779 0.00504779i −0.704578 0.709626i \(-0.748864\pi\)
0.709626 + 0.704578i \(0.248864\pi\)
\(864\) −11.5182 + 27.6263i −0.391859 + 0.939866i
\(865\) 0.365062 + 0.881339i 0.0124125 + 0.0299664i
\(866\) −0.455061 −0.0154636
\(867\) 0 0
\(868\) −0.168603 −0.00572278
\(869\) 18.2670 + 44.1005i 0.619666 + 1.49601i
\(870\) −0.520474 + 0.519670i −0.0176457 + 0.0176185i
\(871\) −20.2885 + 20.2885i −0.687450 + 0.687450i
\(872\) −19.4257 29.0725i −0.657836 0.984521i
\(873\) 6.16522 4.10571i 0.208661 0.138957i
\(874\) 1.58837 + 1.06131i 0.0537274 + 0.0358995i
\(875\) 1.37699 + 0.570368i 0.0465507 + 0.0192820i
\(876\) 21.6876 14.4669i 0.732755 0.488793i
\(877\) −4.10835 + 6.14858i −0.138729 + 0.207623i −0.894328 0.447412i \(-0.852346\pi\)
0.755599 + 0.655034i \(0.227346\pi\)
\(878\) 4.98111 + 25.0417i 0.168104 + 0.845118i
\(879\) −0.0255540 + 33.0885i −0.000861917 + 1.11605i
\(880\) −0.705386 0.705386i −0.0237786 0.0237786i
\(881\) 9.71313 48.8312i 0.327244 1.64516i −0.370511 0.928828i \(-0.620817\pi\)
0.697755 0.716337i \(-0.254183\pi\)
\(882\) 12.3638 + 12.4020i 0.416310 + 0.417598i
\(883\) 28.6327i 0.963566i −0.876291 0.481783i \(-0.839989\pi\)
0.876291 0.481783i \(-0.160011\pi\)
\(884\) 0 0
\(885\) −0.205034 + 0.306342i −0.00689214 + 0.0102976i
\(886\) −31.1758 + 12.9134i −1.04737 + 0.433835i
\(887\) 41.9468 + 8.34375i 1.40844 + 0.280156i 0.840007 0.542576i \(-0.182551\pi\)
0.568430 + 0.822731i \(0.307551\pi\)
\(888\) −9.22560 + 1.82768i −0.309591 + 0.0613329i
\(889\) −1.43701 + 0.960180i −0.0481958 + 0.0322034i
\(890\) −3.51820 + 0.699813i −0.117930 + 0.0234578i
\(891\) 7.63326 + 39.0043i 0.255724 + 1.30669i
\(892\) −8.27003 + 19.9656i −0.276901 + 0.668498i
\(893\) 2.10466 5.08111i 0.0704299 0.170033i
\(894\) 7.04564 + 17.0469i 0.235642 + 0.570134i
\(895\) 8.25725 1.64247i 0.276010 0.0549017i
\(896\) 1.28768 0.860397i 0.0430182 0.0287439i
\(897\) −7.38245 37.2645i −0.246493 1.24422i
\(898\) −29.9639 5.96018i −0.999907 0.198894i
\(899\) −0.380771 + 0.157720i −0.0126994 + 0.00526027i
\(900\) 15.5761 6.42368i 0.519204 0.214123i
\(901\) 0 0
\(902\) 29.6033i 0.985683i
\(903\) −0.511167 + 2.55948i −0.0170106 + 0.0851740i
\(904\) 0.666743 3.35195i 0.0221756 0.111484i
\(905\) 7.45379 + 7.45379i 0.247772 + 0.247772i
\(906\) −1.15105 0.000888946i −0.0382409 2.95333e-5i
\(907\) −1.58718 7.97928i −0.0527013 0.264948i 0.945447 0.325776i \(-0.105626\pi\)
−0.998148 + 0.0608288i \(0.980626\pi\)
\(908\) 13.8697 20.7574i 0.460281 0.688860i
\(909\) 0.0314752 20.3777i 0.00104396 0.675885i
\(910\) −0.656291 0.271845i −0.0217558 0.00901157i
\(911\) 2.46522 + 1.64721i 0.0816765 + 0.0545745i 0.595738 0.803179i \(-0.296860\pi\)
−0.514061 + 0.857753i \(0.671860\pi\)
\(912\) −0.100989 + 0.243278i −0.00334409 + 0.00805574i
\(913\) 6.77933 + 10.1460i 0.224363 + 0.335783i
\(914\) 12.6372 12.6372i 0.418002 0.418002i
\(915\) 10.5663 + 10.5826i 0.349311 + 0.349851i
\(916\) −5.45001 13.1575i −0.180073 0.434736i
\(917\) −1.91928 −0.0633802
\(918\) 0 0
\(919\) 36.7672 1.21284 0.606418 0.795146i \(-0.292606\pi\)
0.606418 + 0.795146i \(0.292606\pi\)
\(920\) −3.58017 8.64329i −0.118035 0.284961i
\(921\) −6.10445 6.11388i −0.201148 0.201459i
\(922\) −3.64477 + 3.64477i −0.120034 + 0.120034i
\(923\) −19.1961 28.7290i −0.631848 0.945627i
\(924\) 0.742418 1.78845i 0.0244238 0.0588356i
\(925\) 7.07221 + 4.72550i 0.232533 + 0.155373i
\(926\) −28.1151 11.6457i −0.923919 0.382700i
\(927\) −0.0114807 + 7.43288i −0.000377077 + 0.244128i
\(928\) 1.98049 2.96401i 0.0650127 0.0972984i
\(929\) 5.49193 + 27.6098i 0.180184 + 0.905849i 0.960034 + 0.279882i \(0.0902954\pi\)
−0.779850 + 0.625967i \(0.784705\pi\)
\(930\) 0.791494 0.000611266i 0.0259541 2.00442e-5i
\(931\) 2.71211 + 2.71211i 0.0888859 + 0.0888859i
\(932\) 5.94272 29.8761i 0.194660 0.978624i
\(933\) −3.55032 + 17.7769i −0.116232 + 0.581990i
\(934\) 6.44805i 0.210987i
\(935\) 0 0
\(936\) −40.6621 + 16.7693i −1.32908 + 0.548120i
\(937\) 34.4010 14.2493i 1.12383 0.465506i 0.258151 0.966105i \(-0.416887\pi\)
0.865679 + 0.500599i \(0.166887\pi\)
\(938\) −0.868432 0.172742i −0.0283553 0.00564022i
\(939\) 8.08320 + 40.8017i 0.263785 + 1.33151i
\(940\) −8.80971 + 5.88646i −0.287341 + 0.191995i
\(941\) −44.6046 + 8.87241i −1.45407 + 0.289232i −0.857979 0.513686i \(-0.828280\pi\)
−0.596090 + 0.802918i \(0.703280\pi\)
\(942\) 1.30829 + 3.16541i 0.0426265 + 0.103135i
\(943\) 12.6526 30.5462i 0.412026 0.994720i
\(944\) 0.0274723 0.0663241i 0.000894148 0.00215867i
\(945\) −0.585569 0.588289i −0.0190486 0.0191370i
\(946\) 28.0348 5.57647i 0.911490 0.181307i
\(947\) 13.6752 9.13749i 0.444385 0.296929i −0.313173 0.949696i \(-0.601392\pi\)
0.757558 + 0.652767i \(0.226392\pi\)
\(948\) −23.8191 + 4.71879i −0.773608 + 0.153259i
\(949\) 60.3669 + 12.0077i 1.95959 + 0.389787i
\(950\) −1.84807 + 0.765494i −0.0599592 + 0.0248359i
\(951\) −9.47587 + 14.1580i −0.307276 + 0.459103i
\(952\) 0 0
\(953\) 15.3092i 0.495915i −0.968771 0.247958i \(-0.920241\pi\)
0.968771 0.247958i \(-0.0797593\pi\)
\(954\) 20.5774 + 20.6410i 0.666217 + 0.668278i
\(955\) 2.65643 13.3548i 0.0859602 0.432151i
\(956\) −12.5840 12.5840i −0.406997 0.406997i
\(957\) 0.00365565 4.73349i 0.000118170 0.153012i
\(958\) 0.375571 + 1.88812i 0.0121342 + 0.0610025i
\(959\) 1.37342 2.05547i 0.0443502 0.0663747i
\(960\) −5.04414 + 3.36475i −0.162799 + 0.108597i
\(961\) −28.2305 11.6935i −0.910661 0.377208i
\(962\) −7.26270 4.85278i −0.234159 0.156460i
\(963\) 10.2726 6.84103i 0.331031 0.220449i
\(964\) 3.08119 + 4.61133i 0.0992386 + 0.148521i
\(965\) −1.72164 + 1.72164i −0.0554216 + 0.0554216i
\(966\) 0.829605 0.828324i 0.0266921 0.0266509i
\(967\) −18.4809 44.6169i −0.594306 1.43478i −0.879307 0.476255i \(-0.841994\pi\)
0.285001 0.958527i \(-0.408006\pi\)
\(968\) −23.5010 −0.755352
\(969\) 0 0
\(970\) 1.69419 0.0543972
\(971\) −1.27013 3.06636i −0.0407603 0.0984041i 0.902188 0.431342i \(-0.141960\pi\)
−0.942949 + 0.332938i \(0.891960\pi\)
\(972\) −20.2175 0.0780697i −0.648477 0.00250409i
\(973\) −1.64333 + 1.64333i −0.0526828 + 0.0526828i
\(974\) 13.0790 + 19.5742i 0.419080 + 0.627197i
\(975\) 36.7390 + 15.2511i 1.17659 + 0.488425i
\(976\) −2.42154 1.61802i −0.0775115 0.0517915i
\(977\) 27.3947 + 11.3473i 0.876434 + 0.363031i 0.775113 0.631823i \(-0.217693\pi\)
0.101321 + 0.994854i \(0.467693\pi\)
\(978\) 13.0007 + 19.4895i 0.415717 + 0.623206i
\(979\) 12.8259 19.1953i 0.409918 0.613486i
\(980\) −1.44155 7.24717i −0.0460487 0.231502i
\(981\) 21.1298 31.5175i 0.674624 1.00628i
\(982\) 8.01800 + 8.01800i 0.255865 + 0.255865i
\(983\) −0.487844 + 2.45256i −0.0155598 + 0.0782245i −0.987785 0.155823i \(-0.950197\pi\)
0.972225 + 0.234047i \(0.0751971\pi\)
\(984\) −37.5397 7.49726i −1.19672 0.239004i
\(985\) 11.1044i 0.353815i
\(986\) 0 0
\(987\) −2.80486 1.87728i −0.0892797 0.0597545i
\(988\) −3.50115 + 1.45022i −0.111386 + 0.0461377i
\(989\) −31.3111 6.22816i −0.995635 0.198044i
\(990\) −3.49170 + 8.39302i −0.110973 + 0.266748i
\(991\) 31.7268 21.1992i 1.00784 0.673414i 0.0620049 0.998076i \(-0.480251\pi\)
0.945830 + 0.324662i \(0.105251\pi\)
\(992\) −3.76250 + 0.748407i −0.119459 + 0.0237620i
\(993\) −6.72140 + 2.77802i −0.213297 + 0.0881577i
\(994\) 0.408047 0.985113i 0.0129425 0.0312459i
\(995\) −1.34718 + 3.25239i −0.0427086 + 0.103108i
\(996\) −5.73665 + 2.37101i −0.181773 + 0.0751284i
\(997\) −43.8361 + 8.71954i −1.38830 + 0.276151i −0.831975 0.554813i \(-0.812790\pi\)
−0.556327 + 0.830963i \(0.687790\pi\)
\(998\) −10.6200 + 7.09608i −0.336171 + 0.224622i
\(999\) −5.65069 8.49942i −0.178780 0.268910i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 867.2.i.b.65.3 32
3.2 odd 2 inner 867.2.i.b.65.2 32
17.2 even 8 867.2.i.c.158.2 32
17.3 odd 16 867.2.i.d.653.3 32
17.4 even 4 867.2.i.g.224.2 32
17.5 odd 16 867.2.i.h.503.2 32
17.6 odd 16 867.2.i.i.827.2 32
17.7 odd 16 867.2.i.g.329.3 32
17.8 even 8 51.2.i.a.29.3 yes 32
17.9 even 8 867.2.i.h.131.3 32
17.10 odd 16 867.2.i.f.329.3 32
17.11 odd 16 inner 867.2.i.b.827.2 32
17.12 odd 16 51.2.i.a.44.2 yes 32
17.13 even 4 867.2.i.f.224.2 32
17.14 odd 16 867.2.i.c.653.3 32
17.15 even 8 867.2.i.d.158.2 32
17.16 even 2 867.2.i.i.65.3 32
51.2 odd 8 867.2.i.c.158.3 32
51.5 even 16 867.2.i.h.503.3 32
51.8 odd 8 51.2.i.a.29.2 32
51.11 even 16 inner 867.2.i.b.827.3 32
51.14 even 16 867.2.i.c.653.2 32
51.20 even 16 867.2.i.d.653.2 32
51.23 even 16 867.2.i.i.827.3 32
51.26 odd 8 867.2.i.h.131.2 32
51.29 even 16 51.2.i.a.44.3 yes 32
51.32 odd 8 867.2.i.d.158.3 32
51.38 odd 4 867.2.i.g.224.3 32
51.41 even 16 867.2.i.g.329.2 32
51.44 even 16 867.2.i.f.329.2 32
51.47 odd 4 867.2.i.f.224.3 32
51.50 odd 2 867.2.i.i.65.2 32
68.59 odd 8 816.2.cj.c.641.2 32
68.63 even 16 816.2.cj.c.401.1 32
204.59 even 8 816.2.cj.c.641.1 32
204.131 odd 16 816.2.cj.c.401.2 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.2.i.a.29.2 32 51.8 odd 8
51.2.i.a.29.3 yes 32 17.8 even 8
51.2.i.a.44.2 yes 32 17.12 odd 16
51.2.i.a.44.3 yes 32 51.29 even 16
816.2.cj.c.401.1 32 68.63 even 16
816.2.cj.c.401.2 32 204.131 odd 16
816.2.cj.c.641.1 32 204.59 even 8
816.2.cj.c.641.2 32 68.59 odd 8
867.2.i.b.65.2 32 3.2 odd 2 inner
867.2.i.b.65.3 32 1.1 even 1 trivial
867.2.i.b.827.2 32 17.11 odd 16 inner
867.2.i.b.827.3 32 51.11 even 16 inner
867.2.i.c.158.2 32 17.2 even 8
867.2.i.c.158.3 32 51.2 odd 8
867.2.i.c.653.2 32 51.14 even 16
867.2.i.c.653.3 32 17.14 odd 16
867.2.i.d.158.2 32 17.15 even 8
867.2.i.d.158.3 32 51.32 odd 8
867.2.i.d.653.2 32 51.20 even 16
867.2.i.d.653.3 32 17.3 odd 16
867.2.i.f.224.2 32 17.13 even 4
867.2.i.f.224.3 32 51.47 odd 4
867.2.i.f.329.2 32 51.44 even 16
867.2.i.f.329.3 32 17.10 odd 16
867.2.i.g.224.2 32 17.4 even 4
867.2.i.g.224.3 32 51.38 odd 4
867.2.i.g.329.2 32 51.41 even 16
867.2.i.g.329.3 32 17.7 odd 16
867.2.i.h.131.2 32 51.26 odd 8
867.2.i.h.131.3 32 17.9 even 8
867.2.i.h.503.2 32 17.5 odd 16
867.2.i.h.503.3 32 51.5 even 16
867.2.i.i.65.2 32 51.50 odd 2
867.2.i.i.65.3 32 17.16 even 2
867.2.i.i.827.2 32 17.6 odd 16
867.2.i.i.827.3 32 51.23 even 16