Properties

Label 867.2.i.f.329.3
Level $867$
Weight $2$
Character 867.329
Analytic conductor $6.923$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [867,2,Mod(65,867)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(867, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([8, 9])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("867.65"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 867 = 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 867.i (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,16,0,-8,0,0,24,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.92302985525\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{16})\)
Twist minimal: no (minimal twist has level 51)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 329.3
Character \(\chi\) \(=\) 867.329
Dual form 867.2.i.f.224.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.320870 - 0.774648i) q^{2} +(-0.664063 + 1.59969i) q^{3} +(0.917091 + 0.917091i) q^{4} +(0.680434 + 0.454651i) q^{5} +(1.02612 + 1.02771i) q^{6} +(0.108447 + 0.162303i) q^{7} +(2.55399 - 1.05790i) q^{8} +(-2.11804 - 2.12459i) q^{9} +(0.570525 - 0.381213i) q^{10} +(4.33117 + 0.861524i) q^{11} +(-2.07607 + 0.858059i) q^{12} +(3.75023 - 3.75023i) q^{13} +(0.160525 - 0.0319304i) q^{14} +(-1.17915 + 0.786569i) q^{15} +0.276039i q^{16} +(-2.32543 + 0.959018i) q^{18} +(0.508991 + 0.210831i) q^{19} +(0.207063 + 1.04098i) q^{20} +(-0.331651 + 0.0657033i) q^{21} +(2.05712 - 3.07870i) q^{22} +(-0.806783 + 4.05597i) q^{23} +(-0.00369783 + 4.78810i) q^{24} +(-1.65713 - 4.00068i) q^{25} +(-1.70177 - 4.10844i) q^{26} +(4.80521 - 1.97735i) q^{27} +(-0.0493905 + 0.248303i) q^{28} +(-0.343818 + 0.514560i) q^{29} +(0.230959 + 1.16581i) q^{30} +(0.129926 + 0.653180i) q^{31} +(5.32181 + 2.20436i) q^{32} +(-4.25434 + 6.35644i) q^{33} +0.159742i q^{35} +(0.00600982 - 3.89088i) q^{36} +(-1.92648 + 0.383200i) q^{37} +(0.326640 - 0.326640i) q^{38} +(3.50883 + 8.48960i) q^{39} +(2.21879 + 0.441345i) q^{40} +(-6.64762 + 4.44180i) q^{41} +(-0.0555199 + 0.277995i) q^{42} +(-7.13212 + 2.95422i) q^{43} +(3.18198 + 4.76218i) q^{44} +(-0.475237 - 2.40862i) q^{45} +(2.88308 + 1.92641i) q^{46} +(7.05884 + 7.05884i) q^{47} +(-0.441578 - 0.183307i) q^{48} +(2.66420 - 6.43195i) q^{49} -3.63084 q^{50} +6.87860 q^{52} +(-4.43410 + 10.7049i) q^{53} +(0.0100943 - 4.35682i) q^{54} +(2.55538 + 2.55538i) q^{55} +(0.448673 + 0.299794i) q^{56} +(-0.675267 + 0.674225i) q^{57} +(0.288282 + 0.431445i) q^{58} +(0.240270 - 0.0995233i) q^{59} +(-1.80275 - 0.360036i) q^{60} +(-8.77243 + 5.86155i) q^{61} +(0.547674 + 0.108939i) q^{62} +(0.115132 - 0.574171i) q^{63} +(3.02483 - 3.02483i) q^{64} +(4.25683 - 0.846735i) q^{65} +(3.55892 + 5.33521i) q^{66} -5.40994i q^{67} +(-5.95256 - 3.98403i) q^{69} +(0.123744 + 0.0512564i) q^{70} +(-1.27098 - 6.38963i) q^{71} +(-7.65705 - 3.18552i) q^{72} +(6.44749 - 9.64936i) q^{73} +(-0.321303 + 1.61530i) q^{74} +(7.50030 + 0.00579244i) q^{75} +(0.273440 + 0.660143i) q^{76} +(0.329876 + 0.796392i) q^{77} +(7.70233 + 0.00594847i) q^{78} +(2.10878 - 10.6016i) q^{79} +(-0.125502 + 0.187826i) q^{80} +(-0.0278025 + 8.99996i) q^{81} +(1.30781 + 6.57481i) q^{82} +(-2.55289 - 1.05744i) q^{83} +(-0.364410 - 0.243898i) q^{84} +6.47280i q^{86} +(-0.594822 - 0.891703i) q^{87} +(11.9732 - 2.38161i) q^{88} +(-3.69661 + 3.69661i) q^{89} +(-2.01832 - 0.404710i) q^{90} +(1.01538 + 0.201971i) q^{91} +(-4.45959 + 2.97980i) q^{92} +(-1.13117 - 0.225911i) q^{93} +(7.73308 - 3.20315i) q^{94} +(0.250480 + 0.374870i) q^{95} +(-7.06032 + 7.04942i) q^{96} +(2.05296 + 1.37174i) q^{97} +(-4.12764 - 4.12764i) q^{98} +(-7.34321 - 11.0267i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 16 q^{4} - 8 q^{6} + 24 q^{9} - 16 q^{10} - 16 q^{12} + 16 q^{13} + 16 q^{15} + 16 q^{18} + 32 q^{19} - 16 q^{21} + 16 q^{22} + 24 q^{24} + 24 q^{27} + 8 q^{30} + 32 q^{31} - 24 q^{36} + 16 q^{37}+ \cdots - 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/867\mathbb{Z}\right)^\times\).

\(n\) \(290\) \(292\)
\(\chi(n)\) \(-1\) \(e\left(\frac{15}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.320870 0.774648i 0.226889 0.547759i −0.768907 0.639361i \(-0.779199\pi\)
0.995796 + 0.0916024i \(0.0291989\pi\)
\(3\) −0.664063 + 1.59969i −0.383397 + 0.923584i
\(4\) 0.917091 + 0.917091i 0.458546 + 0.458546i
\(5\) 0.680434 + 0.454651i 0.304299 + 0.203326i 0.698339 0.715767i \(-0.253923\pi\)
−0.394040 + 0.919093i \(0.628923\pi\)
\(6\) 1.02612 + 1.02771i 0.418913 + 0.419560i
\(7\) 0.108447 + 0.162303i 0.0409893 + 0.0613448i 0.851398 0.524520i \(-0.175755\pi\)
−0.810409 + 0.585864i \(0.800755\pi\)
\(8\) 2.55399 1.05790i 0.902970 0.374023i
\(9\) −2.11804 2.12459i −0.706014 0.708198i
\(10\) 0.570525 0.381213i 0.180416 0.120550i
\(11\) 4.33117 + 0.861524i 1.30590 + 0.259759i 0.798522 0.601966i \(-0.205616\pi\)
0.507376 + 0.861725i \(0.330616\pi\)
\(12\) −2.07607 + 0.858059i −0.599310 + 0.247700i
\(13\) 3.75023 3.75023i 1.04013 1.04013i 0.0409655 0.999161i \(-0.486957\pi\)
0.999161 0.0409655i \(-0.0130434\pi\)
\(14\) 0.160525 0.0319304i 0.0429022 0.00853377i
\(15\) −1.17915 + 0.786569i −0.304456 + 0.203091i
\(16\) 0.276039i 0.0690098i
\(17\) 0 0
\(18\) −2.32543 + 0.959018i −0.548109 + 0.226043i
\(19\) 0.508991 + 0.210831i 0.116771 + 0.0483680i 0.440304 0.897849i \(-0.354871\pi\)
−0.323533 + 0.946217i \(0.604871\pi\)
\(20\) 0.207063 + 1.04098i 0.0463007 + 0.232769i
\(21\) −0.331651 + 0.0657033i −0.0723722 + 0.0143376i
\(22\) 2.05712 3.07870i 0.438579 0.656380i
\(23\) −0.806783 + 4.05597i −0.168226 + 0.845729i 0.800831 + 0.598891i \(0.204392\pi\)
−0.969057 + 0.246838i \(0.920608\pi\)
\(24\) −0.00369783 + 4.78810i −0.000754815 + 0.977368i
\(25\) −1.65713 4.00068i −0.331427 0.800136i
\(26\) −1.70177 4.10844i −0.333745 0.805732i
\(27\) 4.80521 1.97735i 0.924764 0.380542i
\(28\) −0.0493905 + 0.248303i −0.00933393 + 0.0469248i
\(29\) −0.343818 + 0.514560i −0.0638454 + 0.0955514i −0.862019 0.506877i \(-0.830800\pi\)
0.798173 + 0.602428i \(0.205800\pi\)
\(30\) 0.230959 + 1.16581i 0.0421672 + 0.212848i
\(31\) 0.129926 + 0.653180i 0.0233353 + 0.117315i 0.990697 0.136084i \(-0.0434517\pi\)
−0.967362 + 0.253398i \(0.918452\pi\)
\(32\) 5.32181 + 2.20436i 0.940771 + 0.389680i
\(33\) −4.25434 + 6.35644i −0.740586 + 1.10651i
\(34\) 0 0
\(35\) 0.159742i 0.0270014i
\(36\) 0.00600982 3.89088i 0.00100164 0.648481i
\(37\) −1.92648 + 0.383200i −0.316711 + 0.0629978i −0.350886 0.936418i \(-0.614120\pi\)
0.0341751 + 0.999416i \(0.489120\pi\)
\(38\) 0.326640 0.326640i 0.0529880 0.0529880i
\(39\) 3.50883 + 8.48960i 0.561862 + 1.35942i
\(40\) 2.21879 + 0.441345i 0.350822 + 0.0697828i
\(41\) −6.64762 + 4.44180i −1.03818 + 0.693693i −0.953092 0.302680i \(-0.902119\pi\)
−0.0850923 + 0.996373i \(0.527119\pi\)
\(42\) −0.0555199 + 0.277995i −0.00856690 + 0.0428956i
\(43\) −7.13212 + 2.95422i −1.08764 + 0.450514i −0.853182 0.521613i \(-0.825331\pi\)
−0.234455 + 0.972127i \(0.575331\pi\)
\(44\) 3.18198 + 4.76218i 0.479702 + 0.717925i
\(45\) −0.475237 2.40862i −0.0708442 0.359055i
\(46\) 2.88308 + 1.92641i 0.425087 + 0.284034i
\(47\) 7.05884 + 7.05884i 1.02964 + 1.02964i 0.999547 + 0.0300900i \(0.00957939\pi\)
0.0300900 + 0.999547i \(0.490421\pi\)
\(48\) −0.441578 0.183307i −0.0637363 0.0264581i
\(49\) 2.66420 6.43195i 0.380600 0.918851i
\(50\) −3.63084 −0.513479
\(51\) 0 0
\(52\) 6.87860 0.953891
\(53\) −4.43410 + 10.7049i −0.609071 + 1.47043i 0.254941 + 0.966957i \(0.417944\pi\)
−0.864012 + 0.503471i \(0.832056\pi\)
\(54\) 0.0100943 4.35682i 0.00137365 0.592888i
\(55\) 2.55538 + 2.55538i 0.344568 + 0.344568i
\(56\) 0.448673 + 0.299794i 0.0599564 + 0.0400616i
\(57\) −0.675267 + 0.674225i −0.0894413 + 0.0893033i
\(58\) 0.288282 + 0.431445i 0.0378533 + 0.0566514i
\(59\) 0.240270 0.0995233i 0.0312805 0.0129568i −0.366988 0.930226i \(-0.619611\pi\)
0.398269 + 0.917269i \(0.369611\pi\)
\(60\) −1.80275 0.360036i −0.232734 0.0464805i
\(61\) −8.77243 + 5.86155i −1.12319 + 0.750495i −0.971290 0.237900i \(-0.923541\pi\)
−0.151905 + 0.988395i \(0.548541\pi\)
\(62\) 0.547674 + 0.108939i 0.0695546 + 0.0138353i
\(63\) 0.115132 0.574171i 0.0145053 0.0723388i
\(64\) 3.02483 3.02483i 0.378104 0.378104i
\(65\) 4.25683 0.846735i 0.527994 0.105025i
\(66\) 3.55892 + 5.33521i 0.438072 + 0.656719i
\(67\) 5.40994i 0.660929i −0.943818 0.330465i \(-0.892795\pi\)
0.943818 0.330465i \(-0.107205\pi\)
\(68\) 0 0
\(69\) −5.95256 3.98403i −0.716604 0.479621i
\(70\) 0.123744 + 0.0512564i 0.0147902 + 0.00612632i
\(71\) −1.27098 6.38963i −0.150837 0.758309i −0.979952 0.199232i \(-0.936155\pi\)
0.829115 0.559078i \(-0.188845\pi\)
\(72\) −7.65705 3.18552i −0.902392 0.375417i
\(73\) 6.44749 9.64936i 0.754622 1.12937i −0.232993 0.972478i \(-0.574852\pi\)
0.987616 0.156894i \(-0.0501480\pi\)
\(74\) −0.321303 + 1.61530i −0.0373507 + 0.187775i
\(75\) 7.50030 + 0.00579244i 0.866060 + 0.000668853i
\(76\) 0.273440 + 0.660143i 0.0313657 + 0.0757236i
\(77\) 0.329876 + 0.796392i 0.0375929 + 0.0907573i
\(78\) 7.70233 + 0.00594847i 0.872117 + 0.000673531i
\(79\) 2.10878 10.6016i 0.237257 1.19277i −0.660002 0.751264i \(-0.729444\pi\)
0.897258 0.441506i \(-0.145556\pi\)
\(80\) −0.125502 + 0.187826i −0.0140315 + 0.0209996i
\(81\) −0.0278025 + 8.99996i −0.00308917 + 0.999995i
\(82\) 1.30781 + 6.57481i 0.144424 + 0.726066i
\(83\) −2.55289 1.05744i −0.280216 0.116069i 0.238149 0.971229i \(-0.423459\pi\)
−0.518365 + 0.855159i \(0.673459\pi\)
\(84\) −0.364410 0.243898i −0.0397604 0.0266115i
\(85\) 0 0
\(86\) 6.47280i 0.697980i
\(87\) −0.594822 0.891703i −0.0637716 0.0956006i
\(88\) 11.9732 2.38161i 1.27634 0.253880i
\(89\) −3.69661 + 3.69661i −0.391839 + 0.391839i −0.875343 0.483503i \(-0.839364\pi\)
0.483503 + 0.875343i \(0.339364\pi\)
\(90\) −2.01832 0.404710i −0.212749 0.0426602i
\(91\) 1.01538 + 0.201971i 0.106440 + 0.0211723i
\(92\) −4.45959 + 2.97980i −0.464945 + 0.310666i
\(93\) −1.13117 0.225911i −0.117296 0.0234259i
\(94\) 7.73308 3.20315i 0.797606 0.330379i
\(95\) 0.250480 + 0.374870i 0.0256987 + 0.0384609i
\(96\) −7.06032 + 7.04942i −0.720591 + 0.719479i
\(97\) 2.05296 + 1.37174i 0.208446 + 0.139279i 0.655411 0.755272i \(-0.272495\pi\)
−0.446965 + 0.894551i \(0.647495\pi\)
\(98\) −4.12764 4.12764i −0.416954 0.416954i
\(99\) −7.34321 11.0267i −0.738021 1.10823i
\(100\) 2.14924 5.18873i 0.214924 0.518873i
\(101\) 6.79257 0.675886 0.337943 0.941167i \(-0.390269\pi\)
0.337943 + 0.941167i \(0.390269\pi\)
\(102\) 0 0
\(103\) 2.47763 0.244128 0.122064 0.992522i \(-0.461049\pi\)
0.122064 + 0.992522i \(0.461049\pi\)
\(104\) 5.61068 13.5454i 0.550172 1.32823i
\(105\) −0.255539 0.106079i −0.0249380 0.0103522i
\(106\) 6.86974 + 6.86974i 0.667248 + 0.667248i
\(107\) −3.42069 2.28563i −0.330690 0.220960i 0.379129 0.925344i \(-0.376224\pi\)
−0.709820 + 0.704384i \(0.751224\pi\)
\(108\) 6.22023 + 2.59341i 0.598542 + 0.249551i
\(109\) −7.02704 10.5167i −0.673068 1.00732i −0.998100 0.0616150i \(-0.980375\pi\)
0.325032 0.945703i \(-0.394625\pi\)
\(110\) 2.79947 1.15958i 0.266919 0.110561i
\(111\) 0.666299 3.33625i 0.0632423 0.316662i
\(112\) −0.0448020 + 0.0299357i −0.00423339 + 0.00282866i
\(113\) 1.21253 + 0.241188i 0.114066 + 0.0226891i 0.251793 0.967781i \(-0.418980\pi\)
−0.137727 + 0.990470i \(0.543980\pi\)
\(114\) 0.305614 + 0.739433i 0.0286234 + 0.0692542i
\(115\) −2.39302 + 2.39302i −0.223150 + 0.223150i
\(116\) −0.787211 + 0.156586i −0.0730907 + 0.0145386i
\(117\) −15.9108 0.0245757i −1.47096 0.00227203i
\(118\) 0.218059i 0.0200740i
\(119\) 0 0
\(120\) −2.17943 + 3.25631i −0.198954 + 0.297259i
\(121\) 7.85415 + 3.25330i 0.714014 + 0.295754i
\(122\) 1.72583 + 8.67634i 0.156249 + 0.785519i
\(123\) −2.69108 13.5838i −0.242647 1.22481i
\(124\) −0.479872 + 0.718179i −0.0430938 + 0.0644944i
\(125\) 1.48960 7.48875i 0.133234 0.669814i
\(126\) −0.407838 0.273421i −0.0363331 0.0243583i
\(127\) 3.38823 + 8.17992i 0.300657 + 0.725850i 0.999939 + 0.0110047i \(0.00350299\pi\)
−0.699282 + 0.714845i \(0.746497\pi\)
\(128\) 3.03612 + 7.32985i 0.268358 + 0.647873i
\(129\) 0.0103263 13.3710i 0.000909184 1.17725i
\(130\) 0.709965 3.56923i 0.0622680 0.313043i
\(131\) 5.46257 8.17531i 0.477267 0.714280i −0.512228 0.858850i \(-0.671180\pi\)
0.989495 + 0.144569i \(0.0461797\pi\)
\(132\) −9.73106 + 1.92782i −0.846980 + 0.167795i
\(133\) 0.0209803 + 0.105475i 0.00181922 + 0.00914583i
\(134\) −4.19080 1.73589i −0.362030 0.149958i
\(135\) 4.16863 + 0.839238i 0.358779 + 0.0722301i
\(136\) 0 0
\(137\) 12.6644i 1.08200i −0.841024 0.540998i \(-0.818047\pi\)
0.841024 0.540998i \(-0.181953\pi\)
\(138\) −4.99622 + 3.33279i −0.425306 + 0.283706i
\(139\) −11.6771 + 2.32272i −0.990437 + 0.197010i −0.663614 0.748075i \(-0.730978\pi\)
−0.326823 + 0.945085i \(0.605978\pi\)
\(140\) −0.146498 + 0.146498i −0.0123814 + 0.0123814i
\(141\) −15.9795 + 6.60447i −1.34572 + 0.556197i
\(142\) −5.35753 1.06568i −0.449594 0.0894298i
\(143\) 19.4738 13.0120i 1.62848 1.08812i
\(144\) 0.586472 0.584663i 0.0488726 0.0487219i
\(145\) −0.467891 + 0.193807i −0.0388562 + 0.0160948i
\(146\) −5.40605 8.09073i −0.447408 0.669593i
\(147\) 8.51996 + 8.53313i 0.702714 + 0.703801i
\(148\) −2.11819 1.41533i −0.174114 0.116339i
\(149\) −8.98104 8.98104i −0.735756 0.735756i 0.235998 0.971754i \(-0.424164\pi\)
−0.971754 + 0.235998i \(0.924164\pi\)
\(150\) 2.41111 5.80824i 0.196866 0.474240i
\(151\) −0.303307 + 0.732249i −0.0246828 + 0.0595895i −0.935740 0.352690i \(-0.885267\pi\)
0.911058 + 0.412279i \(0.135267\pi\)
\(152\) 1.52299 0.123531
\(153\) 0 0
\(154\) 0.722771 0.0582426
\(155\) −0.208563 + 0.503516i −0.0167522 + 0.0404434i
\(156\) −4.56782 + 11.0037i −0.365719 + 0.880998i
\(157\) 1.66767 + 1.66767i 0.133095 + 0.133095i 0.770516 0.637421i \(-0.219999\pi\)
−0.637421 + 0.770516i \(0.719999\pi\)
\(158\) −7.53584 5.03529i −0.599519 0.400586i
\(159\) −14.1800 14.2019i −1.12455 1.12629i
\(160\) 2.61892 + 3.91949i 0.207044 + 0.309863i
\(161\) −0.745790 + 0.308916i −0.0587765 + 0.0243460i
\(162\) 6.96288 + 2.90935i 0.547055 + 0.228580i
\(163\) −13.4131 + 8.96232i −1.05059 + 0.701983i −0.955950 0.293529i \(-0.905170\pi\)
−0.0946411 + 0.995511i \(0.530170\pi\)
\(164\) −10.1700 2.02294i −0.794145 0.157965i
\(165\) −5.78476 + 2.39090i −0.450343 + 0.186131i
\(166\) −1.63829 + 1.63829i −0.127156 + 0.127156i
\(167\) −8.99131 + 1.78848i −0.695769 + 0.138397i −0.530290 0.847816i \(-0.677917\pi\)
−0.165479 + 0.986213i \(0.552917\pi\)
\(168\) −0.777525 + 0.518657i −0.0599873 + 0.0400153i
\(169\) 15.1284i 1.16372i
\(170\) 0 0
\(171\) −0.630134 1.52795i −0.0481875 0.116845i
\(172\) −9.25009 3.83151i −0.705313 0.292150i
\(173\) 0.227417 + 1.14330i 0.0172902 + 0.0869239i 0.988467 0.151437i \(-0.0483900\pi\)
−0.971177 + 0.238361i \(0.923390\pi\)
\(174\) −0.881617 + 0.174657i −0.0668352 + 0.0132407i
\(175\) 0.469610 0.702821i 0.0354992 0.0531283i
\(176\) −0.237814 + 1.19557i −0.0179259 + 0.0901197i
\(177\) −0.000347879 0.450449i −2.61482e−5 0.0338578i
\(178\) 1.67744 + 4.04970i 0.125729 + 0.303538i
\(179\) 3.93697 + 9.50468i 0.294263 + 0.710413i 0.999998 + 0.00193768i \(0.000616785\pi\)
−0.705735 + 0.708476i \(0.749383\pi\)
\(180\) 1.77308 2.64476i 0.132158 0.197129i
\(181\) −2.51298 + 12.6336i −0.186788 + 0.939047i 0.767702 + 0.640806i \(0.221400\pi\)
−0.954491 + 0.298241i \(0.903600\pi\)
\(182\) 0.482260 0.721753i 0.0357475 0.0534999i
\(183\) −3.55124 17.9256i −0.262515 1.32510i
\(184\) 2.23028 + 11.2124i 0.164419 + 0.826588i
\(185\) −1.48506 0.615133i −0.109184 0.0452255i
\(186\) −0.537959 + 0.803768i −0.0394450 + 0.0589351i
\(187\) 0 0
\(188\) 12.9472i 0.944271i
\(189\) 0.842043 + 0.565462i 0.0612496 + 0.0411313i
\(190\) 0.370764 0.0737495i 0.0268980 0.00535035i
\(191\) 11.7655 11.7655i 0.851319 0.851319i −0.138977 0.990296i \(-0.544381\pi\)
0.990296 + 0.138977i \(0.0443814\pi\)
\(192\) 2.83013 + 6.84749i 0.204247 + 0.494175i
\(193\) 2.91805 + 0.580436i 0.210046 + 0.0417807i 0.298991 0.954256i \(-0.403350\pi\)
−0.0889458 + 0.996036i \(0.528350\pi\)
\(194\) 1.72135 1.15017i 0.123586 0.0825773i
\(195\) −1.47228 + 7.37191i −0.105432 + 0.527913i
\(196\) 8.34201 3.45537i 0.595858 0.246812i
\(197\) −7.53865 11.2824i −0.537107 0.803837i 0.459323 0.888270i \(-0.348092\pi\)
−0.996429 + 0.0844326i \(0.973092\pi\)
\(198\) −10.8980 + 2.15026i −0.774490 + 0.152812i
\(199\) −3.57679 2.38994i −0.253552 0.169418i 0.422298 0.906457i \(-0.361223\pi\)
−0.675850 + 0.737039i \(0.736223\pi\)
\(200\) −8.46460 8.46460i −0.598538 0.598538i
\(201\) 8.65425 + 3.59254i 0.610424 + 0.253398i
\(202\) 2.17953 5.26185i 0.153351 0.370223i
\(203\) −0.120801 −0.00847855
\(204\) 0 0
\(205\) −6.54274 −0.456965
\(206\) 0.794996 1.91929i 0.0553900 0.133723i
\(207\) 10.3261 6.87663i 0.717713 0.477959i
\(208\) 1.03521 + 1.03521i 0.0717789 + 0.0717789i
\(209\) 2.02289 + 1.35165i 0.139926 + 0.0934958i
\(210\) −0.164168 + 0.163915i −0.0113287 + 0.0113112i
\(211\) −8.62651 12.9105i −0.593873 0.888794i 0.405810 0.913957i \(-0.366989\pi\)
−0.999683 + 0.0251632i \(0.991989\pi\)
\(212\) −13.8838 + 5.75087i −0.953545 + 0.394971i
\(213\) 11.0655 + 2.20994i 0.758193 + 0.151423i
\(214\) −2.86815 + 1.91644i −0.196063 + 0.131005i
\(215\) −6.19607 1.23248i −0.422569 0.0840541i
\(216\) 10.1806 10.1335i 0.692703 0.689501i
\(217\) −0.0919229 + 0.0919229i −0.00624014 + 0.00624014i
\(218\) −10.4015 + 2.06899i −0.704479 + 0.140130i
\(219\) 11.1545 + 16.7218i 0.753750 + 1.12995i
\(220\) 4.68704i 0.316000i
\(221\) 0 0
\(222\) −2.37062 1.58665i −0.159106 0.106489i
\(223\) 15.3941 + 6.37645i 1.03087 + 0.426999i 0.833025 0.553235i \(-0.186607\pi\)
0.197841 + 0.980234i \(0.436607\pi\)
\(224\) 0.219361 + 1.10280i 0.0146567 + 0.0736841i
\(225\) −4.98994 + 11.9943i −0.332662 + 0.799623i
\(226\) 0.575901 0.861897i 0.0383084 0.0573325i
\(227\) 3.75522 18.8788i 0.249243 1.25303i −0.629978 0.776613i \(-0.716936\pi\)
0.879221 0.476415i \(-0.158064\pi\)
\(228\) −1.23761 0.000955797i −0.0819626 6.32992e-5i
\(229\) −4.20213 10.1448i −0.277685 0.670391i 0.722086 0.691803i \(-0.243184\pi\)
−0.999771 + 0.0214129i \(0.993184\pi\)
\(230\) 1.08590 + 2.62159i 0.0716020 + 0.172863i
\(231\) −1.49304 0.00115307i −0.0982350 7.58663e-5i
\(232\) −0.333755 + 1.67790i −0.0219121 + 0.110160i
\(233\) −13.0485 + 19.5285i −0.854837 + 1.27935i 0.103765 + 0.994602i \(0.466911\pi\)
−0.958601 + 0.284752i \(0.908089\pi\)
\(234\) −5.12435 + 12.3174i −0.334989 + 0.805215i
\(235\) 1.59376 + 8.01238i 0.103966 + 0.522670i
\(236\) 0.311622 + 0.129078i 0.0202849 + 0.00840226i
\(237\) 15.5589 + 10.4135i 1.01066 + 0.676431i
\(238\) 0 0
\(239\) 13.7217i 0.887582i −0.896130 0.443791i \(-0.853633\pi\)
0.896130 0.443791i \(-0.146367\pi\)
\(240\) −0.217124 0.325493i −0.0140153 0.0210105i
\(241\) −4.19398 + 0.834235i −0.270158 + 0.0537378i −0.328310 0.944570i \(-0.606479\pi\)
0.0581522 + 0.998308i \(0.481479\pi\)
\(242\) 5.04032 5.04032i 0.324004 0.324004i
\(243\) −14.3787 6.02101i −0.922395 0.386248i
\(244\) −13.4207 2.66954i −0.859172 0.170900i
\(245\) 4.73711 3.16523i 0.302643 0.202219i
\(246\) −11.3861 2.27399i −0.725954 0.144984i
\(247\) 2.69950 1.11817i 0.171765 0.0711474i
\(248\) 1.02282 + 1.53076i 0.0649494 + 0.0972036i
\(249\) 3.38686 3.38163i 0.214633 0.214302i
\(250\) −5.32317 3.55683i −0.336667 0.224954i
\(251\) 6.57161 + 6.57161i 0.414796 + 0.414796i 0.883406 0.468609i \(-0.155245\pi\)
−0.468609 + 0.883406i \(0.655245\pi\)
\(252\) 0.632154 0.420981i 0.0398220 0.0265193i
\(253\) −6.98863 + 16.8721i −0.439372 + 1.06074i
\(254\) 7.42374 0.465807
\(255\) 0 0
\(256\) 15.2078 0.950486
\(257\) −6.01912 + 14.5315i −0.375463 + 0.906447i 0.617341 + 0.786696i \(0.288210\pi\)
−0.992804 + 0.119752i \(0.961790\pi\)
\(258\) −10.3545 4.29835i −0.644643 0.267603i
\(259\) −0.271116 0.271116i −0.0168463 0.0168463i
\(260\) 4.68043 + 3.12737i 0.290268 + 0.193951i
\(261\) 1.82145 0.359385i 0.112745 0.0222454i
\(262\) −4.58021 6.85478i −0.282967 0.423489i
\(263\) −14.2664 + 5.90932i −0.879701 + 0.364384i −0.776381 0.630264i \(-0.782947\pi\)
−0.103320 + 0.994648i \(0.532947\pi\)
\(264\) −4.14108 + 20.7349i −0.254866 + 1.27615i
\(265\) −7.88410 + 5.26799i −0.484316 + 0.323610i
\(266\) 0.0884379 + 0.0175914i 0.00542247 + 0.00107860i
\(267\) −3.45866 8.36821i −0.211666 0.512126i
\(268\) 4.96141 4.96141i 0.303066 0.303066i
\(269\) 23.8706 4.74815i 1.45541 0.289500i 0.596911 0.802307i \(-0.296395\pi\)
0.858504 + 0.512807i \(0.171395\pi\)
\(270\) 1.98770 2.95994i 0.120968 0.180136i
\(271\) 5.62528i 0.341711i 0.985296 + 0.170856i \(0.0546532\pi\)
−0.985296 + 0.170856i \(0.945347\pi\)
\(272\) 0 0
\(273\) −0.997365 + 1.49017i −0.0603633 + 0.0901891i
\(274\) −9.81047 4.06363i −0.592672 0.245493i
\(275\) −3.73066 18.7553i −0.224967 1.13099i
\(276\) −1.80533 9.11276i −0.108668 0.548524i
\(277\) −4.92476 + 7.37043i −0.295900 + 0.442846i −0.949395 0.314085i \(-0.898302\pi\)
0.653495 + 0.756931i \(0.273302\pi\)
\(278\) −1.94753 + 9.79092i −0.116805 + 0.587220i
\(279\) 1.11255 1.65950i 0.0666069 0.0993517i
\(280\) 0.168991 + 0.407979i 0.0100991 + 0.0243814i
\(281\) −2.76232 6.66883i −0.164786 0.397829i 0.819819 0.572623i \(-0.194074\pi\)
−0.984605 + 0.174794i \(0.944074\pi\)
\(282\) −0.0111965 + 14.4977i −0.000666739 + 0.863323i
\(283\) 0.964082 4.84677i 0.0573087 0.288110i −0.941494 0.337030i \(-0.890578\pi\)
0.998803 + 0.0489193i \(0.0155777\pi\)
\(284\) 4.69427 7.02547i 0.278554 0.416885i
\(285\) −0.766012 + 0.151754i −0.0453746 + 0.00898915i
\(286\) −3.83115 19.2605i −0.226541 1.13890i
\(287\) −1.44184 0.597228i −0.0851088 0.0352532i
\(288\) −6.58842 15.9756i −0.388227 0.941372i
\(289\) 0 0
\(290\) 0.424637i 0.0249356i
\(291\) −3.55766 + 2.37318i −0.208554 + 0.139118i
\(292\) 14.7623 2.93640i 0.863897 0.171840i
\(293\) −13.5083 + 13.5083i −0.789165 + 0.789165i −0.981357 0.192192i \(-0.938440\pi\)
0.192192 + 0.981357i \(0.438440\pi\)
\(294\) 9.34397 3.86195i 0.544951 0.225233i
\(295\) 0.208736 + 0.0415203i 0.0121531 + 0.00241740i
\(296\) −4.51481 + 3.01670i −0.262418 + 0.175342i
\(297\) 22.5157 4.42445i 1.30650 0.256733i
\(298\) −9.83889 + 4.07540i −0.569952 + 0.236082i
\(299\) 12.1852 + 18.2364i 0.704688 + 1.05464i
\(300\) 6.87315 + 6.88377i 0.396821 + 0.397435i
\(301\) −1.25294 0.837187i −0.0722182 0.0482546i
\(302\) 0.469913 + 0.469913i 0.0270404 + 0.0270404i
\(303\) −4.51069 + 10.8660i −0.259133 + 0.624237i
\(304\) −0.0581977 + 0.140502i −0.00333786 + 0.00805832i
\(305\) −8.63402 −0.494382
\(306\) 0 0
\(307\) −4.98811 −0.284687 −0.142343 0.989817i \(-0.545464\pi\)
−0.142343 + 0.989817i \(0.545464\pi\)
\(308\) −0.427838 + 1.03289i −0.0243783 + 0.0588544i
\(309\) −1.64530 + 3.96345i −0.0935979 + 0.225473i
\(310\) 0.323126 + 0.323126i 0.0183523 + 0.0183523i
\(311\) 8.70232 + 5.81470i 0.493463 + 0.329722i 0.777278 0.629158i \(-0.216600\pi\)
−0.283814 + 0.958879i \(0.591600\pi\)
\(312\) 17.9426 + 17.9704i 1.01580 + 1.01737i
\(313\) 13.3418 + 19.9675i 0.754125 + 1.12863i 0.987711 + 0.156292i \(0.0499541\pi\)
−0.233586 + 0.972336i \(0.575046\pi\)
\(314\) 1.82697 0.756754i 0.103102 0.0427061i
\(315\) 0.339387 0.338341i 0.0191223 0.0190633i
\(316\) 11.6566 7.78866i 0.655732 0.438146i
\(317\) −9.64699 1.91890i −0.541829 0.107776i −0.0834143 0.996515i \(-0.526582\pi\)
−0.458414 + 0.888739i \(0.651582\pi\)
\(318\) −15.5514 + 6.42754i −0.872080 + 0.360439i
\(319\) −1.93244 + 1.93244i −0.108196 + 0.108196i
\(320\) 3.43344 0.682954i 0.191935 0.0381783i
\(321\) 5.92786 3.95425i 0.330861 0.220705i
\(322\) 0.676847i 0.0377192i
\(323\) 0 0
\(324\) −8.27928 + 8.22829i −0.459960 + 0.457127i
\(325\) −21.2181 8.78882i −1.17697 0.487516i
\(326\) 2.63880 + 13.2661i 0.146149 + 0.734743i
\(327\) 21.4899 4.25736i 1.18839 0.235432i
\(328\) −12.2790 + 18.3768i −0.677993 + 1.01469i
\(329\) −0.380158 + 1.91118i −0.0209588 + 0.105367i
\(330\) −0.00405325 + 5.24832i −0.000223124 + 0.288911i
\(331\) 1.60689 + 3.87936i 0.0883224 + 0.213229i 0.961869 0.273512i \(-0.0881854\pi\)
−0.873546 + 0.486741i \(0.838185\pi\)
\(332\) −1.37146 3.31100i −0.0752687 0.181715i
\(333\) 4.89451 + 3.28135i 0.268217 + 0.179817i
\(334\) −1.49959 + 7.53897i −0.0820542 + 0.412514i
\(335\) 2.45964 3.68110i 0.134384 0.201120i
\(336\) −0.0181367 0.0915487i −0.000989437 0.00499439i
\(337\) −1.12873 5.67449i −0.0614856 0.309109i 0.937788 0.347207i \(-0.112870\pi\)
−0.999274 + 0.0380983i \(0.987870\pi\)
\(338\) −11.7192 4.85425i −0.637440 0.264036i
\(339\) −1.19103 + 1.77952i −0.0646876 + 0.0966502i
\(340\) 0 0
\(341\) 2.94097i 0.159262i
\(342\) −1.38581 0.00214051i −0.0749362 0.000115746i
\(343\) 2.67300 0.531692i 0.144328 0.0287087i
\(344\) −15.0901 + 15.0901i −0.813602 + 0.813602i
\(345\) −2.23898 5.41721i −0.120543 0.291653i
\(346\) 0.958630 + 0.190683i 0.0515363 + 0.0102512i
\(347\) −0.0157453 + 0.0105207i −0.000845252 + 0.000564779i −0.555993 0.831187i \(-0.687662\pi\)
0.555148 + 0.831752i \(0.312662\pi\)
\(348\) 0.272268 1.36328i 0.0145951 0.0730794i
\(349\) 5.74159 2.37825i 0.307340 0.127305i −0.223682 0.974662i \(-0.571808\pi\)
0.531023 + 0.847358i \(0.321808\pi\)
\(350\) −0.393755 0.589297i −0.0210471 0.0314992i
\(351\) 10.6051 25.4362i 0.566059 1.35768i
\(352\) 21.1505 + 14.1323i 1.12733 + 0.753256i
\(353\) 8.61113 + 8.61113i 0.458324 + 0.458324i 0.898105 0.439781i \(-0.144944\pi\)
−0.439781 + 0.898105i \(0.644944\pi\)
\(354\) 0.348828 + 0.144805i 0.0185400 + 0.00769629i
\(355\) 2.04024 4.92557i 0.108285 0.261422i
\(356\) −6.78025 −0.359352
\(357\) 0 0
\(358\) 8.62604 0.455900
\(359\) 12.1801 29.4053i 0.642840 1.55195i −0.179992 0.983668i \(-0.557607\pi\)
0.822832 0.568284i \(-0.192393\pi\)
\(360\) −3.76181 5.64882i −0.198265 0.297719i
\(361\) −13.2204 13.2204i −0.695811 0.695811i
\(362\) 8.98025 + 6.00041i 0.471991 + 0.315375i
\(363\) −10.4199 + 10.4038i −0.546904 + 0.546060i
\(364\) 0.745967 + 1.11642i 0.0390993 + 0.0585162i
\(365\) 8.77418 3.63439i 0.459262 0.190232i
\(366\) −15.0255 3.00083i −0.785398 0.156856i
\(367\) 27.9587 18.6814i 1.45943 0.975161i 0.463401 0.886149i \(-0.346629\pi\)
0.996031 0.0890125i \(-0.0283711\pi\)
\(368\) −1.11961 0.222704i −0.0583636 0.0116092i
\(369\) 23.5170 + 4.71559i 1.22424 + 0.245484i
\(370\) −0.953024 + 0.953024i −0.0495453 + 0.0495453i
\(371\) −2.21830 + 0.441247i −0.115168 + 0.0229084i
\(372\) −0.830202 1.24456i −0.0430439 0.0645276i
\(373\) 15.2764i 0.790981i −0.918470 0.395490i \(-0.870575\pi\)
0.918470 0.395490i \(-0.129425\pi\)
\(374\) 0 0
\(375\) 10.9905 + 7.35591i 0.567547 + 0.379857i
\(376\) 25.4957 + 10.5607i 1.31484 + 0.544624i
\(377\) 0.640321 + 3.21911i 0.0329782 + 0.165793i
\(378\) 0.708220 0.470848i 0.0364269 0.0242178i
\(379\) 21.1206 31.6091i 1.08489 1.62365i 0.362779 0.931875i \(-0.381828\pi\)
0.722111 0.691778i \(-0.243172\pi\)
\(380\) −0.114077 + 0.573503i −0.00585202 + 0.0294201i
\(381\) −15.3354 0.0118434i −0.785654 0.000606756i
\(382\) −5.33891 12.8893i −0.273162 0.659472i
\(383\) −13.1831 31.8268i −0.673624 1.62627i −0.775404 0.631465i \(-0.782454\pi\)
0.101781 0.994807i \(-0.467546\pi\)
\(384\) −13.7417 0.0106126i −0.701253 0.000541574i
\(385\) −0.137622 + 0.691871i −0.00701385 + 0.0352610i
\(386\) 1.38595 2.07422i 0.0705428 0.105575i
\(387\) 21.3826 + 8.89570i 1.08694 + 0.452194i
\(388\) 0.624737 + 3.14076i 0.0317162 + 0.159448i
\(389\) 0.697275 + 0.288821i 0.0353532 + 0.0146438i 0.400290 0.916389i \(-0.368909\pi\)
−0.364937 + 0.931032i \(0.618909\pi\)
\(390\) 5.23822 + 3.50592i 0.265248 + 0.177529i
\(391\) 0 0
\(392\) 19.2456i 0.972048i
\(393\) 9.45050 + 14.1674i 0.476715 + 0.714648i
\(394\) −11.1588 + 2.21962i −0.562172 + 0.111823i
\(395\) 6.25490 6.25490i 0.314718 0.314718i
\(396\) 3.37812 16.8469i 0.169757 0.846589i
\(397\) 19.7598 + 3.93046i 0.991713 + 0.197264i 0.664178 0.747575i \(-0.268782\pi\)
0.327536 + 0.944839i \(0.393782\pi\)
\(398\) −2.99904 + 2.00390i −0.150329 + 0.100446i
\(399\) −0.182660 0.0364800i −0.00914443 0.00182628i
\(400\) 1.10434 0.457434i 0.0552172 0.0228717i
\(401\) −8.76056 13.1111i −0.437481 0.654737i 0.545570 0.838065i \(-0.316313\pi\)
−0.983052 + 0.183328i \(0.941313\pi\)
\(402\) 5.55984 5.55126i 0.277300 0.276872i
\(403\) 2.93682 + 1.96232i 0.146294 + 0.0977502i
\(404\) 6.22941 + 6.22941i 0.309925 + 0.309925i
\(405\) −4.11076 + 6.11123i −0.204265 + 0.303670i
\(406\) −0.0387613 + 0.0935781i −0.00192369 + 0.00464420i
\(407\) −8.67405 −0.429957
\(408\) 0 0
\(409\) −28.3555 −1.40209 −0.701045 0.713117i \(-0.747283\pi\)
−0.701045 + 0.713117i \(0.747283\pi\)
\(410\) −2.09937 + 5.06832i −0.103680 + 0.250306i
\(411\) 20.2592 + 8.40997i 0.999313 + 0.414833i
\(412\) 2.27221 + 2.27221i 0.111944 + 0.111944i
\(413\) 0.0422096 + 0.0282036i 0.00207700 + 0.00138781i
\(414\) −2.01364 10.2056i −0.0989649 0.501578i
\(415\) −1.25630 1.88019i −0.0616695 0.0922950i
\(416\) 28.2248 11.6911i 1.38384 0.573204i
\(417\) 4.03868 20.2222i 0.197775 0.990285i
\(418\) 1.69614 1.13332i 0.0829610 0.0554327i
\(419\) 34.5545 + 6.87332i 1.68810 + 0.335784i 0.943410 0.331628i \(-0.107598\pi\)
0.744689 + 0.667412i \(0.232598\pi\)
\(420\) −0.137068 0.331636i −0.00668825 0.0161822i
\(421\) 0.00892902 0.00892902i 0.000435174 0.000435174i −0.706889 0.707324i \(-0.749902\pi\)
0.707324 + 0.706889i \(0.249902\pi\)
\(422\) −12.7691 + 2.53992i −0.621588 + 0.123642i
\(423\) 0.0462575 29.9481i 0.00224912 1.45613i
\(424\) 32.0309i 1.55556i
\(425\) 0 0
\(426\) 5.26250 7.86273i 0.254969 0.380951i
\(427\) −1.90269 0.788122i −0.0920779 0.0381399i
\(428\) −1.04095 5.23321i −0.0503163 0.252957i
\(429\) 7.88335 + 39.7929i 0.380612 + 1.92122i
\(430\) −2.94287 + 4.40431i −0.141918 + 0.212395i
\(431\) −2.31319 + 11.6292i −0.111422 + 0.560159i 0.884233 + 0.467046i \(0.154682\pi\)
−0.995656 + 0.0931127i \(0.970318\pi\)
\(432\) 0.545827 + 1.32643i 0.0262611 + 0.0638178i
\(433\) 0.207692 + 0.501414i 0.00998106 + 0.0240964i 0.928791 0.370603i \(-0.120849\pi\)
−0.918810 + 0.394699i \(0.870849\pi\)
\(434\) 0.0417126 + 0.100703i 0.00200227 + 0.00483391i
\(435\) 0.000677442 0.877181i 3.24809e−5 0.0420576i
\(436\) 3.20035 16.0892i 0.153269 0.770534i
\(437\) −1.26577 + 1.89436i −0.0605500 + 0.0906195i
\(438\) 16.5326 3.27528i 0.789960 0.156499i
\(439\) −5.94070 29.8659i −0.283534 1.42542i −0.815550 0.578687i \(-0.803565\pi\)
0.532016 0.846734i \(-0.321435\pi\)
\(440\) 9.22974 + 3.82308i 0.440010 + 0.182258i
\(441\) −19.3082 + 7.96279i −0.919437 + 0.379181i
\(442\) 0 0
\(443\) 40.2451i 1.91210i 0.293203 + 0.956050i \(0.405279\pi\)
−0.293203 + 0.956050i \(0.594721\pi\)
\(444\) 3.67070 2.44858i 0.174204 0.116205i
\(445\) −4.19596 + 0.834628i −0.198908 + 0.0395652i
\(446\) 9.87902 9.87902i 0.467785 0.467785i
\(447\) 20.3309 8.40294i 0.961618 0.397446i
\(448\) 0.818975 + 0.162904i 0.0386929 + 0.00769650i
\(449\) −30.2957 + 20.2429i −1.42974 + 0.955323i −0.431150 + 0.902280i \(0.641892\pi\)
−0.998592 + 0.0530433i \(0.983108\pi\)
\(450\) 7.69027 + 7.71407i 0.362523 + 0.363645i
\(451\) −32.6187 + 13.5111i −1.53596 + 0.636214i
\(452\) 0.890813 + 1.33320i 0.0419003 + 0.0627082i
\(453\) −0.969959 0.971458i −0.0455726 0.0456431i
\(454\) −13.4195 8.96660i −0.629807 0.420823i
\(455\) 0.599070 + 0.599070i 0.0280848 + 0.0280848i
\(456\) −1.01136 + 2.43632i −0.0473614 + 0.114091i
\(457\) 8.15675 19.6921i 0.381557 0.921160i −0.610108 0.792318i \(-0.708874\pi\)
0.991665 0.128842i \(-0.0411259\pi\)
\(458\) −9.20703 −0.430216
\(459\) 0 0
\(460\) −4.38923 −0.204649
\(461\) 2.35253 5.67952i 0.109568 0.264521i −0.859579 0.511002i \(-0.829274\pi\)
0.969148 + 0.246481i \(0.0792743\pi\)
\(462\) −0.479965 + 1.15621i −0.0223300 + 0.0537919i
\(463\) −25.6637 25.6637i −1.19270 1.19270i −0.976307 0.216388i \(-0.930572\pi\)
−0.216388 0.976307i \(-0.569428\pi\)
\(464\) −0.142039 0.0949073i −0.00659398 0.00440596i
\(465\) −0.666973 0.668004i −0.0309301 0.0309779i
\(466\) 10.9408 + 16.3741i 0.506824 + 0.758516i
\(467\) 7.10485 2.94293i 0.328773 0.136182i −0.212190 0.977228i \(-0.568060\pi\)
0.540964 + 0.841046i \(0.318060\pi\)
\(468\) −14.5692 14.6142i −0.673460 0.675544i
\(469\) 0.878050 0.586694i 0.0405446 0.0270910i
\(470\) 6.71816 + 1.33633i 0.309886 + 0.0616401i
\(471\) −3.77521 + 1.56033i −0.173952 + 0.0718961i
\(472\) 0.508362 0.508362i 0.0233993 0.0233993i
\(473\) −33.4356 + 6.65075i −1.53737 + 0.305802i
\(474\) 13.0592 8.71129i 0.599828 0.400123i
\(475\) 2.38569i 0.109463i
\(476\) 0 0
\(477\) 32.1351 13.2527i 1.47137 0.606799i
\(478\) −10.6295 4.40287i −0.486181 0.201383i
\(479\) 0.447923 + 2.25186i 0.0204661 + 0.102890i 0.989668 0.143377i \(-0.0457960\pi\)
−0.969202 + 0.246267i \(0.920796\pi\)
\(480\) −8.00911 + 1.58668i −0.365564 + 0.0724218i
\(481\) −5.78764 + 8.66182i −0.263894 + 0.394945i
\(482\) −0.699483 + 3.51654i −0.0318606 + 0.160174i
\(483\) 0.00107980 1.39818i 4.91327e−5 0.0636192i
\(484\) 4.21940 + 10.1865i 0.191791 + 0.463025i
\(485\) 0.773237 + 1.86676i 0.0351109 + 0.0847652i
\(486\) −9.27786 + 9.20648i −0.420852 + 0.417615i
\(487\) −5.47752 + 27.5373i −0.248210 + 1.24784i 0.632642 + 0.774444i \(0.281970\pi\)
−0.880852 + 0.473392i \(0.843030\pi\)
\(488\) −16.2038 + 24.2506i −0.733510 + 1.09777i
\(489\) −5.42985 27.4083i −0.245546 1.23945i
\(490\) −0.931948 4.68522i −0.0421011 0.211657i
\(491\) 12.4942 + 5.17526i 0.563854 + 0.233556i 0.646357 0.763035i \(-0.276291\pi\)
−0.0825033 + 0.996591i \(0.526291\pi\)
\(492\) 9.98962 14.9256i 0.450367 0.672896i
\(493\) 0 0
\(494\) 2.44995i 0.110228i
\(495\) 0.0167457 10.8416i 0.000752665 0.487292i
\(496\) −0.180303 + 0.0358645i −0.00809585 + 0.00161037i
\(497\) 0.899222 0.899222i 0.0403356 0.0403356i
\(498\) −1.53283 3.70869i −0.0686879 0.166190i
\(499\) 14.9405 + 2.97184i 0.668827 + 0.133038i 0.517813 0.855494i \(-0.326746\pi\)
0.151014 + 0.988532i \(0.451746\pi\)
\(500\) 8.23397 5.50176i 0.368234 0.246046i
\(501\) 3.10977 15.5710i 0.138934 0.695661i
\(502\) 7.19931 2.98205i 0.321321 0.133096i
\(503\) 13.5532 + 20.2838i 0.604306 + 0.904408i 0.999902 0.0140169i \(-0.00446188\pi\)
−0.395596 + 0.918425i \(0.629462\pi\)
\(504\) −0.313368 1.58822i −0.0139585 0.0707451i
\(505\) 4.62189 + 3.08825i 0.205672 + 0.137425i
\(506\) 10.8275 + 10.8275i 0.481339 + 0.481339i
\(507\) 24.2008 + 10.0462i 1.07480 + 0.446168i
\(508\) −4.39441 + 10.6090i −0.194971 + 0.470700i
\(509\) −18.8631 −0.836090 −0.418045 0.908426i \(-0.637285\pi\)
−0.418045 + 0.908426i \(0.637285\pi\)
\(510\) 0 0
\(511\) 2.26533 0.100212
\(512\) −1.19253 + 2.87903i −0.0527030 + 0.127236i
\(513\) 2.86270 + 0.00663255i 0.126391 + 0.000292834i
\(514\) 9.32541 + 9.32541i 0.411326 + 0.411326i
\(515\) 1.68586 + 1.12646i 0.0742880 + 0.0496376i
\(516\) 12.2719 12.2530i 0.540240 0.539406i
\(517\) 24.4917 + 36.6544i 1.07714 + 1.61206i
\(518\) −0.297013 + 0.123027i −0.0130500 + 0.00540548i
\(519\) −1.97996 0.395428i −0.0869105 0.0173574i
\(520\) 9.97612 6.66583i 0.437482 0.292316i
\(521\) −32.3427 6.43336i −1.41696 0.281851i −0.573571 0.819156i \(-0.694442\pi\)
−0.843388 + 0.537305i \(0.819442\pi\)
\(522\) 0.306051 1.52630i 0.0133955 0.0668043i
\(523\) −9.24397 + 9.24397i −0.404211 + 0.404211i −0.879714 0.475503i \(-0.842266\pi\)
0.475503 + 0.879714i \(0.342266\pi\)
\(524\) 12.5072 2.48783i 0.546379 0.108681i
\(525\) 0.812448 + 1.21795i 0.0354581 + 0.0531557i
\(526\) 12.9475i 0.564539i
\(527\) 0 0
\(528\) −1.75463 1.17437i −0.0763604 0.0511077i
\(529\) 5.44921 + 2.25714i 0.236922 + 0.0981363i
\(530\) 1.55107 + 7.79774i 0.0673740 + 0.338712i
\(531\) −0.720349 0.299683i −0.0312605 0.0130051i
\(532\) −0.0774893 + 0.115971i −0.00335959 + 0.00502798i
\(533\) −8.27234 + 41.5879i −0.358315 + 1.80137i
\(534\) −7.59220 0.00586341i −0.328547 0.000253735i
\(535\) −1.28839 3.11044i −0.0557018 0.134476i
\(536\) −5.72315 13.8169i −0.247202 0.596800i
\(537\) −17.8190 0.0137615i −0.768946 0.000593852i
\(538\) 3.98120 20.0148i 0.171642 0.862901i
\(539\) 17.0804 25.5626i 0.735705 1.10106i
\(540\) 3.05336 + 4.59268i 0.131396 + 0.197637i
\(541\) 3.25485 + 16.3632i 0.139937 + 0.703511i 0.985505 + 0.169644i \(0.0542617\pi\)
−0.845568 + 0.533867i \(0.820738\pi\)
\(542\) 4.35761 + 1.80498i 0.187176 + 0.0775306i
\(543\) −18.5411 12.4095i −0.795675 0.532542i
\(544\) 0 0
\(545\) 10.3508i 0.443379i
\(546\) 0.834332 + 1.25076i 0.0357061 + 0.0535274i
\(547\) −10.6347 + 2.11537i −0.454706 + 0.0904466i −0.417129 0.908847i \(-0.636964\pi\)
−0.0375766 + 0.999294i \(0.511964\pi\)
\(548\) 11.6144 11.6144i 0.496144 0.496144i
\(549\) 31.0338 + 6.22285i 1.32449 + 0.265585i
\(550\) −15.7258 3.12806i −0.670550 0.133381i
\(551\) −0.283486 + 0.189419i −0.0120769 + 0.00806952i
\(552\) −19.4174 3.87796i −0.826461 0.165057i
\(553\) 1.94936 0.807451i 0.0828952 0.0343363i
\(554\) 4.12928 + 6.17990i 0.175436 + 0.262559i
\(555\) 1.97020 1.96716i 0.0836304 0.0835013i
\(556\) −12.8391 8.57881i −0.544499 0.363822i
\(557\) 8.63556 + 8.63556i 0.365900 + 0.365900i 0.865980 0.500079i \(-0.166696\pi\)
−0.500079 + 0.865980i \(0.666696\pi\)
\(558\) −0.928544 1.39432i −0.0393084 0.0590263i
\(559\) −15.6681 + 37.8261i −0.662689 + 1.59987i
\(560\) −0.0440951 −0.00186336
\(561\) 0 0
\(562\) −6.05234 −0.255302
\(563\) −9.00559 + 21.7414i −0.379541 + 0.916292i 0.612511 + 0.790462i \(0.290159\pi\)
−0.992052 + 0.125830i \(0.959841\pi\)
\(564\) −20.7116 8.59775i −0.872114 0.362031i
\(565\) 0.715392 + 0.715392i 0.0300968 + 0.0300968i
\(566\) −3.44519 2.30200i −0.144812 0.0967605i
\(567\) −1.46374 + 0.971510i −0.0614711 + 0.0407996i
\(568\) −10.0056 14.9745i −0.419826 0.628314i
\(569\) 1.73268 0.717701i 0.0726379 0.0300876i −0.346069 0.938209i \(-0.612484\pi\)
0.418707 + 0.908122i \(0.362484\pi\)
\(570\) −0.128234 + 0.642083i −0.00537112 + 0.0268939i
\(571\) 33.3039 22.2530i 1.39373 0.931258i 0.393799 0.919197i \(-0.371161\pi\)
0.999927 0.0120616i \(-0.00383943\pi\)
\(572\) 29.7924 + 5.92608i 1.24568 + 0.247782i
\(573\) 11.0081 + 26.6341i 0.459871 + 1.11266i
\(574\) −0.925283 + 0.925283i −0.0386205 + 0.0386205i
\(575\) 17.5636 3.49362i 0.732452 0.145694i
\(576\) −12.8333 0.0198221i −0.534719 0.000825922i
\(577\) 31.8433i 1.32565i 0.748773 + 0.662826i \(0.230643\pi\)
−0.748773 + 0.662826i \(0.769357\pi\)
\(578\) 0 0
\(579\) −2.86629 + 4.28254i −0.119119 + 0.177976i
\(580\) −0.606837 0.251360i −0.0251975 0.0104372i
\(581\) −0.105228 0.529018i −0.00436560 0.0219474i
\(582\) 0.696834 + 3.51742i 0.0288847 + 0.145802i
\(583\) −28.4274 + 42.5446i −1.17734 + 1.76202i
\(584\) 6.25880 31.4651i 0.258991 1.30204i
\(585\) −10.8151 7.25061i −0.447150 0.299776i
\(586\) 6.12978 + 14.7986i 0.253219 + 0.611325i
\(587\) 4.81996 + 11.6364i 0.198941 + 0.480286i 0.991594 0.129387i \(-0.0413008\pi\)
−0.792653 + 0.609673i \(0.791301\pi\)
\(588\) −0.0120781 + 15.6392i −0.000498092 + 0.644951i
\(589\) −0.0715796 + 0.359855i −0.00294939 + 0.0148276i
\(590\) 0.0991408 0.148375i 0.00408156 0.00610849i
\(591\) 23.0545 4.56732i 0.948336 0.187874i
\(592\) −0.105778 0.531784i −0.00434746 0.0218562i
\(593\) 17.0275 + 7.05301i 0.699234 + 0.289632i 0.703841 0.710357i \(-0.251467\pi\)
−0.00460731 + 0.999989i \(0.501467\pi\)
\(594\) 3.79722 18.8614i 0.155802 0.773895i
\(595\) 0 0
\(596\) 16.4729i 0.674755i
\(597\) 6.19838 4.13471i 0.253683 0.169222i
\(598\) 18.0367 3.58772i 0.737575 0.146713i
\(599\) −12.3968 + 12.3968i −0.506519 + 0.506519i −0.913456 0.406937i \(-0.866597\pi\)
0.406937 + 0.913456i \(0.366597\pi\)
\(600\) 19.1618 7.91974i 0.782277 0.323322i
\(601\) 13.3143 + 2.64838i 0.543102 + 0.108030i 0.459015 0.888429i \(-0.348203\pi\)
0.0840872 + 0.996458i \(0.473203\pi\)
\(602\) −1.05056 + 0.701959i −0.0428174 + 0.0286097i
\(603\) −11.4939 + 11.4585i −0.468069 + 0.466625i
\(604\) −0.949699 + 0.393378i −0.0386427 + 0.0160063i
\(605\) 3.86511 + 5.78455i 0.157139 + 0.235175i
\(606\) 6.97001 + 6.98078i 0.283137 + 0.283575i
\(607\) −3.43942 2.29815i −0.139602 0.0932790i 0.483808 0.875174i \(-0.339253\pi\)
−0.623410 + 0.781895i \(0.714253\pi\)
\(608\) 2.24400 + 2.24400i 0.0910064 + 0.0910064i
\(609\) 0.0802193 0.193244i 0.00325065 0.00783065i
\(610\) −2.77040 + 6.68833i −0.112170 + 0.270802i
\(611\) 52.9445 2.14190
\(612\) 0 0
\(613\) −27.1330 −1.09589 −0.547947 0.836513i \(-0.684590\pi\)
−0.547947 + 0.836513i \(0.684590\pi\)
\(614\) −1.60053 + 3.86403i −0.0645923 + 0.155940i
\(615\) 4.34479 10.4664i 0.175199 0.422045i
\(616\) 1.68500 + 1.68500i 0.0678906 + 0.0678906i
\(617\) −10.6078 7.08791i −0.427054 0.285349i 0.323411 0.946259i \(-0.395170\pi\)
−0.750465 + 0.660910i \(0.770170\pi\)
\(618\) 2.54235 + 2.54628i 0.102268 + 0.102426i
\(619\) −2.15968 3.23219i −0.0868049 0.129913i 0.785526 0.618829i \(-0.212392\pi\)
−0.872331 + 0.488916i \(0.837392\pi\)
\(620\) −0.653042 + 0.270499i −0.0262268 + 0.0108635i
\(621\) 4.14333 + 21.0851i 0.166266 + 0.846116i
\(622\) 7.29666 4.87547i 0.292569 0.195489i
\(623\) −1.00086 0.199083i −0.0400985 0.00797609i
\(624\) −2.34346 + 0.968575i −0.0938136 + 0.0387740i
\(625\) −10.8916 + 10.8916i −0.435663 + 0.435663i
\(626\) 19.7488 3.92827i 0.789319 0.157005i
\(627\) −3.50556 + 2.33843i −0.139999 + 0.0933877i
\(628\) 3.05882i 0.122060i
\(629\) 0 0
\(630\) −0.153196 0.371469i −0.00610346 0.0147997i
\(631\) −32.3983 13.4198i −1.28976 0.534234i −0.370843 0.928696i \(-0.620931\pi\)
−0.918913 + 0.394461i \(0.870931\pi\)
\(632\) −5.82955 29.3071i −0.231887 1.16578i
\(633\) 26.3814 5.22640i 1.04857 0.207731i
\(634\) −4.58190 + 6.85730i −0.181971 + 0.272338i
\(635\) −1.41354 + 7.10635i −0.0560947 + 0.282007i
\(636\) 0.0201019 26.0288i 0.000797092 1.03211i
\(637\) −14.1299 34.1127i −0.559848 1.35159i
\(638\) 0.876899 + 2.11702i 0.0347168 + 0.0838137i
\(639\) −10.8834 + 16.2338i −0.430540 + 0.642199i
\(640\) −1.26665 + 6.36785i −0.0500685 + 0.251712i
\(641\) −1.24255 + 1.85961i −0.0490777 + 0.0734500i −0.855197 0.518303i \(-0.826564\pi\)
0.806119 + 0.591753i \(0.201564\pi\)
\(642\) −1.16108 5.86080i −0.0458242 0.231307i
\(643\) 0.714043 + 3.58974i 0.0281591 + 0.141565i 0.992307 0.123799i \(-0.0395078\pi\)
−0.964148 + 0.265364i \(0.914508\pi\)
\(644\) −0.967262 0.400653i −0.0381155 0.0157879i
\(645\) 6.08617 9.09338i 0.239643 0.358051i
\(646\) 0 0
\(647\) 28.3391i 1.11413i 0.830470 + 0.557063i \(0.188072\pi\)
−0.830470 + 0.557063i \(0.811928\pi\)
\(648\) 9.45001 + 23.0152i 0.371231 + 0.904121i
\(649\) 1.12639 0.224054i 0.0442148 0.00879488i
\(650\) −13.6165 + 13.6165i −0.534082 + 0.534082i
\(651\) −0.0860060 0.208091i −0.00337084 0.00815574i
\(652\) −20.5203 4.08173i −0.803635 0.159853i
\(653\) −8.47655 + 5.66385i −0.331713 + 0.221644i −0.710262 0.703938i \(-0.751423\pi\)
0.378548 + 0.925581i \(0.376423\pi\)
\(654\) 3.59751 18.0132i 0.140674 0.704371i
\(655\) 7.43383 3.07919i 0.290464 0.120314i
\(656\) −1.22611 1.83501i −0.0478716 0.0716449i
\(657\) −34.1570 + 6.73943i −1.33259 + 0.262930i
\(658\) 1.35851 + 0.907729i 0.0529604 + 0.0353870i
\(659\) −27.6176 27.6176i −1.07583 1.07583i −0.996879 0.0789501i \(-0.974843\pi\)
−0.0789501 0.996879i \(-0.525157\pi\)
\(660\) −7.49783 3.11249i −0.291852 0.121153i
\(661\) −0.783917 + 1.89254i −0.0304909 + 0.0736114i −0.938392 0.345574i \(-0.887684\pi\)
0.907901 + 0.419185i \(0.137684\pi\)
\(662\) 3.52074 0.136838
\(663\) 0 0
\(664\) −7.63870 −0.296439
\(665\) −0.0336786 + 0.0813074i −0.00130600 + 0.00315296i
\(666\) 4.11239 2.73863i 0.159352 0.106120i
\(667\) −1.80965 1.80965i −0.0700701 0.0700701i
\(668\) −9.88606 6.60565i −0.382503 0.255580i
\(669\) −20.4230 + 20.3915i −0.789600 + 0.788382i
\(670\) −2.06234 3.08651i −0.0796751 0.119242i
\(671\) −43.0448 + 17.8297i −1.66172 + 0.688309i
\(672\) −1.90982 0.381420i −0.0736728 0.0147136i
\(673\) −14.1389 + 9.44730i −0.545014 + 0.364167i −0.797392 0.603462i \(-0.793787\pi\)
0.252378 + 0.967629i \(0.418787\pi\)
\(674\) −4.75791 0.946406i −0.183268 0.0364542i
\(675\) −15.8736 15.9474i −0.610977 0.613814i
\(676\) 13.8741 13.8741i 0.533621 0.533621i
\(677\) 21.4918 4.27498i 0.825995 0.164301i 0.236047 0.971742i \(-0.424148\pi\)
0.589948 + 0.807441i \(0.299148\pi\)
\(678\) 0.996337 + 1.49362i 0.0382641 + 0.0573621i
\(679\) 0.481963i 0.0184960i
\(680\) 0 0
\(681\) 27.7066 + 18.5439i 1.06172 + 0.710603i
\(682\) 2.27821 + 0.943667i 0.0872373 + 0.0361349i
\(683\) 7.08334 + 35.6104i 0.271036 + 1.36259i 0.841050 + 0.540957i \(0.181938\pi\)
−0.570014 + 0.821635i \(0.693062\pi\)
\(684\) 0.823378 1.97916i 0.0314827 0.0756750i
\(685\) 5.75790 8.61730i 0.219998 0.329250i
\(686\) 0.445810 2.24124i 0.0170211 0.0855708i
\(687\) 19.0191 + 0.0146884i 0.725625 + 0.000560396i
\(688\) −0.815481 1.96874i −0.0310899 0.0750577i
\(689\) 23.5168 + 56.7746i 0.895919 + 2.16294i
\(690\) −4.91485 0.00379571i −0.187105 0.000144500i
\(691\) 0.560744 2.81905i 0.0213317 0.107242i −0.968653 0.248419i \(-0.920089\pi\)
0.989984 + 0.141178i \(0.0450889\pi\)
\(692\) −0.839952 + 1.25708i −0.0319302 + 0.0477869i
\(693\) 0.993319 2.38765i 0.0377331 0.0906991i
\(694\) 0.00309763 + 0.0155728i 0.000117584 + 0.000591136i
\(695\) −9.00150 3.72855i −0.341447 0.141432i
\(696\) −2.46250 1.64814i −0.0933406 0.0624725i
\(697\) 0 0
\(698\) 5.21082i 0.197232i
\(699\) −22.5746 33.8418i −0.853848 1.28001i
\(700\) 1.07523 0.213876i 0.0406397 0.00808375i
\(701\) −3.87452 + 3.87452i −0.146339 + 0.146339i −0.776480 0.630142i \(-0.782997\pi\)
0.630142 + 0.776480i \(0.282997\pi\)
\(702\) −16.3012 16.3769i −0.615250 0.618107i
\(703\) −1.06135 0.211116i −0.0400296 0.00796239i
\(704\) 15.7070 10.4951i 0.591981 0.395549i
\(705\) −13.8757 2.77119i −0.522590 0.104369i
\(706\) 9.43364 3.90754i 0.355040 0.147062i
\(707\) 0.736637 + 1.10245i 0.0277041 + 0.0414621i
\(708\) −0.413422 + 0.412784i −0.0155373 + 0.0155134i
\(709\) −31.2387 20.8730i −1.17319 0.783903i −0.192856 0.981227i \(-0.561775\pi\)
−0.980338 + 0.197324i \(0.936775\pi\)
\(710\) −3.16093 3.16093i −0.118628 0.118628i
\(711\) −26.9905 + 17.9743i −1.01222 + 0.674087i
\(712\) −5.53046 + 13.3517i −0.207263 + 0.500376i
\(713\) −2.75410 −0.103142
\(714\) 0 0
\(715\) 19.1665 0.716788
\(716\) −5.10610 + 12.3272i −0.190824 + 0.460690i
\(717\) 21.9505 + 9.11206i 0.819756 + 0.340296i
\(718\) −18.8705 18.8705i −0.704242 0.704242i
\(719\) 20.4411 + 13.6583i 0.762326 + 0.509370i 0.874918 0.484271i \(-0.160915\pi\)
−0.112592 + 0.993641i \(0.535915\pi\)
\(720\) 0.664873 0.131184i 0.0247783 0.00488894i
\(721\) 0.268692 + 0.402127i 0.0100066 + 0.0149760i
\(722\) −14.4832 + 5.99913i −0.539009 + 0.223265i
\(723\) 1.45055 7.26307i 0.0539464 0.270117i
\(724\) −13.8908 + 9.28153i −0.516247 + 0.344945i
\(725\) 2.62834 + 0.522810i 0.0976141 + 0.0194167i
\(726\) 4.71588 + 11.4101i 0.175023 + 0.423467i
\(727\) −26.6720 + 26.6720i −0.989211 + 0.989211i −0.999942 0.0107310i \(-0.996584\pi\)
0.0107310 + 0.999942i \(0.496584\pi\)
\(728\) 2.80692 0.558331i 0.104031 0.0206931i
\(729\) 19.1801 19.0032i 0.710376 0.703823i
\(730\) 7.96307i 0.294726i
\(731\) 0 0
\(732\) 13.1826 19.6963i 0.487244 0.727995i
\(733\) 17.5613 + 7.27415i 0.648643 + 0.268677i 0.682651 0.730745i \(-0.260827\pi\)
−0.0340076 + 0.999422i \(0.510827\pi\)
\(734\) −5.50041 27.6524i −0.203024 1.02067i
\(735\) 1.91767 + 9.67984i 0.0707343 + 0.357046i
\(736\) −13.2344 + 19.8067i −0.487826 + 0.730083i
\(737\) 4.66079 23.4314i 0.171682 0.863106i
\(738\) 11.1988 16.7043i 0.412234 0.614893i
\(739\) 13.8881 + 33.5289i 0.510884 + 1.23338i 0.943370 + 0.331742i \(0.107636\pi\)
−0.432487 + 0.901640i \(0.642364\pi\)
\(740\) −0.797805 1.92607i −0.0293279 0.0708038i
\(741\) −0.00390851 + 5.06090i −0.000143583 + 0.185917i
\(742\) −0.369974 + 1.85998i −0.0135822 + 0.0682822i
\(743\) 0.0990543 0.148245i 0.00363395 0.00543859i −0.829648 0.558287i \(-0.811459\pi\)
0.833282 + 0.552848i \(0.186459\pi\)
\(744\) −3.12797 + 0.619682i −0.114677 + 0.0227186i
\(745\) −2.02776 10.1942i −0.0742914 0.373488i
\(746\) −11.8338 4.90173i −0.433267 0.179465i
\(747\) 3.16049 + 7.66355i 0.115636 + 0.280395i
\(748\) 0 0
\(749\) 0.803058i 0.0293431i
\(750\) 9.22476 6.15349i 0.336841 0.224694i
\(751\) −37.2549 + 7.41046i −1.35945 + 0.270412i −0.820365 0.571840i \(-0.806230\pi\)
−0.539085 + 0.842251i \(0.681230\pi\)
\(752\) −1.94852 + 1.94852i −0.0710551 + 0.0710551i
\(753\) −14.8765 + 6.14860i −0.542131 + 0.224067i
\(754\) 2.69914 + 0.536892i 0.0982968 + 0.0195525i
\(755\) −0.539298 + 0.360348i −0.0196271 + 0.0131144i
\(756\) 0.253651 + 1.29081i 0.00922519 + 0.0469463i
\(757\) −17.7157 + 7.33808i −0.643888 + 0.266707i −0.680641 0.732617i \(-0.738299\pi\)
0.0367531 + 0.999324i \(0.488299\pi\)
\(758\) −17.7090 26.5034i −0.643220 0.962647i
\(759\) −22.3492 22.3838i −0.811226 0.812480i
\(760\) 1.03630 + 0.692431i 0.0375904 + 0.0251171i
\(761\) −21.9157 21.9157i −0.794443 0.794443i 0.187770 0.982213i \(-0.439874\pi\)
−0.982213 + 0.187770i \(0.939874\pi\)
\(762\) −4.92983 + 11.8757i −0.178589 + 0.430211i
\(763\) 0.944829 2.28102i 0.0342051 0.0825785i
\(764\) 21.5800 0.780737
\(765\) 0 0
\(766\) −28.8846 −1.04364
\(767\) 0.527834 1.27430i 0.0190590 0.0460124i
\(768\) −10.0989 + 24.3278i −0.364413 + 0.877853i
\(769\) 13.1164 + 13.1164i 0.472990 + 0.472990i 0.902881 0.429891i \(-0.141448\pi\)
−0.429891 + 0.902881i \(0.641448\pi\)
\(770\) 0.491798 + 0.328609i 0.0177232 + 0.0118422i
\(771\) −19.2488 19.2786i −0.693229 0.694300i
\(772\) 2.14380 + 3.20843i 0.0771572 + 0.115474i
\(773\) 37.8763 15.6889i 1.36232 0.564289i 0.422621 0.906306i \(-0.361110\pi\)
0.939694 + 0.342017i \(0.111110\pi\)
\(774\) 13.7521 13.7097i 0.494308 0.492784i
\(775\) 2.39786 1.60220i 0.0861336 0.0575526i
\(776\) 6.69439 + 1.33160i 0.240314 + 0.0478015i
\(777\) 0.613741 0.253665i 0.0220178 0.00910017i
\(778\) 0.447469 0.447469i 0.0160425 0.0160425i
\(779\) −4.32005 + 0.859312i −0.154782 + 0.0307880i
\(780\) −8.11093 + 5.41049i −0.290418 + 0.193727i
\(781\) 28.7696i 1.02946i
\(782\) 0 0
\(783\) −0.634651 + 3.15242i −0.0226806 + 0.112658i
\(784\) 1.77547 + 0.735425i 0.0634097 + 0.0262652i
\(785\) 0.376531 + 1.89295i 0.0134390 + 0.0675623i
\(786\) 14.0071 2.77494i 0.499616 0.0989788i
\(787\) −8.35391 + 12.5025i −0.297785 + 0.445667i −0.949946 0.312414i \(-0.898862\pi\)
0.652161 + 0.758080i \(0.273862\pi\)
\(788\) 3.43335 17.2606i 0.122308 0.614884i
\(789\) 0.0206557 26.7460i 0.000735364 0.952181i
\(790\) −2.83834 6.85236i −0.100984 0.243796i
\(791\) 0.0923506 + 0.222954i 0.00328361 + 0.00792734i
\(792\) −30.4196 20.3938i −1.08091 0.724660i
\(793\) −10.9165 + 54.8808i −0.387655 + 1.94887i
\(794\) 9.38503 14.0457i 0.333062 0.498463i
\(795\) −3.19163 16.1104i −0.113195 0.571378i
\(796\) −1.08846 5.47204i −0.0385793 0.193951i
\(797\) −14.9967 6.21185i −0.531211 0.220035i 0.100922 0.994894i \(-0.467821\pi\)
−0.632134 + 0.774859i \(0.717821\pi\)
\(798\) −0.0868691 + 0.129792i −0.00307513 + 0.00459458i
\(799\) 0 0
\(800\) 24.9438i 0.881895i
\(801\) 15.6833 + 0.0242243i 0.554144 + 0.000855925i
\(802\) −12.9675 + 2.57939i −0.457898 + 0.0910815i
\(803\) 36.2384 36.2384i 1.27882 1.27882i
\(804\) 4.64205 + 11.2314i 0.163712 + 0.396102i
\(805\) −0.647910 0.128877i −0.0228358 0.00454233i
\(806\) 2.46245 1.64535i 0.0867360 0.0579551i
\(807\) −8.25597 + 41.3387i −0.290624 + 1.45519i
\(808\) 17.3481 7.18583i 0.610305 0.252797i
\(809\) −21.0138 31.4493i −0.738804 1.10570i −0.990449 0.137879i \(-0.955972\pi\)
0.251645 0.967820i \(-0.419028\pi\)
\(810\) 3.41504 + 5.14530i 0.119992 + 0.180787i
\(811\) 28.7574 + 19.2151i 1.00981 + 0.674733i 0.946314 0.323249i \(-0.104775\pi\)
0.0634956 + 0.997982i \(0.479775\pi\)
\(812\) −0.110785 0.110785i −0.00388780 0.00388780i
\(813\) −8.99873 3.73554i −0.315599 0.131011i
\(814\) −2.78324 + 6.71933i −0.0975525 + 0.235513i
\(815\) −13.2014 −0.462426
\(816\) 0 0
\(817\) −4.25303 −0.148795
\(818\) −9.09843 + 21.9656i −0.318119 + 0.768007i
\(819\) −1.72150 2.58504i −0.0601541 0.0903288i
\(820\) −6.00029 6.00029i −0.209539 0.209539i
\(821\) −41.8677 27.9751i −1.46119 0.976339i −0.995831 0.0912190i \(-0.970924\pi\)
−0.465363 0.885120i \(-0.654076\pi\)
\(822\) 13.0153 12.9952i 0.453962 0.453261i
\(823\) −13.2713 19.8619i −0.462609 0.692343i 0.524676 0.851302i \(-0.324186\pi\)
−0.987285 + 0.158959i \(0.949186\pi\)
\(824\) 6.32783 2.62107i 0.220440 0.0913094i
\(825\) 32.4801 + 6.48677i 1.13081 + 0.225841i
\(826\) 0.0353916 0.0236479i 0.00123143 0.000822817i
\(827\) 6.58698 + 1.31023i 0.229052 + 0.0455612i 0.308282 0.951295i \(-0.400246\pi\)
−0.0792299 + 0.996856i \(0.525246\pi\)
\(828\) 15.7765 + 3.16348i 0.548270 + 0.109938i
\(829\) −17.6880 + 17.6880i −0.614331 + 0.614331i −0.944072 0.329741i \(-0.893039\pi\)
0.329741 + 0.944072i \(0.393039\pi\)
\(830\) −1.85960 + 0.369897i −0.0645475 + 0.0128393i
\(831\) −8.52008 12.7725i −0.295558 0.443074i
\(832\) 22.6876i 0.786552i
\(833\) 0 0
\(834\) −14.3692 9.61724i −0.497564 0.333018i
\(835\) −6.93113 2.87097i −0.239862 0.0993539i
\(836\) 0.615587 + 3.09477i 0.0212905 + 0.107035i
\(837\) 1.91589 + 2.88176i 0.0662227 + 0.0996082i
\(838\) 16.4119 24.5622i 0.566940 0.848485i
\(839\) 8.59130 43.1914i 0.296604 1.49113i −0.488935 0.872320i \(-0.662615\pi\)
0.785540 0.618811i \(-0.212385\pi\)
\(840\) −0.764862 0.000590699i −0.0263903 2.03810e-5i
\(841\) 10.9513 + 26.4387i 0.377630 + 0.911679i
\(842\) −0.00405180 0.00978190i −0.000139634 0.000337107i
\(843\) 12.5024 + 0.00965556i 0.430607 + 0.000332555i
\(844\) 3.92880 19.7514i 0.135235 0.679871i
\(845\) 6.87815 10.2939i 0.236616 0.354120i
\(846\) −23.1844 9.64526i −0.797095 0.331611i
\(847\) 0.323743 + 1.62756i 0.0111239 + 0.0559238i
\(848\) −2.95497 1.22399i −0.101474 0.0420319i
\(849\) 7.11313 + 4.76079i 0.244122 + 0.163390i
\(850\) 0 0
\(851\) 8.12291i 0.278450i
\(852\) 8.12132 + 12.1748i 0.278232 + 0.417100i
\(853\) 31.7413 6.31373i 1.08680 0.216178i 0.380990 0.924579i \(-0.375583\pi\)
0.705810 + 0.708401i \(0.250583\pi\)
\(854\) −1.22103 + 1.22103i −0.0417829 + 0.0417829i
\(855\) 0.265919 1.32616i 0.00909425 0.0453537i
\(856\) −11.1543 2.21874i −0.381248 0.0758349i
\(857\) 20.6196 13.7775i 0.704351 0.470632i −0.151099 0.988519i \(-0.548281\pi\)
0.855449 + 0.517887i \(0.173281\pi\)
\(858\) 33.3550 + 6.66150i 1.13872 + 0.227420i
\(859\) 38.7830 16.0644i 1.32326 0.548112i 0.394534 0.918881i \(-0.370906\pi\)
0.928725 + 0.370770i \(0.120906\pi\)
\(860\) −4.55207 6.81266i −0.155224 0.232310i
\(861\) 1.91285 1.90990i 0.0651898 0.0650892i
\(862\) 8.26630 + 5.52336i 0.281551 + 0.188127i
\(863\) −0.148288 0.148288i −0.00504779 0.00504779i 0.704578 0.709626i \(-0.251136\pi\)
−0.709626 + 0.704578i \(0.751136\pi\)
\(864\) 29.9312 + 0.0693472i 1.01828 + 0.00235924i
\(865\) −0.365062 + 0.881339i −0.0124125 + 0.0299664i
\(866\) 0.455061 0.0154636
\(867\) 0 0
\(868\) −0.168603 −0.00572278
\(869\) 18.2670 44.1005i 0.619666 1.49601i
\(870\) −0.679289 0.281986i −0.0230301 0.00956021i
\(871\) −20.2885 20.2885i −0.687450 0.687450i
\(872\) −29.0725 19.4257i −0.984521 0.657836i
\(873\) −1.43385 7.26711i −0.0485286 0.245954i
\(874\) 1.06131 + 1.58837i 0.0358995 + 0.0537274i
\(875\) 1.37699 0.570368i 0.0465507 0.0192820i
\(876\) −5.10574 + 25.5651i −0.172507 + 0.863764i
\(877\) 6.14858 4.10835i 0.207623 0.138729i −0.447412 0.894328i \(-0.647654\pi\)
0.655034 + 0.755599i \(0.272654\pi\)
\(878\) −25.0417 4.98111i −0.845118 0.168104i
\(879\) −12.6388 30.5796i −0.426296 1.03142i
\(880\) −0.705386 + 0.705386i −0.0237786 + 0.0237786i
\(881\) −48.8312 + 9.71313i −1.64516 + 0.327244i −0.928828 0.370511i \(-0.879183\pi\)
−0.716337 + 0.697755i \(0.754183\pi\)
\(882\) −0.0270489 + 17.5121i −0.000910785 + 0.589662i
\(883\) 28.6327i 0.963566i 0.876291 + 0.481783i \(0.160011\pi\)
−0.876291 + 0.481783i \(0.839989\pi\)
\(884\) 0 0
\(885\) −0.205034 + 0.306342i −0.00689214 + 0.0102976i
\(886\) 31.1758 + 12.9134i 1.04737 + 0.433835i
\(887\) 8.34375 + 41.9468i 0.280156 + 1.40844i 0.822731 + 0.568430i \(0.192449\pi\)
−0.542576 + 0.840007i \(0.682551\pi\)
\(888\) −1.82768 9.22560i −0.0613329 0.309591i
\(889\) −0.960180 + 1.43701i −0.0322034 + 0.0481958i
\(890\) −0.699813 + 3.51820i −0.0234578 + 0.117930i
\(891\) −7.87409 + 38.9564i −0.263792 + 1.30509i
\(892\) 8.27003 + 19.9656i 0.276901 + 0.668498i
\(893\) 2.10466 + 5.08111i 0.0704299 + 0.170033i
\(894\) 0.0142454 18.4455i 0.000476437 0.616911i
\(895\) −1.64247 + 8.25725i −0.0549017 + 0.276010i
\(896\) −0.860397 + 1.28768i −0.0287439 + 0.0430182i
\(897\) −37.2645 + 7.38245i −1.24422 + 0.246493i
\(898\) 5.96018 + 29.9639i 0.198894 + 0.999907i
\(899\) −0.380771 0.157720i −0.0126994 0.00526027i
\(900\) −15.5761 + 6.42368i −0.519204 + 0.214123i
\(901\) 0 0
\(902\) 29.6033i 0.985683i
\(903\) 2.17127 1.44837i 0.0722554 0.0481989i
\(904\) 3.35195 0.666743i 0.111484 0.0221756i
\(905\) −7.45379 + 7.45379i −0.247772 + 0.247772i
\(906\) −1.06377 + 0.439665i −0.0353413 + 0.0146069i
\(907\) −7.97928 1.58718i −0.264948 0.0527013i 0.0608288 0.998148i \(-0.480626\pi\)
−0.325776 + 0.945447i \(0.605626\pi\)
\(908\) 20.7574 13.8697i 0.688860 0.460281i
\(909\) −14.3869 14.4315i −0.477185 0.478661i
\(910\) 0.656291 0.271845i 0.0217558 0.00901157i
\(911\) −1.64721 2.46522i −0.0545745 0.0816765i 0.803179 0.595738i \(-0.203140\pi\)
−0.857753 + 0.514061i \(0.828140\pi\)
\(912\) −0.186113 0.186400i −0.00616280 0.00617233i
\(913\) −10.1460 6.77933i −0.335783 0.224363i
\(914\) −12.6372 12.6372i −0.418002 0.418002i
\(915\) 5.73353 13.8118i 0.189545 0.456604i
\(916\) 5.45001 13.1575i 0.180073 0.434736i
\(917\) 1.91928 0.0633802
\(918\) 0 0
\(919\) 36.7672 1.21284 0.606418 0.795146i \(-0.292606\pi\)
0.606418 + 0.795146i \(0.292606\pi\)
\(920\) −3.58017 + 8.64329i −0.118035 + 0.284961i
\(921\) 3.31242 7.97945i 0.109148 0.262932i
\(922\) −3.64477 3.64477i −0.120034 0.120034i
\(923\) −28.7290 19.1961i −0.945627 0.631848i
\(924\) −1.36820 1.37031i −0.0450104 0.0450800i
\(925\) 4.72550 + 7.07221i 0.155373 + 0.232533i
\(926\) −28.1151 + 11.6457i −0.923919 + 0.382700i
\(927\) −5.24772 5.26396i −0.172358 0.172891i
\(928\) −2.96401 + 1.98049i −0.0972984 + 0.0650127i
\(929\) −27.6098 5.49193i −0.905849 0.180184i −0.279882 0.960034i \(-0.590295\pi\)
−0.625967 + 0.779850i \(0.715295\pi\)
\(930\) −0.731479 + 0.302327i −0.0239861 + 0.00991369i
\(931\) 2.71211 2.71211i 0.0888859 0.0888859i
\(932\) −29.8761 + 5.94272i −0.978624 + 0.194660i
\(933\) −15.0806 + 10.0597i −0.493718 + 0.329340i
\(934\) 6.44805i 0.210987i
\(935\) 0 0
\(936\) −40.6621 + 16.7693i −1.32908 + 0.548120i
\(937\) −34.4010 14.2493i −1.12383 0.465506i −0.258151 0.966105i \(-0.583113\pi\)
−0.865679 + 0.500599i \(0.833113\pi\)
\(938\) −0.172742 0.868432i −0.00564022 0.0283553i
\(939\) −40.8017 + 8.08320i −1.33151 + 0.263785i
\(940\) −5.88646 + 8.80971i −0.191995 + 0.287341i
\(941\) −8.87241 + 44.6046i −0.289232 + 1.45407i 0.513686 + 0.857979i \(0.328280\pi\)
−0.802918 + 0.596090i \(0.796720\pi\)
\(942\) −0.00264520 + 3.42512i −8.61852e−5 + 0.111596i
\(943\) −12.6526 30.5462i −0.412026 0.994720i
\(944\) 0.0274723 + 0.0663241i 0.000894148 + 0.00215867i
\(945\) 0.315867 + 0.767595i 0.0102751 + 0.0249699i
\(946\) −5.57647 + 28.0348i −0.181307 + 0.911490i
\(947\) −9.13749 + 13.6752i −0.296929 + 0.444385i −0.949696 0.313173i \(-0.898608\pi\)
0.652767 + 0.757558i \(0.273608\pi\)
\(948\) 4.71879 + 23.8191i 0.153259 + 0.773608i
\(949\) −12.0077 60.3669i −0.389787 1.95959i
\(950\) −1.84807 0.765494i −0.0599592 0.0248359i
\(951\) 9.47587 14.1580i 0.307276 0.459103i
\(952\) 0 0
\(953\) 15.3092i 0.495915i −0.968771 0.247958i \(-0.920241\pi\)
0.968771 0.247958i \(-0.0797593\pi\)
\(954\) 0.0450183 29.1458i 0.00145752 0.943630i
\(955\) 13.3548 2.65643i 0.432151 0.0859602i
\(956\) 12.5840 12.5840i 0.406997 0.406997i
\(957\) −1.80805 4.37457i −0.0584460 0.141410i
\(958\) 1.88812 + 0.375571i 0.0610025 + 0.0121342i
\(959\) 2.05547 1.37342i 0.0663747 0.0443502i
\(960\) −1.18750 + 5.94598i −0.0383265 + 0.191906i
\(961\) 28.2305 11.6935i 0.910661 0.377208i
\(962\) 4.85278 + 7.26270i 0.156460 + 0.234159i
\(963\) 2.38912 + 12.1086i 0.0769883 + 0.390195i
\(964\) −4.61133 3.08119i −0.148521 0.0992386i
\(965\) 1.72164 + 1.72164i 0.0554216 + 0.0554216i
\(966\) −1.08275 0.449469i −0.0348368 0.0144614i
\(967\) 18.4809 44.6169i 0.594306 1.43478i −0.285001 0.958527i \(-0.591994\pi\)
0.879307 0.476255i \(-0.158006\pi\)
\(968\) 23.5010 0.755352
\(969\) 0 0
\(970\) 1.69419 0.0543972
\(971\) −1.27013 + 3.06636i −0.0407603 + 0.0984041i −0.942949 0.332938i \(-0.891960\pi\)
0.902188 + 0.431342i \(0.141960\pi\)
\(972\) −7.66478 18.7084i −0.245848 0.600073i
\(973\) −1.64333 1.64333i −0.0526828 0.0526828i
\(974\) 19.5742 + 13.0790i 0.627197 + 0.419080i
\(975\) 28.1496 28.1061i 0.901507 0.900116i
\(976\) −1.61802 2.42154i −0.0517915 0.0775115i
\(977\) 27.3947 11.3473i 0.876434 0.363031i 0.101321 0.994854i \(-0.467693\pi\)
0.775113 + 0.631823i \(0.217693\pi\)
\(978\) −22.9741 4.58828i −0.734630 0.146717i
\(979\) −19.1953 + 12.8259i −0.613486 + 0.409918i
\(980\) 7.24717 + 1.44155i 0.231502 + 0.0460487i
\(981\) −7.46018 + 37.2044i −0.238185 + 1.18785i
\(982\) 8.01800 8.01800i 0.255865 0.255865i
\(983\) 2.45256 0.487844i 0.0782245 0.0155598i −0.155823 0.987785i \(-0.549803\pi\)
0.234047 + 0.972225i \(0.424803\pi\)
\(984\) −21.2432 31.8459i −0.677209 1.01521i
\(985\) 11.1044i 0.353815i
\(986\) 0 0
\(987\) −2.80486 1.87728i −0.0892797 0.0597545i
\(988\) 3.50115 + 1.45022i 0.111386 + 0.0461377i
\(989\) −6.22816 31.3111i −0.198044 0.995635i
\(990\) −8.39302 3.49170i −0.266748 0.110973i
\(991\) 21.1992 31.7268i 0.673414 1.00784i −0.324662 0.945830i \(-0.605251\pi\)
0.998076 0.0620049i \(-0.0197495\pi\)
\(992\) −0.748407 + 3.76250i −0.0237620 + 0.119459i
\(993\) −7.27287 0.00561679i −0.230798 0.000178244i
\(994\) −0.408047 0.985113i −0.0129425 0.0312459i
\(995\) −1.34718 3.25239i −0.0427086 0.103108i
\(996\) 6.20732 + 0.00479388i 0.196687 + 0.000151900i
\(997\) 8.71954 43.8361i 0.276151 1.38830i −0.554813 0.831975i \(-0.687210\pi\)
0.830963 0.556327i \(-0.187790\pi\)
\(998\) 7.09608 10.6200i 0.224622 0.336171i
\(999\) −8.49942 + 5.65069i −0.268910 + 0.178780i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 867.2.i.f.329.3 32
3.2 odd 2 inner 867.2.i.f.329.2 32
17.2 even 8 867.2.i.d.653.3 32
17.3 odd 16 inner 867.2.i.f.224.2 32
17.4 even 4 867.2.i.i.827.2 32
17.5 odd 16 867.2.i.i.65.3 32
17.6 odd 16 867.2.i.h.131.3 32
17.7 odd 16 867.2.i.c.158.2 32
17.8 even 8 51.2.i.a.44.2 yes 32
17.9 even 8 867.2.i.h.503.2 32
17.10 odd 16 867.2.i.d.158.2 32
17.11 odd 16 51.2.i.a.29.3 yes 32
17.12 odd 16 867.2.i.b.65.3 32
17.13 even 4 867.2.i.b.827.2 32
17.14 odd 16 867.2.i.g.224.2 32
17.15 even 8 867.2.i.c.653.3 32
17.16 even 2 867.2.i.g.329.3 32
51.2 odd 8 867.2.i.d.653.2 32
51.5 even 16 867.2.i.i.65.2 32
51.8 odd 8 51.2.i.a.44.3 yes 32
51.11 even 16 51.2.i.a.29.2 32
51.14 even 16 867.2.i.g.224.3 32
51.20 even 16 inner 867.2.i.f.224.3 32
51.23 even 16 867.2.i.h.131.2 32
51.26 odd 8 867.2.i.h.503.3 32
51.29 even 16 867.2.i.b.65.2 32
51.32 odd 8 867.2.i.c.653.2 32
51.38 odd 4 867.2.i.i.827.3 32
51.41 even 16 867.2.i.c.158.3 32
51.44 even 16 867.2.i.d.158.3 32
51.47 odd 4 867.2.i.b.827.3 32
51.50 odd 2 867.2.i.g.329.2 32
68.11 even 16 816.2.cj.c.641.2 32
68.59 odd 8 816.2.cj.c.401.1 32
204.11 odd 16 816.2.cj.c.641.1 32
204.59 even 8 816.2.cj.c.401.2 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.2.i.a.29.2 32 51.11 even 16
51.2.i.a.29.3 yes 32 17.11 odd 16
51.2.i.a.44.2 yes 32 17.8 even 8
51.2.i.a.44.3 yes 32 51.8 odd 8
816.2.cj.c.401.1 32 68.59 odd 8
816.2.cj.c.401.2 32 204.59 even 8
816.2.cj.c.641.1 32 204.11 odd 16
816.2.cj.c.641.2 32 68.11 even 16
867.2.i.b.65.2 32 51.29 even 16
867.2.i.b.65.3 32 17.12 odd 16
867.2.i.b.827.2 32 17.13 even 4
867.2.i.b.827.3 32 51.47 odd 4
867.2.i.c.158.2 32 17.7 odd 16
867.2.i.c.158.3 32 51.41 even 16
867.2.i.c.653.2 32 51.32 odd 8
867.2.i.c.653.3 32 17.15 even 8
867.2.i.d.158.2 32 17.10 odd 16
867.2.i.d.158.3 32 51.44 even 16
867.2.i.d.653.2 32 51.2 odd 8
867.2.i.d.653.3 32 17.2 even 8
867.2.i.f.224.2 32 17.3 odd 16 inner
867.2.i.f.224.3 32 51.20 even 16 inner
867.2.i.f.329.2 32 3.2 odd 2 inner
867.2.i.f.329.3 32 1.1 even 1 trivial
867.2.i.g.224.2 32 17.14 odd 16
867.2.i.g.224.3 32 51.14 even 16
867.2.i.g.329.2 32 51.50 odd 2
867.2.i.g.329.3 32 17.16 even 2
867.2.i.h.131.2 32 51.23 even 16
867.2.i.h.131.3 32 17.6 odd 16
867.2.i.h.503.2 32 17.9 even 8
867.2.i.h.503.3 32 51.26 odd 8
867.2.i.i.65.2 32 51.5 even 16
867.2.i.i.65.3 32 17.5 odd 16
867.2.i.i.827.2 32 17.4 even 4
867.2.i.i.827.3 32 51.38 odd 4