Properties

Label 867.2.h.m.688.10
Level $867$
Weight $2$
Character 867.688
Analytic conductor $6.923$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [867,2,Mod(688,867)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("867.688"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(867, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 867 = 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 867.h (of order \(8\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-120] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(16)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.92302985525\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 688.10
Character \(\chi\) \(=\) 867.688
Dual form 867.2.h.m.712.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.01764 - 1.01764i) q^{2} +(0.382683 - 0.923880i) q^{3} -0.0711653i q^{4} +(-2.13781 - 0.885508i) q^{5} +(-0.550741 - 1.32961i) q^{6} +(-4.10362 + 1.69978i) q^{7} +(1.96285 + 1.96285i) q^{8} +(-0.707107 - 0.707107i) q^{9} +(-3.07663 + 1.27438i) q^{10} +(1.73146 + 4.18012i) q^{11} +(-0.0657482 - 0.0272338i) q^{12} +1.17466i q^{13} +(-2.44624 + 5.90574i) q^{14} +(-1.63621 + 1.63621i) q^{15} +4.13727 q^{16} -1.43915 q^{18} +(-3.44089 + 3.44089i) q^{19} +(-0.0630175 + 0.152138i) q^{20} +4.44173i q^{21} +(6.01584 + 2.49184i) q^{22} +(-0.239329 - 0.577792i) q^{23} +(2.56459 - 1.06229i) q^{24} +(0.250554 + 0.250554i) q^{25} +(1.19538 + 1.19538i) q^{26} +(-0.923880 + 0.382683i) q^{27} +(0.120965 + 0.292036i) q^{28} +(1.39535 + 0.577974i) q^{29} +3.33012i q^{30} +(-3.34309 + 8.07094i) q^{31} +(0.284528 - 0.284528i) q^{32} +4.52453 q^{33} +10.2779 q^{35} +(-0.0503215 + 0.0503215i) q^{36} +(3.36476 - 8.12325i) q^{37} +7.00315i q^{38} +(1.08524 + 0.449523i) q^{39} +(-2.45807 - 5.93431i) q^{40} +(-0.429571 + 0.177934i) q^{41} +(4.52006 + 4.52006i) q^{42} +(1.07004 + 1.07004i) q^{43} +(0.297480 - 0.123220i) q^{44} +(0.885508 + 2.13781i) q^{45} +(-0.831531 - 0.344432i) q^{46} +6.01904i q^{47} +(1.58326 - 3.82234i) q^{48} +(9.00072 - 9.00072i) q^{49} +0.509946 q^{50} +0.0835951 q^{52} +(-5.03689 + 5.03689i) q^{53} +(-0.550741 + 1.32961i) q^{54} -10.4695i q^{55} +(-11.3912 - 4.71839i) q^{56} +(1.86220 + 4.49574i) q^{57} +(2.00813 - 0.831794i) q^{58} +(-7.35565 - 7.35565i) q^{59} +(0.116441 + 0.116441i) q^{60} +(-2.36404 + 0.979219i) q^{61} +(4.81123 + 11.6153i) q^{62} +(4.10362 + 1.69978i) q^{63} +7.69544i q^{64} +(1.04017 - 2.51119i) q^{65} +(4.60432 - 4.60432i) q^{66} +3.71801 q^{67} -0.625397 q^{69} +(10.4592 - 10.4592i) q^{70} +(-5.83321 + 14.0826i) q^{71} -2.77589i q^{72} +(2.49619 + 1.03396i) q^{73} +(-4.84241 - 11.6906i) q^{74} +(0.327365 - 0.135599i) q^{75} +(0.244872 + 0.244872i) q^{76} +(-14.2105 - 14.2105i) q^{77} +(1.56183 - 0.646933i) q^{78} +(-6.38975 - 15.4262i) q^{79} +(-8.84467 - 3.66358i) q^{80} +1.00000i q^{81} +(-0.256075 + 0.618220i) q^{82} +(-3.14987 + 3.14987i) q^{83} +0.316097 q^{84} +2.17782 q^{86} +(1.06796 - 1.06796i) q^{87} +(-4.80635 + 11.6036i) q^{88} -1.54030i q^{89} +(3.07663 + 1.27438i) q^{90} +(-1.99666 - 4.82036i) q^{91} +(-0.0411187 + 0.0170319i) q^{92} +(6.17723 + 6.17723i) q^{93} +(6.12519 + 6.12519i) q^{94} +(10.4029 - 4.30902i) q^{95} +(-0.153985 - 0.371753i) q^{96} +(3.54665 + 1.46907i) q^{97} -18.3189i q^{98} +(1.73146 - 4.18012i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 120 q^{16} + 24 q^{18} + 72 q^{33} - 96 q^{50} - 144 q^{52} + 48 q^{67} - 72 q^{69} + 120 q^{84} + 48 q^{86}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/867\mathbb{Z}\right)^\times\).

\(n\) \(290\) \(292\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.01764 1.01764i 0.719577 0.719577i −0.248941 0.968519i \(-0.580083\pi\)
0.968519 + 0.248941i \(0.0800826\pi\)
\(3\) 0.382683 0.923880i 0.220942 0.533402i
\(4\) 0.0711653i 0.0355827i
\(5\) −2.13781 0.885508i −0.956056 0.396011i −0.150552 0.988602i \(-0.548105\pi\)
−0.805504 + 0.592591i \(0.798105\pi\)
\(6\) −0.550741 1.32961i −0.224839 0.542809i
\(7\) −4.10362 + 1.69978i −1.55102 + 0.642455i −0.983501 0.180904i \(-0.942098\pi\)
−0.567522 + 0.823358i \(0.692098\pi\)
\(8\) 1.96285 + 1.96285i 0.693973 + 0.693973i
\(9\) −0.707107 0.707107i −0.235702 0.235702i
\(10\) −3.07663 + 1.27438i −0.972917 + 0.402995i
\(11\) 1.73146 + 4.18012i 0.522055 + 1.26035i 0.936624 + 0.350335i \(0.113932\pi\)
−0.414569 + 0.910018i \(0.636068\pi\)
\(12\) −0.0657482 0.0272338i −0.0189799 0.00786172i
\(13\) 1.17466i 0.325792i 0.986643 + 0.162896i \(0.0520835\pi\)
−0.986643 + 0.162896i \(0.947916\pi\)
\(14\) −2.44624 + 5.90574i −0.653785 + 1.57838i
\(15\) −1.63621 + 1.63621i −0.422466 + 0.422466i
\(16\) 4.13727 1.03432
\(17\) 0 0
\(18\) −1.43915 −0.339212
\(19\) −3.44089 + 3.44089i −0.789394 + 0.789394i −0.981395 0.192001i \(-0.938502\pi\)
0.192001 + 0.981395i \(0.438502\pi\)
\(20\) −0.0630175 + 0.152138i −0.0140911 + 0.0340190i
\(21\) 4.44173i 0.969264i
\(22\) 6.01584 + 2.49184i 1.28258 + 0.531262i
\(23\) −0.239329 0.577792i −0.0499036 0.120478i 0.896962 0.442108i \(-0.145769\pi\)
−0.946865 + 0.321630i \(0.895769\pi\)
\(24\) 2.56459 1.06229i 0.523494 0.216839i
\(25\) 0.250554 + 0.250554i 0.0501108 + 0.0501108i
\(26\) 1.19538 + 1.19538i 0.234432 + 0.234432i
\(27\) −0.923880 + 0.382683i −0.177801 + 0.0736475i
\(28\) 0.120965 + 0.292036i 0.0228603 + 0.0551895i
\(29\) 1.39535 + 0.577974i 0.259111 + 0.107327i 0.508457 0.861087i \(-0.330216\pi\)
−0.249347 + 0.968414i \(0.580216\pi\)
\(30\) 3.33012i 0.607994i
\(31\) −3.34309 + 8.07094i −0.600437 + 1.44958i 0.272695 + 0.962101i \(0.412085\pi\)
−0.873132 + 0.487483i \(0.837915\pi\)
\(32\) 0.284528 0.284528i 0.0502979 0.0502979i
\(33\) 4.52453 0.787619
\(34\) 0 0
\(35\) 10.2779 1.73728
\(36\) −0.0503215 + 0.0503215i −0.00838692 + 0.00838692i
\(37\) 3.36476 8.12325i 0.553163 1.33545i −0.361928 0.932206i \(-0.617881\pi\)
0.915091 0.403248i \(-0.132119\pi\)
\(38\) 7.00315i 1.13606i
\(39\) 1.08524 + 0.449523i 0.173778 + 0.0719813i
\(40\) −2.45807 5.93431i −0.388656 0.938298i
\(41\) −0.429571 + 0.177934i −0.0670878 + 0.0277887i −0.415975 0.909376i \(-0.636560\pi\)
0.348887 + 0.937165i \(0.386560\pi\)
\(42\) 4.52006 + 4.52006i 0.697460 + 0.697460i
\(43\) 1.07004 + 1.07004i 0.163180 + 0.163180i 0.783974 0.620794i \(-0.213190\pi\)
−0.620794 + 0.783974i \(0.713190\pi\)
\(44\) 0.297480 0.123220i 0.0448467 0.0185761i
\(45\) 0.885508 + 2.13781i 0.132004 + 0.318685i
\(46\) −0.831531 0.344432i −0.122603 0.0507837i
\(47\) 6.01904i 0.877968i 0.898495 + 0.438984i \(0.144661\pi\)
−0.898495 + 0.438984i \(0.855339\pi\)
\(48\) 1.58326 3.82234i 0.228524 0.551707i
\(49\) 9.00072 9.00072i 1.28582 1.28582i
\(50\) 0.509946 0.0721172
\(51\) 0 0
\(52\) 0.0835951 0.0115925
\(53\) −5.03689 + 5.03689i −0.691870 + 0.691870i −0.962643 0.270773i \(-0.912721\pi\)
0.270773 + 0.962643i \(0.412721\pi\)
\(54\) −0.550741 + 1.32961i −0.0749463 + 0.180936i
\(55\) 10.4695i 1.41171i
\(56\) −11.3912 4.71839i −1.52221 0.630521i
\(57\) 1.86220 + 4.49574i 0.246654 + 0.595475i
\(58\) 2.00813 0.831794i 0.263680 0.109220i
\(59\) −7.35565 7.35565i −0.957624 0.957624i 0.0415136 0.999138i \(-0.486782\pi\)
−0.999138 + 0.0415136i \(0.986782\pi\)
\(60\) 0.116441 + 0.116441i 0.0150325 + 0.0150325i
\(61\) −2.36404 + 0.979219i −0.302685 + 0.125376i −0.528856 0.848711i \(-0.677379\pi\)
0.226172 + 0.974087i \(0.427379\pi\)
\(62\) 4.81123 + 11.6153i 0.611027 + 1.47515i
\(63\) 4.10362 + 1.69978i 0.517008 + 0.214152i
\(64\) 7.69544i 0.961930i
\(65\) 1.04017 2.51119i 0.129017 0.311475i
\(66\) 4.60432 4.60432i 0.566753 0.566753i
\(67\) 3.71801 0.454227 0.227114 0.973868i \(-0.427071\pi\)
0.227114 + 0.973868i \(0.427071\pi\)
\(68\) 0 0
\(69\) −0.625397 −0.0752890
\(70\) 10.4592 10.4592i 1.25011 1.25011i
\(71\) −5.83321 + 14.0826i −0.692274 + 1.67130i 0.0478729 + 0.998853i \(0.484756\pi\)
−0.740147 + 0.672445i \(0.765244\pi\)
\(72\) 2.77589i 0.327142i
\(73\) 2.49619 + 1.03396i 0.292157 + 0.121016i 0.523948 0.851750i \(-0.324459\pi\)
−0.231791 + 0.972766i \(0.574459\pi\)
\(74\) −4.84241 11.6906i −0.562919 1.35901i
\(75\) 0.327365 0.135599i 0.0378008 0.0156576i
\(76\) 0.244872 + 0.244872i 0.0280888 + 0.0280888i
\(77\) −14.2105 14.2105i −1.61944 1.61944i
\(78\) 1.56183 0.646933i 0.176843 0.0732507i
\(79\) −6.38975 15.4262i −0.718903 1.73558i −0.676453 0.736486i \(-0.736484\pi\)
−0.0424495 0.999099i \(-0.513516\pi\)
\(80\) −8.84467 3.66358i −0.988864 0.409601i
\(81\) 1.00000i 0.111111i
\(82\) −0.256075 + 0.618220i −0.0282787 + 0.0682709i
\(83\) −3.14987 + 3.14987i −0.345743 + 0.345743i −0.858521 0.512778i \(-0.828616\pi\)
0.512778 + 0.858521i \(0.328616\pi\)
\(84\) 0.316097 0.0344890
\(85\) 0 0
\(86\) 2.17782 0.234841
\(87\) 1.06796 1.06796i 0.114497 0.114497i
\(88\) −4.80635 + 11.6036i −0.512359 + 1.23694i
\(89\) 1.54030i 0.163272i −0.996662 0.0816359i \(-0.973986\pi\)
0.996662 0.0816359i \(-0.0260145\pi\)
\(90\) 3.07663 + 1.27438i 0.324306 + 0.134332i
\(91\) −1.99666 4.82036i −0.209307 0.505311i
\(92\) −0.0411187 + 0.0170319i −0.00428693 + 0.00177570i
\(93\) 6.17723 + 6.17723i 0.640549 + 0.640549i
\(94\) 6.12519 + 6.12519i 0.631766 + 0.631766i
\(95\) 10.4029 4.30902i 1.06731 0.442096i
\(96\) −0.153985 0.371753i −0.0157161 0.0379419i
\(97\) 3.54665 + 1.46907i 0.360108 + 0.149161i 0.555399 0.831584i \(-0.312565\pi\)
−0.195292 + 0.980745i \(0.562565\pi\)
\(98\) 18.3189i 1.85049i
\(99\) 1.73146 4.18012i 0.174018 0.420118i
\(100\) 0.0178308 0.0178308i 0.00178308 0.00178308i
\(101\) −11.9158 −1.18567 −0.592833 0.805325i \(-0.701991\pi\)
−0.592833 + 0.805325i \(0.701991\pi\)
\(102\) 0 0
\(103\) −1.41240 −0.139168 −0.0695838 0.997576i \(-0.522167\pi\)
−0.0695838 + 0.997576i \(0.522167\pi\)
\(104\) −2.30568 + 2.30568i −0.226091 + 0.226091i
\(105\) 3.93318 9.49555i 0.383840 0.926671i
\(106\) 10.2514i 0.995708i
\(107\) 14.4624 + 5.99053i 1.39813 + 0.579126i 0.949267 0.314472i \(-0.101828\pi\)
0.448867 + 0.893598i \(0.351828\pi\)
\(108\) 0.0272338 + 0.0657482i 0.00262057 + 0.00632662i
\(109\) 9.37158 3.88184i 0.897635 0.371812i 0.114324 0.993443i \(-0.463530\pi\)
0.783310 + 0.621631i \(0.213530\pi\)
\(110\) −10.6541 10.6541i −1.01583 1.01583i
\(111\) −6.21727 6.21727i −0.590117 0.590117i
\(112\) −16.9778 + 7.03242i −1.60425 + 0.664501i
\(113\) 0.305672 + 0.737958i 0.0287552 + 0.0694212i 0.937605 0.347703i \(-0.113038\pi\)
−0.908850 + 0.417124i \(0.863038\pi\)
\(114\) 6.47006 + 2.67999i 0.605977 + 0.251004i
\(115\) 1.44713i 0.134946i
\(116\) 0.0411317 0.0993008i 0.00381899 0.00921985i
\(117\) 0.830610 0.830610i 0.0767899 0.0767899i
\(118\) −14.9708 −1.37817
\(119\) 0 0
\(120\) −6.42326 −0.586360
\(121\) −6.69726 + 6.69726i −0.608842 + 0.608842i
\(122\) −1.40925 + 3.40222i −0.127587 + 0.308023i
\(123\) 0.464965i 0.0419245i
\(124\) 0.574371 + 0.237912i 0.0515801 + 0.0213652i
\(125\) 4.11377 + 9.93152i 0.367947 + 0.888303i
\(126\) 5.90574 2.44624i 0.526125 0.217928i
\(127\) 2.38080 + 2.38080i 0.211262 + 0.211262i 0.804803 0.593542i \(-0.202271\pi\)
−0.593542 + 0.804803i \(0.702271\pi\)
\(128\) 8.40021 + 8.40021i 0.742481 + 0.742481i
\(129\) 1.39808 0.579102i 0.123094 0.0509871i
\(130\) −1.49697 3.61400i −0.131293 0.316968i
\(131\) 1.33007 + 0.550932i 0.116209 + 0.0481352i 0.440030 0.897983i \(-0.354968\pi\)
−0.323822 + 0.946118i \(0.604968\pi\)
\(132\) 0.321990i 0.0280256i
\(133\) 8.27137 19.9688i 0.717218 1.73152i
\(134\) 3.78358 3.78358i 0.326852 0.326852i
\(135\) 2.31394 0.199153
\(136\) 0 0
\(137\) 7.86924 0.672315 0.336157 0.941806i \(-0.390873\pi\)
0.336157 + 0.941806i \(0.390873\pi\)
\(138\) −0.636427 + 0.636427i −0.0541762 + 0.0541762i
\(139\) 3.76095 9.07974i 0.319000 0.770133i −0.680308 0.732926i \(-0.738154\pi\)
0.999308 0.0372068i \(-0.0118460\pi\)
\(140\) 0.731431i 0.0618172i
\(141\) 5.56087 + 2.30339i 0.468310 + 0.193980i
\(142\) 8.39489 + 20.2670i 0.704483 + 1.70077i
\(143\) −4.91022 + 2.03388i −0.410613 + 0.170081i
\(144\) −2.92549 2.92549i −0.243791 0.243791i
\(145\) −2.47119 2.47119i −0.205221 0.205221i
\(146\) 3.59241 1.48802i 0.297310 0.123150i
\(147\) −4.87115 11.7600i −0.401766 0.969949i
\(148\) −0.578094 0.239454i −0.0475190 0.0196830i
\(149\) 6.30050i 0.516157i −0.966124 0.258078i \(-0.916911\pi\)
0.966124 0.258078i \(-0.0830893\pi\)
\(150\) 0.195148 0.471129i 0.0159338 0.0384675i
\(151\) −7.65646 + 7.65646i −0.623074 + 0.623074i −0.946316 0.323243i \(-0.895227\pi\)
0.323243 + 0.946316i \(0.395227\pi\)
\(152\) −13.5079 −1.09564
\(153\) 0 0
\(154\) −28.9223 −2.33062
\(155\) 14.2938 14.2938i 1.14810 1.14810i
\(156\) 0.0319904 0.0772318i 0.00256129 0.00618349i
\(157\) 10.8250i 0.863933i −0.901890 0.431966i \(-0.857820\pi\)
0.901890 0.431966i \(-0.142180\pi\)
\(158\) −22.2007 9.19583i −1.76619 0.731581i
\(159\) 2.72595 + 6.58102i 0.216182 + 0.521909i
\(160\) −0.860217 + 0.356313i −0.0680061 + 0.0281691i
\(161\) 1.96423 + 1.96423i 0.154803 + 0.154803i
\(162\) 1.01764 + 1.01764i 0.0799530 + 0.0799530i
\(163\) 10.4196 4.31595i 0.816129 0.338052i 0.0647322 0.997903i \(-0.479381\pi\)
0.751396 + 0.659851i \(0.229381\pi\)
\(164\) 0.0126628 + 0.0305706i 0.000988795 + 0.00238716i
\(165\) −9.67256 4.00651i −0.753008 0.311906i
\(166\) 6.41084i 0.497577i
\(167\) −4.73261 + 11.4255i −0.366220 + 0.884134i 0.628142 + 0.778099i \(0.283816\pi\)
−0.994362 + 0.106035i \(0.966184\pi\)
\(168\) −8.71845 + 8.71845i −0.672643 + 0.672643i
\(169\) 11.6202 0.893860
\(170\) 0 0
\(171\) 4.86615 0.372124
\(172\) 0.0761498 0.0761498i 0.00580637 0.00580637i
\(173\) 1.22359 2.95401i 0.0930279 0.224589i −0.870516 0.492141i \(-0.836215\pi\)
0.963544 + 0.267551i \(0.0862145\pi\)
\(174\) 2.17358i 0.164779i
\(175\) −1.45407 0.602294i −0.109917 0.0455291i
\(176\) 7.16352 + 17.2943i 0.539971 + 1.30360i
\(177\) −9.61062 + 3.98085i −0.722379 + 0.299219i
\(178\) −1.56747 1.56747i −0.117487 0.117487i
\(179\) 13.4446 + 13.4446i 1.00489 + 1.00489i 0.999988 + 0.00490576i \(0.00156156\pi\)
0.00490576 + 0.999988i \(0.498438\pi\)
\(180\) 0.152138 0.0630175i 0.0113397 0.00469705i
\(181\) 4.59970 + 11.1047i 0.341893 + 0.825402i 0.997524 + 0.0703214i \(0.0224025\pi\)
−0.655632 + 0.755081i \(0.727598\pi\)
\(182\) −6.93724 2.87350i −0.514222 0.212998i
\(183\) 2.55882i 0.189154i
\(184\) 0.664352 1.60389i 0.0489767 0.118240i
\(185\) −14.3864 + 14.3864i −1.05771 + 1.05771i
\(186\) 12.5723 0.921849
\(187\) 0 0
\(188\) 0.428347 0.0312404
\(189\) 3.14078 3.14078i 0.228458 0.228458i
\(190\) 6.20134 14.9714i 0.449893 1.08614i
\(191\) 22.3102i 1.61431i −0.590341 0.807154i \(-0.701007\pi\)
0.590341 0.807154i \(-0.298993\pi\)
\(192\) 7.10966 + 2.94492i 0.513096 + 0.212531i
\(193\) −1.33783 3.22980i −0.0962989 0.232486i 0.868388 0.495885i \(-0.165156\pi\)
−0.964687 + 0.263399i \(0.915156\pi\)
\(194\) 5.10418 2.11422i 0.366458 0.151792i
\(195\) −1.92198 1.92198i −0.137636 0.137636i
\(196\) −0.640539 0.640539i −0.0457528 0.0457528i
\(197\) 11.0840 4.59115i 0.789704 0.327106i 0.0488795 0.998805i \(-0.484435\pi\)
0.740825 + 0.671699i \(0.234435\pi\)
\(198\) −2.49184 6.01584i −0.177087 0.427527i
\(199\) −3.71632 1.53935i −0.263443 0.109122i 0.247053 0.969002i \(-0.420538\pi\)
−0.510495 + 0.859881i \(0.670538\pi\)
\(200\) 0.983601i 0.0695511i
\(201\) 1.42282 3.43499i 0.100358 0.242286i
\(202\) −12.1259 + 12.1259i −0.853179 + 0.853179i
\(203\) −6.70843 −0.470839
\(204\) 0 0
\(205\) 1.07590 0.0751443
\(206\) −1.43731 + 1.43731i −0.100142 + 0.100142i
\(207\) −0.239329 + 0.577792i −0.0166345 + 0.0401593i
\(208\) 4.85988i 0.336972i
\(209\) −20.3411 8.42556i −1.40702 0.582808i
\(210\) −5.66046 13.6656i −0.390609 0.943013i
\(211\) −14.7453 + 6.10770i −1.01511 + 0.420471i −0.827315 0.561738i \(-0.810133\pi\)
−0.187792 + 0.982209i \(0.560133\pi\)
\(212\) 0.358452 + 0.358452i 0.0246186 + 0.0246186i
\(213\) 10.7784 + 10.7784i 0.738521 + 0.738521i
\(214\) 20.8136 8.62129i 1.42279 0.589339i
\(215\) −1.34001 3.23507i −0.0913879 0.220630i
\(216\) −2.56459 1.06229i −0.174498 0.0722795i
\(217\) 38.8026i 2.63409i
\(218\) 5.58656 13.4872i 0.378370 0.913465i
\(219\) 1.91050 1.91050i 0.129100 0.129100i
\(220\) −0.745066 −0.0502323
\(221\) 0 0
\(222\) −12.6538 −0.849269
\(223\) −3.78708 + 3.78708i −0.253601 + 0.253601i −0.822445 0.568844i \(-0.807391\pi\)
0.568844 + 0.822445i \(0.307391\pi\)
\(224\) −0.683961 + 1.65123i −0.0456991 + 0.110327i
\(225\) 0.354337i 0.0236225i
\(226\) 1.06204 + 0.439909i 0.0706455 + 0.0292623i
\(227\) 0.655438 + 1.58237i 0.0435029 + 0.105025i 0.944137 0.329552i \(-0.106898\pi\)
−0.900634 + 0.434577i \(0.856898\pi\)
\(228\) 0.319941 0.132524i 0.0211886 0.00877660i
\(229\) −0.269138 0.269138i −0.0177852 0.0177852i 0.698158 0.715943i \(-0.254003\pi\)
−0.715943 + 0.698158i \(0.754003\pi\)
\(230\) 1.47266 + 1.47266i 0.0971040 + 0.0971040i
\(231\) −18.5669 + 7.69068i −1.22162 + 0.506010i
\(232\) 1.60439 + 3.87335i 0.105334 + 0.254298i
\(233\) 8.28055 + 3.42992i 0.542477 + 0.224701i 0.637058 0.770816i \(-0.280151\pi\)
−0.0945809 + 0.995517i \(0.530151\pi\)
\(234\) 1.69052i 0.110513i
\(235\) 5.32991 12.8675i 0.347685 0.839386i
\(236\) −0.523468 + 0.523468i −0.0340748 + 0.0340748i
\(237\) −16.6972 −1.08460
\(238\) 0 0
\(239\) −6.70928 −0.433987 −0.216994 0.976173i \(-0.569625\pi\)
−0.216994 + 0.976173i \(0.569625\pi\)
\(240\) −6.76942 + 6.76942i −0.436964 + 0.436964i
\(241\) −3.38289 + 8.16701i −0.217911 + 0.526083i −0.994598 0.103803i \(-0.966899\pi\)
0.776687 + 0.629887i \(0.216899\pi\)
\(242\) 13.6307i 0.876218i
\(243\) 0.923880 + 0.382683i 0.0592669 + 0.0245492i
\(244\) 0.0696865 + 0.168238i 0.00446122 + 0.0107703i
\(245\) −27.2120 + 11.2716i −1.73851 + 0.720115i
\(246\) 0.473165 + 0.473165i 0.0301679 + 0.0301679i
\(247\) −4.04187 4.04187i −0.257178 0.257178i
\(248\) −22.4041 + 9.28006i −1.42266 + 0.589285i
\(249\) 1.70470 + 4.11550i 0.108031 + 0.260809i
\(250\) 14.2930 + 5.92035i 0.903968 + 0.374436i
\(251\) 24.4193i 1.54133i −0.637238 0.770667i \(-0.719923\pi\)
0.637238 0.770667i \(-0.280077\pi\)
\(252\) 0.120965 0.292036i 0.00762008 0.0183965i
\(253\) 2.00085 2.00085i 0.125792 0.125792i
\(254\) 4.84557 0.304038
\(255\) 0 0
\(256\) 1.70583 0.106614
\(257\) −18.3372 + 18.3372i −1.14384 + 1.14384i −0.156103 + 0.987741i \(0.549893\pi\)
−0.987741 + 0.156103i \(0.950107\pi\)
\(258\) 0.833417 2.01205i 0.0518863 0.125265i
\(259\) 39.0541i 2.42670i
\(260\) −0.178710 0.0740241i −0.0110831 0.00459078i
\(261\) −0.577974 1.39535i −0.0357757 0.0863702i
\(262\) 1.91417 0.792877i 0.118258 0.0489841i
\(263\) 1.23144 + 1.23144i 0.0759336 + 0.0759336i 0.744054 0.668120i \(-0.232901\pi\)
−0.668120 + 0.744054i \(0.732901\pi\)
\(264\) 8.88098 + 8.88098i 0.546586 + 0.546586i
\(265\) 15.2281 6.30769i 0.935455 0.387478i
\(266\) −11.9038 28.7383i −0.729867 1.76206i
\(267\) −1.42305 0.589449i −0.0870895 0.0360737i
\(268\) 0.264594i 0.0161626i
\(269\) −12.0462 + 29.0821i −0.734469 + 1.77317i −0.107381 + 0.994218i \(0.534246\pi\)
−0.627089 + 0.778948i \(0.715754\pi\)
\(270\) 2.35475 2.35475i 0.143306 0.143306i
\(271\) 19.8066 1.20316 0.601582 0.798811i \(-0.294537\pi\)
0.601582 + 0.798811i \(0.294537\pi\)
\(272\) 0 0
\(273\) −5.21752 −0.315779
\(274\) 8.00803 8.00803i 0.483783 0.483783i
\(275\) −0.613521 + 1.48117i −0.0369967 + 0.0893180i
\(276\) 0.0445066i 0.00267898i
\(277\) −2.15332 0.891933i −0.129380 0.0535911i 0.317054 0.948407i \(-0.397306\pi\)
−0.446434 + 0.894816i \(0.647306\pi\)
\(278\) −5.41259 13.0671i −0.324625 0.783715i
\(279\) 8.07094 3.34309i 0.483195 0.200146i
\(280\) 20.1740 + 20.1740i 1.20563 + 1.20563i
\(281\) −0.216479 0.216479i −0.0129140 0.0129140i 0.700620 0.713534i \(-0.252907\pi\)
−0.713534 + 0.700620i \(0.752907\pi\)
\(282\) 8.00295 3.31493i 0.476569 0.197401i
\(283\) −7.00854 16.9201i −0.416615 1.00580i −0.983321 0.181877i \(-0.941783\pi\)
0.566707 0.823920i \(-0.308217\pi\)
\(284\) 1.00219 + 0.415122i 0.0594693 + 0.0246330i
\(285\) 11.2600i 0.666985i
\(286\) −2.92707 + 7.06656i −0.173081 + 0.417855i
\(287\) 1.46035 1.46035i 0.0862017 0.0862017i
\(288\) −0.402383 −0.0237106
\(289\) 0 0
\(290\) −5.02955 −0.295345
\(291\) 2.71449 2.71449i 0.159126 0.159126i
\(292\) 0.0735819 0.177642i 0.00430606 0.0103957i
\(293\) 15.2652i 0.891801i −0.895083 0.445900i \(-0.852884\pi\)
0.895083 0.445900i \(-0.147116\pi\)
\(294\) −16.9245 7.01034i −0.987055 0.408851i
\(295\) 9.21147 + 22.2384i 0.536312 + 1.29477i
\(296\) 22.5493 9.34021i 1.31065 0.542889i
\(297\) −3.19932 3.19932i −0.185644 0.185644i
\(298\) −6.41161 6.41161i −0.371415 0.371415i
\(299\) 0.678709 0.281130i 0.0392507 0.0162582i
\(300\) −0.00964995 0.0232970i −0.000557140 0.00134505i
\(301\) −6.20987 2.57221i −0.357931 0.148260i
\(302\) 15.5830i 0.896699i
\(303\) −4.55998 + 11.0088i −0.261964 + 0.632437i
\(304\) −14.2359 + 14.2359i −0.816484 + 0.816484i
\(305\) 5.92097 0.339034
\(306\) 0 0
\(307\) 29.9884 1.71153 0.855765 0.517365i \(-0.173087\pi\)
0.855765 + 0.517365i \(0.173087\pi\)
\(308\) −1.01130 + 1.01130i −0.0576240 + 0.0576240i
\(309\) −0.540501 + 1.30488i −0.0307480 + 0.0742323i
\(310\) 29.0917i 1.65230i
\(311\) 21.5491 + 8.92592i 1.22194 + 0.506143i 0.898025 0.439945i \(-0.145002\pi\)
0.323911 + 0.946087i \(0.395002\pi\)
\(312\) 1.24783 + 3.01252i 0.0706443 + 0.170550i
\(313\) 22.1332 9.16787i 1.25104 0.518198i 0.343893 0.939009i \(-0.388254\pi\)
0.907149 + 0.420810i \(0.138254\pi\)
\(314\) −11.0160 11.0160i −0.621666 0.621666i
\(315\) −7.26758 7.26758i −0.409482 0.409482i
\(316\) −1.09781 + 0.454728i −0.0617567 + 0.0255805i
\(317\) 7.18848 + 17.3545i 0.403746 + 0.974728i 0.986748 + 0.162258i \(0.0518776\pi\)
−0.583003 + 0.812470i \(0.698122\pi\)
\(318\) 9.47110 + 3.92306i 0.531113 + 0.219994i
\(319\) 6.83348i 0.382602i
\(320\) 6.81438 16.4514i 0.380935 0.919659i
\(321\) 11.0690 11.0690i 0.617814 0.617814i
\(322\) 3.99775 0.222786
\(323\) 0 0
\(324\) 0.0711653 0.00395363
\(325\) −0.294316 + 0.294316i −0.0163257 + 0.0163257i
\(326\) 6.21132 14.9955i 0.344013 0.830522i
\(327\) 10.1437i 0.560949i
\(328\) −1.19244 0.493926i −0.0658417 0.0272725i
\(329\) −10.2310 24.6999i −0.564054 1.36175i
\(330\) −13.9203 + 5.76598i −0.766288 + 0.317407i
\(331\) 16.7492 + 16.7492i 0.920618 + 0.920618i 0.997073 0.0764554i \(-0.0243603\pi\)
−0.0764554 + 0.997073i \(0.524360\pi\)
\(332\) 0.224161 + 0.224161i 0.0123025 + 0.0123025i
\(333\) −8.12325 + 3.36476i −0.445151 + 0.184388i
\(334\) 6.81096 + 16.4431i 0.372679 + 0.899727i
\(335\) −7.94838 3.29233i −0.434267 0.179879i
\(336\) 18.3766i 1.00253i
\(337\) 2.32316 5.60861i 0.126551 0.305521i −0.847887 0.530176i \(-0.822126\pi\)
0.974438 + 0.224656i \(0.0721257\pi\)
\(338\) 11.8251 11.8251i 0.643201 0.643201i
\(339\) 0.798760 0.0433827
\(340\) 0 0
\(341\) −39.5259 −2.14045
\(342\) 4.95197 4.95197i 0.267772 0.267772i
\(343\) −9.73791 + 23.5094i −0.525797 + 1.26939i
\(344\) 4.20066i 0.226484i
\(345\) 1.33698 + 0.553794i 0.0719805 + 0.0298153i
\(346\) −1.76094 4.25128i −0.0946685 0.228550i
\(347\) −6.59194 + 2.73047i −0.353874 + 0.146579i −0.552537 0.833489i \(-0.686340\pi\)
0.198663 + 0.980068i \(0.436340\pi\)
\(348\) −0.0760015 0.0760015i −0.00407411 0.00407411i
\(349\) −11.1599 11.1599i −0.597377 0.597377i 0.342236 0.939614i \(-0.388816\pi\)
−0.939614 + 0.342236i \(0.888816\pi\)
\(350\) −2.09262 + 0.866793i −0.111855 + 0.0463321i
\(351\) −0.449523 1.08524i −0.0239938 0.0579260i
\(352\) 1.68201 + 0.696711i 0.0896514 + 0.0371348i
\(353\) 35.2308i 1.87515i 0.347788 + 0.937573i \(0.386933\pi\)
−0.347788 + 0.937573i \(0.613067\pi\)
\(354\) −5.72906 + 13.8312i −0.304496 + 0.735118i
\(355\) 24.9405 24.9405i 1.32371 1.32371i
\(356\) −0.109616 −0.00580965
\(357\) 0 0
\(358\) 27.3633 1.44620
\(359\) 18.1950 18.1950i 0.960294 0.960294i −0.0389472 0.999241i \(-0.512400\pi\)
0.999241 + 0.0389472i \(0.0124004\pi\)
\(360\) −2.45807 + 5.93431i −0.129552 + 0.312766i
\(361\) 4.67944i 0.246287i
\(362\) 15.9813 + 6.61968i 0.839959 + 0.347922i
\(363\) 3.62453 + 8.75039i 0.190239 + 0.459277i
\(364\) −0.343042 + 0.142093i −0.0179803 + 0.00744769i
\(365\) −4.42080 4.42080i −0.231395 0.231395i
\(366\) 2.60395 + 2.60395i 0.136111 + 0.136111i
\(367\) 7.63212 3.16133i 0.398394 0.165020i −0.174486 0.984660i \(-0.555826\pi\)
0.572879 + 0.819640i \(0.305826\pi\)
\(368\) −0.990168 2.39048i −0.0516161 0.124612i
\(369\) 0.429571 + 0.177934i 0.0223626 + 0.00926289i
\(370\) 29.2802i 1.52221i
\(371\) 12.1079 29.2311i 0.628611 1.51760i
\(372\) 0.439605 0.439605i 0.0227924 0.0227924i
\(373\) −23.4360 −1.21347 −0.606734 0.794905i \(-0.707521\pi\)
−0.606734 + 0.794905i \(0.707521\pi\)
\(374\) 0 0
\(375\) 10.7498 0.555117
\(376\) −11.8145 + 11.8145i −0.609286 + 0.609286i
\(377\) −0.678923 + 1.63907i −0.0349663 + 0.0844162i
\(378\) 6.39233i 0.328786i
\(379\) −13.9155 5.76401i −0.714794 0.296077i −0.00450702 0.999990i \(-0.501435\pi\)
−0.710287 + 0.703913i \(0.751435\pi\)
\(380\) −0.306653 0.740325i −0.0157310 0.0379779i
\(381\) 3.11066 1.28848i 0.159364 0.0660108i
\(382\) −22.7036 22.7036i −1.16162 1.16162i
\(383\) 11.3123 + 11.3123i 0.578031 + 0.578031i 0.934360 0.356330i \(-0.115972\pi\)
−0.356330 + 0.934360i \(0.615972\pi\)
\(384\) 10.9754 4.54616i 0.560086 0.231995i
\(385\) 17.7958 + 42.9629i 0.906958 + 2.18959i
\(386\) −4.64818 1.92534i −0.236586 0.0979972i
\(387\) 1.51327i 0.0769236i
\(388\) 0.104547 0.252398i 0.00530756 0.0128136i
\(389\) 2.11419 2.11419i 0.107194 0.107194i −0.651476 0.758669i \(-0.725850\pi\)
0.758669 + 0.651476i \(0.225850\pi\)
\(390\) −3.91176 −0.198080
\(391\) 0 0
\(392\) 35.3341 1.78464
\(393\) 1.01799 1.01799i 0.0513508 0.0513508i
\(394\) 6.60738 15.9516i 0.332875 0.803631i
\(395\) 38.6364i 1.94401i
\(396\) −0.297480 0.123220i −0.0149489 0.00619204i
\(397\) −4.84196 11.6895i −0.243011 0.586681i 0.754568 0.656222i \(-0.227847\pi\)
−0.997579 + 0.0695410i \(0.977847\pi\)
\(398\) −5.34835 + 2.21536i −0.268089 + 0.111046i
\(399\) −15.2835 15.2835i −0.765132 0.765132i
\(400\) 1.03661 + 1.03661i 0.0518305 + 0.0518305i
\(401\) −13.5523 + 5.61353i −0.676767 + 0.280326i −0.694475 0.719517i \(-0.744363\pi\)
0.0177074 + 0.999843i \(0.494363\pi\)
\(402\) −2.04766 4.94349i −0.102128 0.246559i
\(403\) −9.48061 3.92700i −0.472263 0.195618i
\(404\) 0.847992i 0.0421892i
\(405\) 0.885508 2.13781i 0.0440012 0.106228i
\(406\) −6.82674 + 6.82674i −0.338805 + 0.338805i
\(407\) 39.7821 1.97193
\(408\) 0 0
\(409\) −16.3219 −0.807067 −0.403534 0.914965i \(-0.632218\pi\)
−0.403534 + 0.914965i \(0.632218\pi\)
\(410\) 1.09488 1.09488i 0.0540721 0.0540721i
\(411\) 3.01143 7.27023i 0.148543 0.358614i
\(412\) 0.100514i 0.00495196i
\(413\) 42.6878 + 17.6819i 2.10053 + 0.870067i
\(414\) 0.344432 + 0.831531i 0.0169279 + 0.0408675i
\(415\) 9.52304 3.94457i 0.467468 0.193631i
\(416\) 0.334223 + 0.334223i 0.0163866 + 0.0163866i
\(417\) −6.94933 6.94933i −0.340310 0.340310i
\(418\) −29.2740 + 12.1257i −1.43184 + 0.593086i
\(419\) 6.01187 + 14.5139i 0.293699 + 0.709053i 0.999999 + 0.00114011i \(0.000362907\pi\)
−0.706300 + 0.707912i \(0.749637\pi\)
\(420\) −0.675754 0.279906i −0.0329734 0.0136580i
\(421\) 22.1035i 1.07726i 0.842542 + 0.538630i \(0.181058\pi\)
−0.842542 + 0.538630i \(0.818942\pi\)
\(422\) −8.78992 + 21.2207i −0.427886 + 1.03301i
\(423\) 4.25611 4.25611i 0.206939 0.206939i
\(424\) −19.7733 −0.960278
\(425\) 0 0
\(426\) 21.9369 1.06285
\(427\) 8.03669 8.03669i 0.388923 0.388923i
\(428\) 0.426318 1.02922i 0.0206069 0.0497493i
\(429\) 5.31478i 0.256600i
\(430\) −4.65576 1.92848i −0.224521 0.0929996i
\(431\) 1.59016 + 3.83898i 0.0765952 + 0.184917i 0.957539 0.288304i \(-0.0930913\pi\)
−0.880944 + 0.473221i \(0.843091\pi\)
\(432\) −3.82234 + 1.58326i −0.183902 + 0.0761748i
\(433\) −9.24653 9.24653i −0.444360 0.444360i 0.449114 0.893474i \(-0.351740\pi\)
−0.893474 + 0.449114i \(0.851740\pi\)
\(434\) −39.4869 39.4869i −1.89543 1.89543i
\(435\) −3.22877 + 1.33740i −0.154808 + 0.0641234i
\(436\) −0.276252 0.666932i −0.0132301 0.0319402i
\(437\) 2.81162 + 1.16461i 0.134498 + 0.0557110i
\(438\) 3.88839i 0.185795i
\(439\) −4.43676 + 10.7113i −0.211755 + 0.511222i −0.993693 0.112134i \(-0.964231\pi\)
0.781938 + 0.623356i \(0.214231\pi\)
\(440\) 20.5501 20.5501i 0.979687 0.979687i
\(441\) −12.7289 −0.606140
\(442\) 0 0
\(443\) 17.6619 0.839144 0.419572 0.907722i \(-0.362180\pi\)
0.419572 + 0.907722i \(0.362180\pi\)
\(444\) −0.442454 + 0.442454i −0.0209979 + 0.0209979i
\(445\) −1.36395 + 3.29287i −0.0646575 + 0.156097i
\(446\) 7.70773i 0.364971i
\(447\) −5.82090 2.41110i −0.275319 0.114041i
\(448\) −13.0805 31.5792i −0.617996 1.49198i
\(449\) 32.4665 13.4480i 1.53219 0.634652i 0.552199 0.833712i \(-0.313789\pi\)
0.979987 + 0.199060i \(0.0637888\pi\)
\(450\) −0.360586 0.360586i −0.0169982 0.0169982i
\(451\) −1.48757 1.48757i −0.0700471 0.0700471i
\(452\) 0.0525170 0.0217533i 0.00247019 0.00102319i
\(453\) 4.14364 + 10.0036i 0.194685 + 0.470012i
\(454\) 2.27727 + 0.943276i 0.106878 + 0.0442701i
\(455\) 12.0730i 0.565993i
\(456\) −5.16925 + 12.4797i −0.242072 + 0.584415i
\(457\) 17.4165 17.4165i 0.814708 0.814708i −0.170628 0.985336i \(-0.554580\pi\)
0.985336 + 0.170628i \(0.0545795\pi\)
\(458\) −0.547769 −0.0255956
\(459\) 0 0
\(460\) 0.102986 0.00480174
\(461\) 0.710025 0.710025i 0.0330691 0.0330691i −0.690379 0.723448i \(-0.742556\pi\)
0.723448 + 0.690379i \(0.242556\pi\)
\(462\) −11.0681 + 26.7207i −0.514934 + 1.24316i
\(463\) 20.4600i 0.950856i 0.879755 + 0.475428i \(0.157707\pi\)
−0.879755 + 0.475428i \(0.842293\pi\)
\(464\) 5.77295 + 2.39123i 0.268002 + 0.111010i
\(465\) −7.73573 18.6757i −0.358736 0.866065i
\(466\) 11.9170 4.93618i 0.552044 0.228664i
\(467\) 24.8661 + 24.8661i 1.15066 + 1.15066i 0.986420 + 0.164244i \(0.0525186\pi\)
0.164244 + 0.986420i \(0.447481\pi\)
\(468\) −0.0591106 0.0591106i −0.00273239 0.00273239i
\(469\) −15.2573 + 6.31978i −0.704517 + 0.291820i
\(470\) −7.67057 18.5184i −0.353817 0.854189i
\(471\) −10.0010 4.14257i −0.460824 0.190879i
\(472\) 28.8761i 1.32913i
\(473\) −2.62016 + 6.32563i −0.120475 + 0.290853i
\(474\) −16.9917 + 16.9917i −0.780454 + 0.780454i
\(475\) −1.72426 −0.0791144
\(476\) 0 0
\(477\) 7.12324 0.326151
\(478\) −6.82761 + 6.82761i −0.312287 + 0.312287i
\(479\) −1.47609 + 3.56359i −0.0674442 + 0.162825i −0.954008 0.299782i \(-0.903086\pi\)
0.886563 + 0.462607i \(0.153086\pi\)
\(480\) 0.931092i 0.0424983i
\(481\) 9.54205 + 3.95245i 0.435080 + 0.180216i
\(482\) 4.86849 + 11.7536i 0.221754 + 0.535361i
\(483\) 2.56639 1.06303i 0.116775 0.0483698i
\(484\) 0.476613 + 0.476613i 0.0216642 + 0.0216642i
\(485\) −6.28117 6.28117i −0.285213 0.285213i
\(486\) 1.32961 0.550741i 0.0603121 0.0249821i
\(487\) −7.79484 18.8184i −0.353218 0.852744i −0.996219 0.0868783i \(-0.972311\pi\)
0.643001 0.765865i \(-0.277689\pi\)
\(488\) −6.56233 2.71821i −0.297063 0.123047i
\(489\) 11.2781i 0.510015i
\(490\) −16.2215 + 39.1623i −0.732814 + 1.76917i
\(491\) −4.51612 + 4.51612i −0.203810 + 0.203810i −0.801630 0.597820i \(-0.796034\pi\)
0.597820 + 0.801630i \(0.296034\pi\)
\(492\) 0.0330894 0.00149178
\(493\) 0 0
\(494\) −8.22631 −0.370119
\(495\) −7.40306 + 7.40306i −0.332743 + 0.332743i
\(496\) −13.8313 + 33.3916i −0.621042 + 1.49933i
\(497\) 67.7048i 3.03698i
\(498\) 5.92284 + 2.45332i 0.265409 + 0.109936i
\(499\) 0.629073 + 1.51872i 0.0281612 + 0.0679871i 0.937335 0.348431i \(-0.113285\pi\)
−0.909173 + 0.416418i \(0.863285\pi\)
\(500\) 0.706780 0.292758i 0.0316082 0.0130925i
\(501\) 8.74472 + 8.74472i 0.390685 + 0.390685i
\(502\) −24.8500 24.8500i −1.10911 1.10911i
\(503\) −24.5863 + 10.1840i −1.09625 + 0.454080i −0.856181 0.516676i \(-0.827169\pi\)
−0.240066 + 0.970757i \(0.577169\pi\)
\(504\) 4.71839 + 11.3912i 0.210174 + 0.507404i
\(505\) 25.4737 + 10.5515i 1.13356 + 0.469537i
\(506\) 4.07227i 0.181035i
\(507\) 4.44685 10.7356i 0.197491 0.476787i
\(508\) 0.169430 0.169430i 0.00751726 0.00751726i
\(509\) −14.0065 −0.620827 −0.310413 0.950602i \(-0.600467\pi\)
−0.310413 + 0.950602i \(0.600467\pi\)
\(510\) 0 0
\(511\) −12.0009 −0.530890
\(512\) −15.0645 + 15.0645i −0.665764 + 0.665764i
\(513\) 1.86220 4.49574i 0.0822180 0.198492i
\(514\) 37.3212i 1.64617i
\(515\) 3.01943 + 1.25069i 0.133052 + 0.0551120i
\(516\) −0.0412120 0.0994945i −0.00181426 0.00438000i
\(517\) −25.1603 + 10.4217i −1.10655 + 0.458348i
\(518\) 39.7428 + 39.7428i 1.74620 + 1.74620i
\(519\) −2.26090 2.26090i −0.0992426 0.0992426i
\(520\) 6.97080 2.88740i 0.305690 0.126621i
\(521\) −7.25624 17.5181i −0.317901 0.767482i −0.999365 0.0356300i \(-0.988656\pi\)
0.681464 0.731852i \(-0.261344\pi\)
\(522\) −2.00813 0.831794i −0.0878934 0.0364066i
\(523\) 20.3838i 0.891320i 0.895202 + 0.445660i \(0.147031\pi\)
−0.895202 + 0.445660i \(0.852969\pi\)
\(524\) 0.0392073 0.0946548i 0.00171278 0.00413501i
\(525\) −1.11289 + 1.11289i −0.0485706 + 0.0485706i
\(526\) 2.50631 0.109280
\(527\) 0 0
\(528\) 18.7192 0.814648
\(529\) 15.9869 15.9869i 0.695082 0.695082i
\(530\) 9.07774 21.9156i 0.394312 0.951952i
\(531\) 10.4025i 0.451428i
\(532\) −1.42109 0.588635i −0.0616121 0.0255205i
\(533\) −0.209012 0.504600i −0.00905333 0.0218567i
\(534\) −2.04800 + 0.848308i −0.0886254 + 0.0367099i
\(535\) −25.6132 25.6132i −1.10735 1.10735i
\(536\) 7.29790 + 7.29790i 0.315221 + 0.315221i
\(537\) 17.5662 7.27614i 0.758036 0.313989i
\(538\) 17.3363 + 41.8536i 0.747422 + 1.80444i
\(539\) 53.2085 + 22.0397i 2.29185 + 0.949316i
\(540\) 0.164673i 0.00708638i
\(541\) −8.62619 + 20.8255i −0.370869 + 0.895356i 0.622735 + 0.782433i \(0.286021\pi\)
−0.993604 + 0.112923i \(0.963979\pi\)
\(542\) 20.1559 20.1559i 0.865769 0.865769i
\(543\) 12.0196 0.515810
\(544\) 0 0
\(545\) −23.4720 −1.00543
\(546\) −5.30953 + 5.30953i −0.227227 + 0.227227i
\(547\) −1.26565 + 3.05554i −0.0541152 + 0.130646i −0.948625 0.316403i \(-0.897525\pi\)
0.894510 + 0.447049i \(0.147525\pi\)
\(548\) 0.560018i 0.0239228i
\(549\) 2.36404 + 0.979219i 0.100895 + 0.0417920i
\(550\) 0.882952 + 2.13163i 0.0376492 + 0.0908932i
\(551\) −6.79000 + 2.81251i −0.289264 + 0.119817i
\(552\) −1.22756 1.22756i −0.0522485 0.0522485i
\(553\) 52.4422 + 52.4422i 2.23007 + 2.23007i
\(554\) −3.09895 + 1.28363i −0.131662 + 0.0545362i
\(555\) 7.78587 + 18.7967i 0.330492 + 0.797877i
\(556\) −0.646163 0.267649i −0.0274034 0.0113509i
\(557\) 34.4355i 1.45908i 0.683938 + 0.729540i \(0.260266\pi\)
−0.683938 + 0.729540i \(0.739734\pi\)
\(558\) 4.81123 11.6153i 0.203676 0.491716i
\(559\) −1.25693 + 1.25693i −0.0531626 + 0.0531626i
\(560\) 42.5224 1.79690
\(561\) 0 0
\(562\) −0.440593 −0.0185853
\(563\) 3.32673 3.32673i 0.140205 0.140205i −0.633521 0.773726i \(-0.718391\pi\)
0.773726 + 0.633521i \(0.218391\pi\)
\(564\) 0.163921 0.395741i 0.00690234 0.0166637i
\(565\) 1.84829i 0.0777580i
\(566\) −24.3507 10.0864i −1.02353 0.423962i
\(567\) −1.69978 4.10362i −0.0713839 0.172336i
\(568\) −39.0918 + 16.1923i −1.64025 + 0.679416i
\(569\) 26.3569 + 26.3569i 1.10494 + 1.10494i 0.993806 + 0.111131i \(0.0354473\pi\)
0.111131 + 0.993806i \(0.464553\pi\)
\(570\) −11.4586 11.4586i −0.479947 0.479947i
\(571\) −18.7661 + 7.77318i −0.785337 + 0.325297i −0.739067 0.673632i \(-0.764733\pi\)
−0.0462700 + 0.998929i \(0.514733\pi\)
\(572\) 0.144742 + 0.349437i 0.00605195 + 0.0146107i
\(573\) −20.6119 8.53774i −0.861075 0.356669i
\(574\) 2.97221i 0.124058i
\(575\) 0.0848032 0.204733i 0.00353654 0.00853796i
\(576\) 5.44150 5.44150i 0.226729 0.226729i
\(577\) 33.5408 1.39632 0.698161 0.715941i \(-0.254002\pi\)
0.698161 + 0.715941i \(0.254002\pi\)
\(578\) 0 0
\(579\) −3.49591 −0.145285
\(580\) −0.175863 + 0.175863i −0.00730233 + 0.00730233i
\(581\) 7.57179 18.2799i 0.314131 0.758379i
\(582\) 5.52472i 0.229007i
\(583\) −29.7760 12.3336i −1.23320 0.510806i
\(584\) 2.87015 + 6.92916i 0.118768 + 0.286731i
\(585\) −2.51119 + 1.04017i −0.103825 + 0.0430058i
\(586\) −15.5344 15.5344i −0.641719 0.641719i
\(587\) 15.4407 + 15.4407i 0.637304 + 0.637304i 0.949890 0.312585i \(-0.101195\pi\)
−0.312585 + 0.949890i \(0.601195\pi\)
\(588\) −0.836905 + 0.346657i −0.0345134 + 0.0142959i
\(589\) −16.2680 39.2744i −0.670311 1.61828i
\(590\) 32.0046 + 13.2567i 1.31761 + 0.545771i
\(591\) 11.9973i 0.493501i
\(592\) 13.9209 33.6080i 0.572146 1.38128i
\(593\) −17.3995 + 17.3995i −0.714511 + 0.714511i −0.967476 0.252965i \(-0.918594\pi\)
0.252965 + 0.967476i \(0.418594\pi\)
\(594\) −6.51150 −0.267170
\(595\) 0 0
\(596\) −0.448377 −0.0183662
\(597\) −2.84435 + 2.84435i −0.116411 + 0.116411i
\(598\) 0.404590 0.976767i 0.0165449 0.0399430i
\(599\) 40.9057i 1.67136i 0.549215 + 0.835681i \(0.314927\pi\)
−0.549215 + 0.835681i \(0.685073\pi\)
\(600\) 0.908729 + 0.376408i 0.0370987 + 0.0153668i
\(601\) −14.1040 34.0500i −0.575313 1.38893i −0.896978 0.442074i \(-0.854243\pi\)
0.321666 0.946853i \(-0.395757\pi\)
\(602\) −8.93696 + 3.70181i −0.364243 + 0.150875i
\(603\) −2.62903 2.62903i −0.107062 0.107062i
\(604\) 0.544874 + 0.544874i 0.0221706 + 0.0221706i
\(605\) 20.2479 8.38696i 0.823195 0.340979i
\(606\) 6.56251 + 15.8433i 0.266584 + 0.643591i
\(607\) −44.5665 18.4600i −1.80890 0.749270i −0.982521 0.186150i \(-0.940399\pi\)
−0.826375 0.563120i \(-0.809601\pi\)
\(608\) 1.95806i 0.0794097i
\(609\) −2.56720 + 6.19778i −0.104028 + 0.251147i
\(610\) 6.02539 6.02539i 0.243961 0.243961i
\(611\) −7.07033 −0.286035
\(612\) 0 0
\(613\) 26.2900 1.06184 0.530922 0.847421i \(-0.321846\pi\)
0.530922 + 0.847421i \(0.321846\pi\)
\(614\) 30.5173 30.5173i 1.23158 1.23158i
\(615\) 0.411730 0.994004i 0.0166026 0.0400821i
\(616\) 55.7863i 2.24769i
\(617\) −3.61492 1.49735i −0.145531 0.0602810i 0.308729 0.951150i \(-0.400096\pi\)
−0.454260 + 0.890869i \(0.650096\pi\)
\(618\) 0.777864 + 1.87793i 0.0312903 + 0.0755415i
\(619\) 7.85884 3.25524i 0.315873 0.130839i −0.219114 0.975699i \(-0.570317\pi\)
0.534987 + 0.844860i \(0.320317\pi\)
\(620\) −1.01722 1.01722i −0.0408526 0.0408526i
\(621\) 0.442223 + 0.442223i 0.0177458 + 0.0177458i
\(622\) 31.0125 12.8458i 1.24349 0.515069i
\(623\) 2.61817 + 6.32082i 0.104895 + 0.253238i
\(624\) 4.48994 + 1.85980i 0.179742 + 0.0744514i
\(625\) 26.6461i 1.06585i
\(626\) 13.1940 31.8531i 0.527337 1.27310i
\(627\) −15.5684 + 15.5684i −0.621742 + 0.621742i
\(628\) −0.770368 −0.0307410
\(629\) 0 0
\(630\) −14.7915 −0.589307
\(631\) 5.13631 5.13631i 0.204473 0.204473i −0.597440 0.801913i \(-0.703815\pi\)
0.801913 + 0.597440i \(0.203815\pi\)
\(632\) 17.7372 42.8215i 0.705549 1.70335i
\(633\) 15.9602i 0.634360i
\(634\) 24.9759 + 10.3453i 0.991918 + 0.410866i
\(635\) −2.98147 7.19790i −0.118316 0.285640i
\(636\) 0.468340 0.193993i 0.0185709 0.00769232i
\(637\) 10.5728 + 10.5728i 0.418909 + 0.418909i
\(638\) 6.95400 + 6.95400i 0.275311 + 0.275311i
\(639\) 14.0826 5.83321i 0.557099 0.230758i
\(640\) −10.5196 25.3965i −0.415822 1.00388i
\(641\) −35.6808 14.7795i −1.40931 0.583755i −0.457158 0.889385i \(-0.651133\pi\)
−0.952150 + 0.305631i \(0.901133\pi\)
\(642\) 22.5285i 0.889130i
\(643\) −12.1073 + 29.2295i −0.477464 + 1.15270i 0.483331 + 0.875438i \(0.339427\pi\)
−0.960795 + 0.277261i \(0.910573\pi\)
\(644\) 0.139785 0.139785i 0.00550831 0.00550831i
\(645\) −3.50161 −0.137876
\(646\) 0 0
\(647\) 2.64576 0.104016 0.0520078 0.998647i \(-0.483438\pi\)
0.0520078 + 0.998647i \(0.483438\pi\)
\(648\) −1.96285 + 1.96285i −0.0771081 + 0.0771081i
\(649\) 18.0115 43.4835i 0.707012 1.70688i
\(650\) 0.599013i 0.0234952i
\(651\) −35.8489 14.8491i −1.40503 0.581982i
\(652\) −0.307146 0.741517i −0.0120288 0.0290400i
\(653\) 32.4620 13.4462i 1.27034 0.526191i 0.357271 0.934001i \(-0.383707\pi\)
0.913067 + 0.407810i \(0.133707\pi\)
\(654\) −10.3226 10.3226i −0.403646 0.403646i
\(655\) −2.35557 2.35557i −0.0920398 0.0920398i
\(656\) −1.77725 + 0.736162i −0.0693900 + 0.0287423i
\(657\) −1.03396 2.49619i −0.0403385 0.0973858i
\(658\) −35.5469 14.7240i −1.38576 0.574002i
\(659\) 23.7941i 0.926888i 0.886126 + 0.463444i \(0.153387\pi\)
−0.886126 + 0.463444i \(0.846613\pi\)
\(660\) −0.285124 + 0.688351i −0.0110985 + 0.0267940i
\(661\) −24.9657 + 24.9657i −0.971054 + 0.971054i −0.999593 0.0285391i \(-0.990914\pi\)
0.0285391 + 0.999593i \(0.490914\pi\)
\(662\) 34.0891 1.32491
\(663\) 0 0
\(664\) −12.3654 −0.479872
\(665\) −35.3651 + 35.3651i −1.37140 + 1.37140i
\(666\) −4.84241 + 11.6906i −0.187640 + 0.453002i
\(667\) 0.944550i 0.0365731i
\(668\) 0.813102 + 0.336798i 0.0314599 + 0.0130311i
\(669\) 2.04955 + 4.94805i 0.0792402 + 0.191303i
\(670\) −11.4390 + 4.73817i −0.441925 + 0.183051i
\(671\) −8.18650 8.18650i −0.316036 0.316036i
\(672\) 1.26379 + 1.26379i 0.0487519 + 0.0487519i
\(673\) −21.5310 + 8.91843i −0.829959 + 0.343780i −0.756887 0.653546i \(-0.773280\pi\)
−0.0730727 + 0.997327i \(0.523280\pi\)
\(674\) −3.34339 8.07166i −0.128783 0.310909i
\(675\) −0.327365 0.135599i −0.0126003 0.00521921i
\(676\) 0.826954i 0.0318059i
\(677\) 3.94269 9.51850i 0.151530 0.365826i −0.829827 0.558021i \(-0.811561\pi\)
0.981357 + 0.192195i \(0.0615608\pi\)
\(678\) 0.812847 0.812847i 0.0312172 0.0312172i
\(679\) −17.0512 −0.654365
\(680\) 0 0
\(681\) 1.71274 0.0656324
\(682\) −40.2230 + 40.2230i −1.54022 + 1.54022i
\(683\) −10.5585 + 25.4905i −0.404010 + 0.975368i 0.582672 + 0.812708i \(0.302007\pi\)
−0.986682 + 0.162660i \(0.947993\pi\)
\(684\) 0.346301i 0.0132412i
\(685\) −16.8229 6.96828i −0.642771 0.266244i
\(686\) 14.0144 + 33.8336i 0.535070 + 1.29177i
\(687\) −0.351646 + 0.145657i −0.0134161 + 0.00555714i
\(688\) 4.42704 + 4.42704i 0.168779 + 0.168779i
\(689\) −5.91663 5.91663i −0.225406 0.225406i
\(690\) 1.92412 0.796995i 0.0732499 0.0303411i
\(691\) 9.76768 + 23.5813i 0.371580 + 0.897073i 0.993483 + 0.113979i \(0.0363597\pi\)
−0.621903 + 0.783094i \(0.713640\pi\)
\(692\) −0.210223 0.0870773i −0.00799149 0.00331018i
\(693\) 20.0967i 0.763411i
\(694\) −3.92957 + 9.48682i −0.149164 + 0.360115i
\(695\) −16.0804 + 16.0804i −0.609963 + 0.609963i
\(696\) 4.19248 0.158916
\(697\) 0 0
\(698\) −22.7135 −0.859718
\(699\) 6.33766 6.33766i 0.239712 0.239712i
\(700\) −0.0428624 + 0.103479i −0.00162005 + 0.00391114i
\(701\) 14.8327i 0.560225i 0.959967 + 0.280113i \(0.0903718\pi\)
−0.959967 + 0.280113i \(0.909628\pi\)
\(702\) −1.56183 0.646933i −0.0589476 0.0244169i
\(703\) 16.3734 + 39.5290i 0.617536 + 1.49086i
\(704\) −32.1679 + 13.3244i −1.21237 + 0.502181i
\(705\) −9.84839 9.84839i −0.370912 0.370912i
\(706\) 35.8521 + 35.8521i 1.34931 + 1.34931i
\(707\) 48.8979 20.2542i 1.83900 0.761737i
\(708\) 0.283299 + 0.683943i 0.0106470 + 0.0257042i
\(709\) −4.33759 1.79669i −0.162902 0.0674761i 0.299742 0.954020i \(-0.403099\pi\)
−0.462644 + 0.886544i \(0.653099\pi\)
\(710\) 50.7607i 1.90502i
\(711\) −6.38975 + 15.4262i −0.239634 + 0.578528i
\(712\) 3.02339 3.02339i 0.113306 0.113306i
\(713\) 5.46342 0.204607
\(714\) 0 0
\(715\) 12.2981 0.459923
\(716\) 0.956787 0.956787i 0.0357568 0.0357568i
\(717\) −2.56753 + 6.19857i −0.0958862 + 0.231490i
\(718\) 37.0317i 1.38201i
\(719\) 0.381407 + 0.157984i 0.0142241 + 0.00589181i 0.389784 0.920906i \(-0.372550\pi\)
−0.375560 + 0.926798i \(0.622550\pi\)
\(720\) 3.66358 + 8.84467i 0.136534 + 0.329621i
\(721\) 5.79594 2.40076i 0.215852 0.0894089i
\(722\) −4.76197 4.76197i −0.177222 0.177222i
\(723\) 6.25076 + 6.25076i 0.232468 + 0.232468i
\(724\) 0.790266 0.327339i 0.0293700 0.0121655i
\(725\) 0.204798 + 0.494426i 0.00760600 + 0.0183625i
\(726\) 12.5932 + 5.21626i 0.467376 + 0.193594i
\(727\) 32.9236i 1.22107i −0.791990 0.610534i \(-0.790955\pi\)
0.791990 0.610534i \(-0.209045\pi\)
\(728\) 5.54250 13.3808i 0.205419 0.495925i
\(729\) 0.707107 0.707107i 0.0261891 0.0261891i
\(730\) −8.99753 −0.333013
\(731\) 0 0
\(732\) 0.182099 0.00673059
\(733\) −25.8776 + 25.8776i −0.955812 + 0.955812i −0.999064 0.0432525i \(-0.986228\pi\)
0.0432525 + 0.999064i \(0.486228\pi\)
\(734\) 4.54964 10.9838i 0.167930 0.405420i
\(735\) 29.4540i 1.08643i
\(736\) −0.232494 0.0963020i −0.00856983 0.00354974i
\(737\) 6.43760 + 15.5417i 0.237132 + 0.572487i
\(738\) 0.618220 0.256075i 0.0227570 0.00942625i
\(739\) −31.8384 31.8384i −1.17119 1.17119i −0.981926 0.189267i \(-0.939389\pi\)
−0.189267 0.981926i \(-0.560611\pi\)
\(740\) 1.02381 + 1.02381i 0.0376361 + 0.0376361i
\(741\) −5.28096 + 2.18745i −0.194001 + 0.0803579i
\(742\) −17.4251 42.0680i −0.639697 1.54437i
\(743\) 18.2394 + 7.55501i 0.669139 + 0.277167i 0.691279 0.722588i \(-0.257048\pi\)
−0.0221393 + 0.999755i \(0.507048\pi\)
\(744\) 24.2500i 0.889047i
\(745\) −5.57914 + 13.4692i −0.204404 + 0.493475i
\(746\) −23.8493 + 23.8493i −0.873184 + 0.873184i
\(747\) 4.45459 0.162985
\(748\) 0 0
\(749\) −69.5308 −2.54060
\(750\) 10.9394 10.9394i 0.399450 0.399450i
\(751\) −8.90272 + 21.4931i −0.324865 + 0.784294i 0.674093 + 0.738647i \(0.264535\pi\)
−0.998958 + 0.0456467i \(0.985465\pi\)
\(752\) 24.9024i 0.908097i
\(753\) −22.5605 9.34487i −0.822151 0.340546i
\(754\) 0.977075 + 2.35887i 0.0355830 + 0.0859049i
\(755\) 23.1479 9.58816i 0.842437 0.348949i
\(756\) −0.223514 0.223514i −0.00812914 0.00812914i
\(757\) 6.94688 + 6.94688i 0.252489 + 0.252489i 0.821990 0.569502i \(-0.192864\pi\)
−0.569502 + 0.821990i \(0.692864\pi\)
\(758\) −20.0266 + 8.29530i −0.727400 + 0.301299i
\(759\) −1.08285 2.61424i −0.0393050 0.0948907i
\(760\) 28.8773 + 11.9614i 1.04749 + 0.433884i
\(761\) 38.2412i 1.38624i −0.720822 0.693121i \(-0.756235\pi\)
0.720822 0.693121i \(-0.243765\pi\)
\(762\) 1.85432 4.47673i 0.0671750 0.162175i
\(763\) −31.8592 + 31.8592i −1.15338 + 1.15338i
\(764\) −1.58771 −0.0574414
\(765\) 0 0
\(766\) 23.0236 0.831876
\(767\) 8.64039 8.64039i 0.311986 0.311986i
\(768\) 0.652793 1.57598i 0.0235557 0.0568684i
\(769\) 44.2020i 1.59396i −0.604002 0.796982i \(-0.706428\pi\)
0.604002 0.796982i \(-0.293572\pi\)
\(770\) 61.8302 + 25.6109i 2.22821 + 0.922953i
\(771\) 9.92402 + 23.9587i 0.357405 + 0.862852i
\(772\) −0.229850 + 0.0952070i −0.00827248 + 0.00342657i
\(773\) 3.60023 + 3.60023i 0.129491 + 0.129491i 0.768882 0.639391i \(-0.220813\pi\)
−0.639391 + 0.768882i \(0.720813\pi\)
\(774\) −1.53995 1.53995i −0.0553525 0.0553525i
\(775\) −2.85983 + 1.18458i −0.102728 + 0.0425515i
\(776\) 4.07798 + 9.84511i 0.146391 + 0.353419i
\(777\) 36.0813 + 14.9453i 1.29441 + 0.536161i
\(778\) 4.30295i 0.154268i
\(779\) 0.865856 2.09036i 0.0310225 0.0748949i
\(780\) −0.136779 + 0.136779i −0.00489746 + 0.00489746i
\(781\) −68.9670 −2.46783
\(782\) 0 0
\(783\) −1.51032 −0.0539744
\(784\) 37.2384 37.2384i 1.32994 1.32994i
\(785\) −9.58567 + 23.1418i −0.342127 + 0.825968i
\(786\) 2.07189i 0.0739017i
\(787\) 8.56912 + 3.54944i 0.305456 + 0.126524i 0.530146 0.847906i \(-0.322137\pi\)
−0.224690 + 0.974430i \(0.572137\pi\)
\(788\) −0.326731 0.788798i −0.0116393 0.0280998i
\(789\) 1.60895 0.666448i 0.0572801 0.0237262i
\(790\) 39.3178 + 39.3178i 1.39886 + 1.39886i
\(791\) −2.50873 2.50873i −0.0892000 0.0892000i
\(792\) 11.6036 4.80635i 0.412314 0.170786i
\(793\) −1.15025 2.77695i −0.0408465 0.0986123i
\(794\) −16.8230 6.96833i −0.597028 0.247297i
\(795\) 16.4828i 0.584584i
\(796\) −0.109548 + 0.264473i −0.00388284 + 0.00937399i
\(797\) 17.4851 17.4851i 0.619353 0.619353i −0.326013 0.945365i \(-0.605705\pi\)
0.945365 + 0.326013i \(0.105705\pi\)
\(798\) −31.1061 −1.10114
\(799\) 0 0
\(800\) 0.142579 0.00504094
\(801\) −1.08916 + 1.08916i −0.0384835 + 0.0384835i
\(802\) −8.07874 + 19.5038i −0.285270 + 0.688703i
\(803\) 12.2246i 0.431398i
\(804\) −0.244453 0.101256i −0.00862118 0.00357101i
\(805\) −2.45980 5.93849i −0.0866967 0.209304i
\(806\) −13.6441 + 5.65156i −0.480592 + 0.199068i
\(807\) 22.2585 + 22.2585i 0.783535 + 0.783535i
\(808\) −23.3889 23.3889i −0.822820 0.822820i
\(809\) −27.4403 + 11.3661i −0.964750 + 0.399613i −0.808755 0.588145i \(-0.799858\pi\)
−0.155995 + 0.987758i \(0.549858\pi\)
\(810\) −1.27438 3.07663i −0.0447772 0.108102i
\(811\) 26.1245 + 10.8211i 0.917357 + 0.379982i 0.790868 0.611986i \(-0.209629\pi\)
0.126489 + 0.991968i \(0.459629\pi\)
\(812\) 0.477408i 0.0167537i
\(813\) 7.57965 18.2989i 0.265830 0.641770i
\(814\) 40.4837 40.4837i 1.41895 1.41895i
\(815\) −26.0970 −0.914137
\(816\) 0 0
\(817\) −7.36378 −0.257626
\(818\) −16.6098 + 16.6098i −0.580747 + 0.580747i
\(819\) −1.99666 + 4.82036i −0.0697689 + 0.168437i
\(820\) 0.0765670i 0.00267383i
\(821\) −39.6154 16.4093i −1.38259 0.572687i −0.437416 0.899259i \(-0.644106\pi\)
−0.945172 + 0.326572i \(0.894106\pi\)
\(822\) −4.33391 10.4630i −0.151163 0.364939i
\(823\) −26.9738 + 11.1729i −0.940249 + 0.389464i −0.799557 0.600590i \(-0.794932\pi\)
−0.140691 + 0.990054i \(0.544932\pi\)
\(824\) −2.77233 2.77233i −0.0965785 0.0965785i
\(825\) 1.13364 + 1.13364i 0.0394683 + 0.0394683i
\(826\) 61.4343 25.4469i 2.13757 0.885411i
\(827\) −19.5285 47.1459i −0.679071 1.63942i −0.765712 0.643183i \(-0.777613\pi\)
0.0866414 0.996240i \(-0.472387\pi\)
\(828\) 0.0411187 + 0.0170319i 0.00142898 + 0.000591901i
\(829\) 16.2122i 0.563072i −0.959551 0.281536i \(-0.909156\pi\)
0.959551 0.281536i \(-0.0908438\pi\)
\(830\) 5.67685 13.7051i 0.197046 0.475712i
\(831\) −1.64808 + 1.64808i −0.0571712 + 0.0571712i
\(832\) −9.03952 −0.313389
\(833\) 0 0
\(834\) −14.1438 −0.489759
\(835\) 20.2348 20.2348i 0.700254 0.700254i
\(836\) −0.599608 + 1.44758i −0.0207379 + 0.0500656i
\(837\) 8.73592i 0.301958i
\(838\) 20.8878 + 8.65201i 0.721557 + 0.298879i
\(839\) −13.6913 33.0538i −0.472678 1.14114i −0.962975 0.269590i \(-0.913112\pi\)
0.490298 0.871555i \(-0.336888\pi\)
\(840\) 26.3586 10.9181i 0.909458 0.376710i
\(841\) −18.8931 18.8931i −0.651488 0.651488i
\(842\) 22.4933 + 22.4933i 0.775172 + 0.775172i
\(843\) −0.282843 + 0.117157i −0.00974164 + 0.00403512i
\(844\) 0.434656 + 1.04935i 0.0149615 + 0.0361202i
\(845\) −24.8417 10.2898i −0.854580 0.353978i
\(846\) 8.66233i 0.297817i
\(847\) 16.0992 38.8669i 0.553174 1.33548i
\(848\) −20.8390 + 20.8390i −0.715613 + 0.715613i
\(849\) −18.3142 −0.628542
\(850\) 0 0
\(851\) −5.49883 −0.188498
\(852\) 0.767046 0.767046i 0.0262786 0.0262786i
\(853\) 19.8733 47.9783i 0.680447 1.64275i −0.0827423 0.996571i \(-0.526368\pi\)
0.763190 0.646174i \(-0.223632\pi\)
\(854\) 16.3568i 0.559720i
\(855\) −10.4029 4.30902i −0.355771 0.147365i
\(856\) 16.6290 + 40.1461i 0.568369 + 1.37216i
\(857\) 33.7150 13.9652i 1.15168 0.477043i 0.276586 0.960989i \(-0.410797\pi\)
0.875098 + 0.483946i \(0.160797\pi\)
\(858\) 5.40851 + 5.40851i 0.184644 + 0.184644i
\(859\) −18.4107 18.4107i −0.628166 0.628166i 0.319440 0.947606i \(-0.396505\pi\)
−0.947606 + 0.319440i \(0.896505\pi\)
\(860\) −0.230225 + 0.0953622i −0.00785060 + 0.00325182i
\(861\) −0.790336 1.90804i −0.0269346 0.0650258i
\(862\) 5.52488 + 2.28848i 0.188178 + 0.0779460i
\(863\) 37.5428i 1.27797i 0.769218 + 0.638986i \(0.220646\pi\)
−0.769218 + 0.638986i \(0.779354\pi\)
\(864\) −0.153985 + 0.371753i −0.00523869 + 0.0126473i
\(865\) −5.23160 + 5.23160i −0.177880 + 0.177880i
\(866\) −18.8192 −0.639502
\(867\) 0 0
\(868\) −2.76140 −0.0937280
\(869\) 53.4198 53.4198i 1.81214 1.81214i
\(870\) −1.92473 + 4.64670i −0.0652543 + 0.157538i
\(871\) 4.36740i 0.147984i
\(872\) 26.0145 + 10.7756i 0.880962 + 0.364906i
\(873\) −1.46907 3.54665i −0.0497205 0.120036i
\(874\) 4.04636 1.67606i 0.136870 0.0566935i
\(875\) −33.7627 33.7627i −1.14139 1.14139i
\(876\) −0.135962 0.135962i −0.00459372 0.00459372i
\(877\) −36.0995 + 14.9529i −1.21899 + 0.504923i −0.897089 0.441849i \(-0.854323\pi\)
−0.321903 + 0.946773i \(0.604323\pi\)
\(878\) 6.38518 + 15.4152i 0.215489 + 0.520238i
\(879\) −14.1032 5.84173i −0.475688 0.197037i
\(880\) 43.3151i 1.46015i
\(881\) 16.9276 40.8669i 0.570306 1.37684i −0.330989 0.943635i \(-0.607382\pi\)
0.901295 0.433206i \(-0.142618\pi\)
\(882\) −12.9534 + 12.9534i −0.436164 + 0.436164i
\(883\) 21.8625 0.735733 0.367866 0.929879i \(-0.380088\pi\)
0.367866 + 0.929879i \(0.380088\pi\)
\(884\) 0 0
\(885\) 24.0707 0.809128
\(886\) 17.9734 17.9734i 0.603829 0.603829i
\(887\) 0.167234 0.403739i 0.00561517 0.0135562i −0.921047 0.389451i \(-0.872665\pi\)
0.926662 + 0.375895i \(0.122665\pi\)
\(888\) 24.4071i 0.819050i
\(889\) −13.8167 5.72307i −0.463398 0.191946i
\(890\) 1.96294 + 4.73895i 0.0657978 + 0.158850i
\(891\) −4.18012 + 1.73146i −0.140039 + 0.0580062i
\(892\) 0.269509 + 0.269509i 0.00902381 + 0.00902381i
\(893\) −20.7109 20.7109i −0.693063 0.693063i
\(894\) −8.37717 + 3.46994i −0.280175 + 0.116052i
\(895\) −16.8366 40.6471i −0.562785 1.35868i
\(896\) −48.7498 20.1928i −1.62862 0.674594i
\(897\) 0.734629i 0.0245285i
\(898\) 19.3538 46.7242i 0.645845 1.55921i
\(899\) −9.32959 + 9.32959i −0.311159 + 0.311159i
\(900\) −0.0252165 −0.000840551
\(901\) 0 0
\(902\) −3.02762 −0.100809
\(903\) −4.75283 + 4.75283i −0.158164 + 0.158164i
\(904\) −0.848513 + 2.04849i −0.0282211 + 0.0681318i
\(905\) 27.8127i 0.924524i
\(906\) 14.3968 + 5.96334i 0.478301 + 0.198119i
\(907\) 6.50831 + 15.7125i 0.216105 + 0.521724i 0.994339 0.106250i \(-0.0338845\pi\)
−0.778234 + 0.627974i \(0.783884\pi\)
\(908\) 0.112610 0.0466444i 0.00373708 0.00154795i
\(909\) 8.42574 + 8.42574i 0.279464 + 0.279464i
\(910\) 12.2860 + 12.2860i 0.407276 + 0.407276i
\(911\) −17.6827 + 7.32440i −0.585853 + 0.242668i −0.655865 0.754878i \(-0.727696\pi\)
0.0700126 + 0.997546i \(0.477696\pi\)
\(912\) 7.70440 + 18.6001i 0.255118 + 0.615910i
\(913\) −18.6207 7.71295i −0.616255 0.255261i
\(914\) 35.4472i 1.17249i
\(915\) 2.26586 5.47027i 0.0749070 0.180841i
\(916\) −0.0191533 + 0.0191533i −0.000632843 + 0.000632843i
\(917\) −6.39456 −0.211167
\(918\) 0 0
\(919\) −48.0934 −1.58645 −0.793227 0.608926i \(-0.791601\pi\)
−0.793227 + 0.608926i \(0.791601\pi\)
\(920\) −2.84051 + 2.84051i −0.0936488 + 0.0936488i
\(921\) 11.4761 27.7057i 0.378149 0.912934i
\(922\) 1.44509i 0.0475916i
\(923\) −16.5423 6.85203i −0.544496 0.225537i
\(924\) 0.547310 + 1.32132i 0.0180052 + 0.0434683i
\(925\) 2.87837 1.19226i 0.0946402 0.0392013i
\(926\) 20.8208 + 20.8208i 0.684214 + 0.684214i
\(927\) 0.998716 + 0.998716i 0.0328021 + 0.0328021i
\(928\) 0.561467 0.232567i 0.0184310 0.00763439i
\(929\) −1.99849 4.82478i −0.0655683 0.158296i 0.887699 0.460424i \(-0.152303\pi\)
−0.953267 + 0.302129i \(0.902303\pi\)
\(930\) −26.8772 11.1329i −0.881339 0.365063i
\(931\) 61.9410i 2.03003i
\(932\) 0.244091 0.589289i 0.00799548 0.0193028i
\(933\) 16.4930 16.4930i 0.539955 0.539955i
\(934\) 50.6092 1.65598
\(935\) 0 0
\(936\) 3.26073 0.106580
\(937\) 4.62160 4.62160i 0.150981 0.150981i −0.627575 0.778556i \(-0.715952\pi\)
0.778556 + 0.627575i \(0.215952\pi\)
\(938\) −9.09514 + 21.9576i −0.296967 + 0.716942i
\(939\) 23.9568i 0.781800i
\(940\) −0.915723 0.379305i −0.0298676 0.0123716i
\(941\) −3.23443 7.80860i −0.105439 0.254553i 0.862351 0.506311i \(-0.168991\pi\)
−0.967790 + 0.251758i \(0.918991\pi\)
\(942\) −14.3930 + 5.96179i −0.468951 + 0.194246i
\(943\) 0.205618 + 0.205618i 0.00669584 + 0.00669584i
\(944\) −30.4323 30.4323i −0.990487 0.990487i
\(945\) −9.49555 + 3.93318i −0.308890 + 0.127947i
\(946\) 3.77082 + 9.10356i 0.122600 + 0.295982i
\(947\) 42.8011 + 17.7288i 1.39085 + 0.576109i 0.947360 0.320171i \(-0.103740\pi\)
0.443489 + 0.896280i \(0.353740\pi\)
\(948\) 1.18826i 0.0385930i
\(949\) −1.21455 + 2.93218i −0.0394259 + 0.0951825i
\(950\) −1.75467 + 1.75467i −0.0569289 + 0.0569289i
\(951\) 18.7844 0.609126
\(952\) 0 0
\(953\) 34.8809 1.12990 0.564951 0.825124i \(-0.308895\pi\)
0.564951 + 0.825124i \(0.308895\pi\)
\(954\) 7.24886 7.24886i 0.234691 0.234691i
\(955\) −19.7558 + 47.6948i −0.639284 + 1.54337i
\(956\) 0.477468i 0.0154424i
\(957\) 6.31332 + 2.61506i 0.204081 + 0.0845329i
\(958\) 2.12432 + 5.12856i 0.0686337 + 0.165696i
\(959\) −32.2924 + 13.3759i −1.04278 + 0.431932i
\(960\) −12.5913 12.5913i −0.406383 0.406383i
\(961\) −32.0435 32.0435i −1.03366 1.03366i
\(962\) 13.7325 5.68818i 0.442753 0.183394i
\(963\) −5.99053 14.4624i −0.193042 0.466045i
\(964\) 0.581208 + 0.240744i 0.0187194 + 0.00775385i
\(965\) 8.08934i 0.260405i
\(966\) 1.52987 3.69344i 0.0492228 0.118834i
\(967\) 31.9196 31.9196i 1.02647 1.02647i 0.0268254 0.999640i \(-0.491460\pi\)
0.999640 0.0268254i \(-0.00853983\pi\)
\(968\) −26.2915 −0.845039
\(969\) 0 0
\(970\) −12.7839 −0.410466
\(971\) −29.8403 + 29.8403i −0.957619 + 0.957619i −0.999138 0.0415185i \(-0.986780\pi\)
0.0415185 + 0.999138i \(0.486780\pi\)
\(972\) 0.0272338 0.0657482i 0.000873524 0.00210887i
\(973\) 43.6526i 1.39944i
\(974\) −27.0826 11.2180i −0.867782 0.359447i
\(975\) 0.159283 + 0.384542i 0.00510113 + 0.0123152i
\(976\) −9.78068 + 4.05129i −0.313072 + 0.129679i
\(977\) −26.8753 26.8753i −0.859818 0.859818i 0.131498 0.991316i \(-0.458021\pi\)
−0.991316 + 0.131498i \(0.958021\pi\)
\(978\) −11.4770 11.4770i −0.366995 0.366995i
\(979\) 6.43865 2.66698i 0.205780 0.0852370i
\(980\) 0.802146 + 1.93655i 0.0256236 + 0.0618608i
\(981\) −9.37158 3.88184i −0.299212 0.123937i
\(982\) 9.19154i 0.293314i
\(983\) 16.6000 40.0759i 0.529458 1.27822i −0.402421 0.915455i \(-0.631831\pi\)
0.931879 0.362769i \(-0.118169\pi\)
\(984\) −0.912657 + 0.912657i −0.0290944 + 0.0290944i
\(985\) −27.7610 −0.884539
\(986\) 0 0
\(987\) −26.7349 −0.850983
\(988\) −0.287641 + 0.287641i −0.00915109 + 0.00915109i
\(989\) 0.362169 0.874353i 0.0115163 0.0278028i
\(990\) 15.0672i 0.478868i
\(991\) 37.1943 + 15.4064i 1.18151 + 0.489399i 0.884983 0.465624i \(-0.154170\pi\)
0.296532 + 0.955023i \(0.404170\pi\)
\(992\) 1.34520 + 3.24761i 0.0427103 + 0.103112i
\(993\) 21.8838 9.06459i 0.694463 0.287656i
\(994\) −68.8989 68.8989i −2.18534 2.18534i
\(995\) 6.58166 + 6.58166i 0.208653 + 0.208653i
\(996\) 0.292881 0.121315i 0.00928029 0.00384402i
\(997\) 12.1801 + 29.4054i 0.385749 + 0.931279i 0.990830 + 0.135116i \(0.0431406\pi\)
−0.605081 + 0.796164i \(0.706859\pi\)
\(998\) 2.18567 + 0.905333i 0.0691861 + 0.0286578i
\(999\) 8.79254i 0.278184i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 867.2.h.m.688.10 48
17.2 even 8 inner 867.2.h.m.712.9 48
17.3 odd 16 867.2.e.k.616.4 24
17.4 even 4 inner 867.2.h.m.757.3 48
17.5 odd 16 867.2.e.k.829.10 24
17.6 odd 16 867.2.d.g.577.9 12
17.7 odd 16 867.2.a.o.1.2 6
17.8 even 8 inner 867.2.h.m.733.3 48
17.9 even 8 inner 867.2.h.m.733.4 48
17.10 odd 16 867.2.a.p.1.2 yes 6
17.11 odd 16 867.2.d.g.577.10 12
17.12 odd 16 867.2.e.k.829.9 24
17.13 even 4 inner 867.2.h.m.757.4 48
17.14 odd 16 867.2.e.k.616.3 24
17.15 even 8 inner 867.2.h.m.712.10 48
17.16 even 2 inner 867.2.h.m.688.9 48
51.41 even 16 2601.2.a.bh.1.5 6
51.44 even 16 2601.2.a.bi.1.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
867.2.a.o.1.2 6 17.7 odd 16
867.2.a.p.1.2 yes 6 17.10 odd 16
867.2.d.g.577.9 12 17.6 odd 16
867.2.d.g.577.10 12 17.11 odd 16
867.2.e.k.616.3 24 17.14 odd 16
867.2.e.k.616.4 24 17.3 odd 16
867.2.e.k.829.9 24 17.12 odd 16
867.2.e.k.829.10 24 17.5 odd 16
867.2.h.m.688.9 48 17.16 even 2 inner
867.2.h.m.688.10 48 1.1 even 1 trivial
867.2.h.m.712.9 48 17.2 even 8 inner
867.2.h.m.712.10 48 17.15 even 8 inner
867.2.h.m.733.3 48 17.8 even 8 inner
867.2.h.m.733.4 48 17.9 even 8 inner
867.2.h.m.757.3 48 17.4 even 4 inner
867.2.h.m.757.4 48 17.13 even 4 inner
2601.2.a.bh.1.5 6 51.41 even 16
2601.2.a.bi.1.5 6 51.44 even 16