Properties

Label 867.2.e.k.829.9
Level $867$
Weight $2$
Character 867.829
Analytic conductor $6.923$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [867,2,Mod(616,867)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("867.616"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(867, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 867 = 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 867.e (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,-36,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.92302985525\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 829.9
Character \(\chi\) \(=\) 867.829
Dual form 867.2.e.k.616.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.43915i q^{2} +(-0.707107 - 0.707107i) q^{3} -0.0711653 q^{4} +(-1.63621 - 1.63621i) q^{5} +(1.01764 - 1.01764i) q^{6} +(-3.14078 + 3.14078i) q^{7} +2.77589i q^{8} +1.00000i q^{9} +(2.35475 - 2.35475i) q^{10} +(3.19932 - 3.19932i) q^{11} +(0.0503215 + 0.0503215i) q^{12} -1.17466 q^{13} +(-4.52006 - 4.52006i) q^{14} +2.31394i q^{15} -4.13727 q^{16} -1.43915 q^{18} -4.86615i q^{19} +(0.116441 + 0.116441i) q^{20} +4.44173 q^{21} +(4.60432 + 4.60432i) q^{22} +(0.442223 - 0.442223i) q^{23} +(1.96285 - 1.96285i) q^{24} +0.354337i q^{25} -1.69052i q^{26} +(0.707107 - 0.707107i) q^{27} +(0.223514 - 0.223514i) q^{28} +(-1.06796 - 1.06796i) q^{29} -3.33012 q^{30} +(-6.17723 - 6.17723i) q^{31} -0.402383i q^{32} -4.52453 q^{33} +10.2779 q^{35} -0.0711653i q^{36} +(-6.21727 - 6.21727i) q^{37} +7.00315 q^{38} +(0.830610 + 0.830610i) q^{39} +(4.54193 - 4.54193i) q^{40} +(-0.328780 + 0.328780i) q^{41} +6.39233i q^{42} -1.51327i q^{43} +(-0.227681 + 0.227681i) q^{44} +(1.63621 - 1.63621i) q^{45} +(0.636427 + 0.636427i) q^{46} -6.01904 q^{47} +(2.92549 + 2.92549i) q^{48} -12.7289i q^{49} -0.509946 q^{50} +0.0835951 q^{52} -7.12324i q^{53} +(1.01764 + 1.01764i) q^{54} -10.4695 q^{55} +(-8.71845 - 8.71845i) q^{56} +(-3.44089 + 3.44089i) q^{57} +(1.53696 - 1.53696i) q^{58} -10.4025i q^{59} -0.164673i q^{60} +(1.80936 - 1.80936i) q^{61} +(8.88999 - 8.88999i) q^{62} +(-3.14078 - 3.14078i) q^{63} -7.69544 q^{64} +(1.92198 + 1.92198i) q^{65} -6.51150i q^{66} -3.71801 q^{67} -0.625397 q^{69} +14.7915i q^{70} +(10.7784 + 10.7784i) q^{71} -2.77589 q^{72} +(1.91050 + 1.91050i) q^{73} +(8.94761 - 8.94761i) q^{74} +(0.250554 - 0.250554i) q^{75} +0.346301i q^{76} +20.0967i q^{77} +(-1.19538 + 1.19538i) q^{78} +(-11.8067 + 11.8067i) q^{79} +(6.76942 + 6.76942i) q^{80} -1.00000 q^{81} +(-0.473165 - 0.473165i) q^{82} +4.45459i q^{83} -0.316097 q^{84} +2.17782 q^{86} +1.51032i q^{87} +(8.88098 + 8.88098i) q^{88} -1.54030 q^{89} +(2.35475 + 2.35475i) q^{90} +(3.68934 - 3.68934i) q^{91} +(-0.0314709 + 0.0314709i) q^{92} +8.73592i q^{93} -8.66233i q^{94} +(-7.96203 + 7.96203i) q^{95} +(-0.284528 + 0.284528i) q^{96} +(-2.71449 - 2.71449i) q^{97} +18.3189 q^{98} +(3.19932 + 3.19932i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 36 q^{4} - 36 q^{13} + 60 q^{16} + 12 q^{18} - 12 q^{21} - 48 q^{30} - 36 q^{33} + 24 q^{38} - 96 q^{47} + 48 q^{50} - 72 q^{52} + 96 q^{55} - 96 q^{64} - 24 q^{67} - 36 q^{69} - 48 q^{72} - 24 q^{81}+ \cdots + 228 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/867\mathbb{Z}\right)^\times\).

\(n\) \(290\) \(292\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.43915i 1.01764i 0.860874 + 0.508818i \(0.169917\pi\)
−0.860874 + 0.508818i \(0.830083\pi\)
\(3\) −0.707107 0.707107i −0.408248 0.408248i
\(4\) −0.0711653 −0.0355827
\(5\) −1.63621 1.63621i −0.731733 0.731733i 0.239230 0.970963i \(-0.423105\pi\)
−0.970963 + 0.239230i \(0.923105\pi\)
\(6\) 1.01764 1.01764i 0.415448 0.415448i
\(7\) −3.14078 + 3.14078i −1.18710 + 1.18710i −0.209236 + 0.977865i \(0.567098\pi\)
−0.977865 + 0.209236i \(0.932902\pi\)
\(8\) 2.77589i 0.981426i
\(9\) 1.00000i 0.333333i
\(10\) 2.35475 2.35475i 0.744638 0.744638i
\(11\) 3.19932 3.19932i 0.964633 0.964633i −0.0347629 0.999396i \(-0.511068\pi\)
0.999396 + 0.0347629i \(0.0110676\pi\)
\(12\) 0.0503215 + 0.0503215i 0.0145266 + 0.0145266i
\(13\) −1.17466 −0.325792 −0.162896 0.986643i \(-0.552084\pi\)
−0.162896 + 0.986643i \(0.552084\pi\)
\(14\) −4.52006 4.52006i −1.20804 1.20804i
\(15\) 2.31394i 0.597458i
\(16\) −4.13727 −1.03432
\(17\) 0 0
\(18\) −1.43915 −0.339212
\(19\) 4.86615i 1.11637i −0.829716 0.558186i \(-0.811498\pi\)
0.829716 0.558186i \(-0.188502\pi\)
\(20\) 0.116441 + 0.116441i 0.0260370 + 0.0260370i
\(21\) 4.44173 0.969264
\(22\) 4.60432 + 4.60432i 0.981645 + 0.981645i
\(23\) 0.442223 0.442223i 0.0922098 0.0922098i −0.659497 0.751707i \(-0.729231\pi\)
0.751707 + 0.659497i \(0.229231\pi\)
\(24\) 1.96285 1.96285i 0.400665 0.400665i
\(25\) 0.354337i 0.0708674i
\(26\) 1.69052i 0.331538i
\(27\) 0.707107 0.707107i 0.136083 0.136083i
\(28\) 0.223514 0.223514i 0.0422402 0.0422402i
\(29\) −1.06796 1.06796i −0.198315 0.198315i 0.600963 0.799277i \(-0.294784\pi\)
−0.799277 + 0.600963i \(0.794784\pi\)
\(30\) −3.33012 −0.607994
\(31\) −6.17723 6.17723i −1.10946 1.10946i −0.993221 0.116243i \(-0.962915\pi\)
−0.116243 0.993221i \(-0.537085\pi\)
\(32\) 0.402383i 0.0711319i
\(33\) −4.52453 −0.787619
\(34\) 0 0
\(35\) 10.2779 1.73728
\(36\) 0.0711653i 0.0118609i
\(37\) −6.21727 6.21727i −1.02211 1.02211i −0.999750 0.0223623i \(-0.992881\pi\)
−0.0223623 0.999750i \(-0.507119\pi\)
\(38\) 7.00315 1.13606
\(39\) 0.830610 + 0.830610i 0.133004 + 0.133004i
\(40\) 4.54193 4.54193i 0.718142 0.718142i
\(41\) −0.328780 + 0.328780i −0.0513468 + 0.0513468i −0.732314 0.680967i \(-0.761560\pi\)
0.680967 + 0.732314i \(0.261560\pi\)
\(42\) 6.39233i 0.986358i
\(43\) 1.51327i 0.230771i −0.993321 0.115385i \(-0.963190\pi\)
0.993321 0.115385i \(-0.0368103\pi\)
\(44\) −0.227681 + 0.227681i −0.0343242 + 0.0343242i
\(45\) 1.63621 1.63621i 0.243911 0.243911i
\(46\) 0.636427 + 0.636427i 0.0938360 + 0.0938360i
\(47\) −6.01904 −0.877968 −0.438984 0.898495i \(-0.644661\pi\)
−0.438984 + 0.898495i \(0.644661\pi\)
\(48\) 2.92549 + 2.92549i 0.422258 + 0.422258i
\(49\) 12.7289i 1.81842i
\(50\) −0.509946 −0.0721172
\(51\) 0 0
\(52\) 0.0835951 0.0115925
\(53\) 7.12324i 0.978452i −0.872157 0.489226i \(-0.837279\pi\)
0.872157 0.489226i \(-0.162721\pi\)
\(54\) 1.01764 + 1.01764i 0.138483 + 0.138483i
\(55\) −10.4695 −1.41171
\(56\) −8.71845 8.71845i −1.16505 1.16505i
\(57\) −3.44089 + 3.44089i −0.455757 + 0.455757i
\(58\) 1.53696 1.53696i 0.201812 0.201812i
\(59\) 10.4025i 1.35429i −0.735852 0.677143i \(-0.763218\pi\)
0.735852 0.677143i \(-0.236782\pi\)
\(60\) 0.164673i 0.0212591i
\(61\) 1.80936 1.80936i 0.231665 0.231665i −0.581722 0.813387i \(-0.697621\pi\)
0.813387 + 0.581722i \(0.197621\pi\)
\(62\) 8.88999 8.88999i 1.12903 1.12903i
\(63\) −3.14078 3.14078i −0.395700 0.395700i
\(64\) −7.69544 −0.961930
\(65\) 1.92198 + 1.92198i 0.238393 + 0.238393i
\(66\) 6.51150i 0.801510i
\(67\) −3.71801 −0.454227 −0.227114 0.973868i \(-0.572929\pi\)
−0.227114 + 0.973868i \(0.572929\pi\)
\(68\) 0 0
\(69\) −0.625397 −0.0752890
\(70\) 14.7915i 1.76792i
\(71\) 10.7784 + 10.7784i 1.27916 + 1.27916i 0.941140 + 0.338016i \(0.109756\pi\)
0.338016 + 0.941140i \(0.390244\pi\)
\(72\) −2.77589 −0.327142
\(73\) 1.91050 + 1.91050i 0.223608 + 0.223608i 0.810016 0.586408i \(-0.199459\pi\)
−0.586408 + 0.810016i \(0.699459\pi\)
\(74\) 8.94761 8.94761i 1.04014 1.04014i
\(75\) 0.250554 0.250554i 0.0289315 0.0289315i
\(76\) 0.346301i 0.0397235i
\(77\) 20.0967i 2.29023i
\(78\) −1.19538 + 1.19538i −0.135350 + 0.135350i
\(79\) −11.8067 + 11.8067i −1.32836 + 1.32836i −0.421557 + 0.906802i \(0.638516\pi\)
−0.906802 + 0.421557i \(0.861484\pi\)
\(80\) 6.76942 + 6.76942i 0.756844 + 0.756844i
\(81\) −1.00000 −0.111111
\(82\) −0.473165 0.473165i −0.0522523 0.0522523i
\(83\) 4.45459i 0.488954i 0.969655 + 0.244477i \(0.0786163\pi\)
−0.969655 + 0.244477i \(0.921384\pi\)
\(84\) −0.316097 −0.0344890
\(85\) 0 0
\(86\) 2.17782 0.234841
\(87\) 1.51032i 0.161923i
\(88\) 8.88098 + 8.88098i 0.946715 + 0.946715i
\(89\) −1.54030 −0.163272 −0.0816359 0.996662i \(-0.526014\pi\)
−0.0816359 + 0.996662i \(0.526014\pi\)
\(90\) 2.35475 + 2.35475i 0.248213 + 0.248213i
\(91\) 3.68934 3.68934i 0.386748 0.386748i
\(92\) −0.0314709 + 0.0314709i −0.00328107 + 0.00328107i
\(93\) 8.73592i 0.905873i
\(94\) 8.66233i 0.893451i
\(95\) −7.96203 + 7.96203i −0.816887 + 0.816887i
\(96\) −0.284528 + 0.284528i −0.0290395 + 0.0290395i
\(97\) −2.71449 2.71449i −0.275614 0.275614i 0.555741 0.831355i \(-0.312435\pi\)
−0.831355 + 0.555741i \(0.812435\pi\)
\(98\) 18.3189 1.85049
\(99\) 3.19932 + 3.19932i 0.321544 + 0.321544i
\(100\) 0.0252165i 0.00252165i
\(101\) 11.9158 1.18567 0.592833 0.805325i \(-0.298009\pi\)
0.592833 + 0.805325i \(0.298009\pi\)
\(102\) 0 0
\(103\) −1.41240 −0.139168 −0.0695838 0.997576i \(-0.522167\pi\)
−0.0695838 + 0.997576i \(0.522167\pi\)
\(104\) 3.26073i 0.319741i
\(105\) −7.26758 7.26758i −0.709243 0.709243i
\(106\) 10.2514 0.995708
\(107\) 11.0690 + 11.0690i 1.07009 + 1.07009i 0.997351 + 0.0727340i \(0.0231724\pi\)
0.0727340 + 0.997351i \(0.476828\pi\)
\(108\) −0.0503215 + 0.0503215i −0.00484219 + 0.00484219i
\(109\) 7.17270 7.17270i 0.687020 0.687020i −0.274552 0.961572i \(-0.588530\pi\)
0.961572 + 0.274552i \(0.0885296\pi\)
\(110\) 15.0672i 1.43660i
\(111\) 8.79254i 0.834551i
\(112\) 12.9942 12.9942i 1.22784 1.22784i
\(113\) 0.564809 0.564809i 0.0531327 0.0531327i −0.680041 0.733174i \(-0.738038\pi\)
0.733174 + 0.680041i \(0.238038\pi\)
\(114\) −4.95197 4.95197i −0.463795 0.463795i
\(115\) −1.44713 −0.134946
\(116\) 0.0760015 + 0.0760015i 0.00705657 + 0.00705657i
\(117\) 1.17466i 0.108597i
\(118\) 14.9708 1.37817
\(119\) 0 0
\(120\) −6.42326 −0.586360
\(121\) 9.47136i 0.861033i
\(122\) 2.60395 + 2.60395i 0.235751 + 0.235751i
\(123\) 0.464965 0.0419245
\(124\) 0.439605 + 0.439605i 0.0394777 + 0.0394777i
\(125\) −7.60126 + 7.60126i −0.679877 + 0.679877i
\(126\) 4.52006 4.52006i 0.402679 0.402679i
\(127\) 3.36696i 0.298769i 0.988779 + 0.149385i \(0.0477293\pi\)
−0.988779 + 0.149385i \(0.952271\pi\)
\(128\) 11.8797i 1.05003i
\(129\) −1.07004 + 1.07004i −0.0942118 + 0.0942118i
\(130\) −2.76603 + 2.76603i −0.242597 + 0.242597i
\(131\) −1.01799 1.01799i −0.0889422 0.0889422i 0.661236 0.750178i \(-0.270032\pi\)
−0.750178 + 0.661236i \(0.770032\pi\)
\(132\) 0.321990 0.0280256
\(133\) 15.2835 + 15.2835i 1.32525 + 1.32525i
\(134\) 5.35079i 0.462238i
\(135\) −2.31394 −0.199153
\(136\) 0 0
\(137\) 7.86924 0.672315 0.336157 0.941806i \(-0.390873\pi\)
0.336157 + 0.941806i \(0.390873\pi\)
\(138\) 0.900043i 0.0766168i
\(139\) −6.94933 6.94933i −0.589434 0.589434i 0.348044 0.937478i \(-0.386846\pi\)
−0.937478 + 0.348044i \(0.886846\pi\)
\(140\) −0.731431 −0.0618172
\(141\) 4.25611 + 4.25611i 0.358429 + 0.358429i
\(142\) −15.5117 + 15.5117i −1.30172 + 1.30172i
\(143\) −3.75812 + 3.75812i −0.314270 + 0.314270i
\(144\) 4.13727i 0.344772i
\(145\) 3.49480i 0.290227i
\(146\) −2.74951 + 2.74951i −0.227551 + 0.227551i
\(147\) −9.00072 + 9.00072i −0.742367 + 0.742367i
\(148\) 0.442454 + 0.442454i 0.0363695 + 0.0363695i
\(149\) 6.30050 0.516157 0.258078 0.966124i \(-0.416911\pi\)
0.258078 + 0.966124i \(0.416911\pi\)
\(150\) 0.360586 + 0.360586i 0.0294417 + 0.0294417i
\(151\) 10.8279i 0.881159i 0.897714 + 0.440580i \(0.145227\pi\)
−0.897714 + 0.440580i \(0.854773\pi\)
\(152\) 13.5079 1.09564
\(153\) 0 0
\(154\) −28.9223 −2.33062
\(155\) 20.2144i 1.62366i
\(156\) −0.0591106 0.0591106i −0.00473264 0.00473264i
\(157\) −10.8250 −0.863933 −0.431966 0.901890i \(-0.642180\pi\)
−0.431966 + 0.901890i \(0.642180\pi\)
\(158\) −16.9917 16.9917i −1.35179 1.35179i
\(159\) −5.03689 + 5.03689i −0.399451 + 0.399451i
\(160\) −0.658381 + 0.658381i −0.0520496 + 0.0520496i
\(161\) 2.77784i 0.218925i
\(162\) 1.43915i 0.113071i
\(163\) −7.97484 + 7.97484i −0.624638 + 0.624638i −0.946714 0.322076i \(-0.895619\pi\)
0.322076 + 0.946714i \(0.395619\pi\)
\(164\) 0.0233977 0.0233977i 0.00182706 0.00182706i
\(165\) 7.40306 + 7.40306i 0.576327 + 0.576327i
\(166\) −6.41084 −0.497577
\(167\) −8.74472 8.74472i −0.676687 0.676687i 0.282562 0.959249i \(-0.408816\pi\)
−0.959249 + 0.282562i \(0.908816\pi\)
\(168\) 12.3297i 0.951261i
\(169\) −11.6202 −0.893860
\(170\) 0 0
\(171\) 4.86615 0.372124
\(172\) 0.107692i 0.00821145i
\(173\) −2.26090 2.26090i −0.171893 0.171893i 0.615917 0.787811i \(-0.288785\pi\)
−0.787811 + 0.615917i \(0.788785\pi\)
\(174\) −2.17358 −0.164779
\(175\) −1.11289 1.11289i −0.0841268 0.0841268i
\(176\) −13.2365 + 13.2365i −0.997736 + 0.997736i
\(177\) −7.35565 + 7.35565i −0.552885 + 0.552885i
\(178\) 2.21673i 0.166151i
\(179\) 19.0135i 1.42113i −0.703629 0.710567i \(-0.748438\pi\)
0.703629 0.710567i \(-0.251562\pi\)
\(180\) −0.116441 + 0.116441i −0.00867901 + 0.00867901i
\(181\) 8.49913 8.49913i 0.631736 0.631736i −0.316768 0.948503i \(-0.602598\pi\)
0.948503 + 0.316768i \(0.102598\pi\)
\(182\) 5.30953 + 5.30953i 0.393569 + 0.393569i
\(183\) −2.55882 −0.189154
\(184\) 1.22756 + 1.22756i 0.0904971 + 0.0904971i
\(185\) 20.3455i 1.49583i
\(186\) −12.5723 −0.921849
\(187\) 0 0
\(188\) 0.428347 0.0312404
\(189\) 4.44173i 0.323088i
\(190\) −11.4586 11.4586i −0.831293 0.831293i
\(191\) −22.3102 −1.61431 −0.807154 0.590341i \(-0.798993\pi\)
−0.807154 + 0.590341i \(0.798993\pi\)
\(192\) 5.44150 + 5.44150i 0.392706 + 0.392706i
\(193\) 2.47198 2.47198i 0.177937 0.177937i −0.612519 0.790456i \(-0.709844\pi\)
0.790456 + 0.612519i \(0.209844\pi\)
\(194\) 3.90657 3.90657i 0.280475 0.280475i
\(195\) 2.71810i 0.194647i
\(196\) 0.905859i 0.0647042i
\(197\) −8.48335 + 8.48335i −0.604413 + 0.604413i −0.941481 0.337067i \(-0.890565\pi\)
0.337067 + 0.941481i \(0.390565\pi\)
\(198\) −4.60432 + 4.60432i −0.327215 + 0.327215i
\(199\) 2.84435 + 2.84435i 0.201630 + 0.201630i 0.800698 0.599068i \(-0.204462\pi\)
−0.599068 + 0.800698i \(0.704462\pi\)
\(200\) −0.983601 −0.0695511
\(201\) 2.62903 + 2.62903i 0.185438 + 0.185438i
\(202\) 17.1487i 1.20658i
\(203\) 6.70843 0.470839
\(204\) 0 0
\(205\) 1.07590 0.0751443
\(206\) 2.03266i 0.141622i
\(207\) 0.442223 + 0.442223i 0.0307366 + 0.0307366i
\(208\) 4.85988 0.336972
\(209\) −15.5684 15.5684i −1.07689 1.07689i
\(210\) 10.4592 10.4592i 0.721751 0.721751i
\(211\) −11.2855 + 11.2855i −0.776929 + 0.776929i −0.979307 0.202378i \(-0.935133\pi\)
0.202378 + 0.979307i \(0.435133\pi\)
\(212\) 0.506928i 0.0348159i
\(213\) 15.2429i 1.04443i
\(214\) −15.9301 + 15.9301i −1.08896 + 1.08896i
\(215\) −2.47601 + 2.47601i −0.168863 + 0.168863i
\(216\) 1.96285 + 1.96285i 0.133555 + 0.133555i
\(217\) 38.8026 2.63409
\(218\) 10.3226 + 10.3226i 0.699136 + 0.699136i
\(219\) 2.70186i 0.182575i
\(220\) 0.745066 0.0502323
\(221\) 0 0
\(222\) −12.6538 −0.849269
\(223\) 5.35573i 0.358646i −0.983790 0.179323i \(-0.942609\pi\)
0.983790 0.179323i \(-0.0573908\pi\)
\(224\) 1.26379 + 1.26379i 0.0844408 + 0.0844408i
\(225\) −0.354337 −0.0236225
\(226\) 0.812847 + 0.812847i 0.0540698 + 0.0540698i
\(227\) −1.21109 + 1.21109i −0.0803829 + 0.0803829i −0.746155 0.665772i \(-0.768102\pi\)
0.665772 + 0.746155i \(0.268102\pi\)
\(228\) 0.244872 0.244872i 0.0162171 0.0162171i
\(229\) 0.380619i 0.0251520i −0.999921 0.0125760i \(-0.995997\pi\)
0.999921 0.0125760i \(-0.00400317\pi\)
\(230\) 2.08265i 0.137326i
\(231\) 14.2105 14.2105i 0.934984 0.934984i
\(232\) 2.96453 2.96453i 0.194631 0.194631i
\(233\) −6.33766 6.33766i −0.415194 0.415194i 0.468349 0.883543i \(-0.344849\pi\)
−0.883543 + 0.468349i \(0.844849\pi\)
\(234\) 1.69052 0.110513
\(235\) 9.84839 + 9.84839i 0.642438 + 0.642438i
\(236\) 0.740295i 0.0481891i
\(237\) 16.6972 1.08460
\(238\) 0 0
\(239\) −6.70928 −0.433987 −0.216994 0.976173i \(-0.569625\pi\)
−0.216994 + 0.976173i \(0.569625\pi\)
\(240\) 9.57340i 0.617960i
\(241\) 6.25076 + 6.25076i 0.402647 + 0.402647i 0.879165 0.476518i \(-0.158101\pi\)
−0.476518 + 0.879165i \(0.658101\pi\)
\(242\) 13.6307 0.876218
\(243\) 0.707107 + 0.707107i 0.0453609 + 0.0453609i
\(244\) −0.128764 + 0.128764i −0.00824326 + 0.00824326i
\(245\) −20.8272 + 20.8272i −1.33060 + 1.33060i
\(246\) 0.669156i 0.0426638i
\(247\) 5.71607i 0.363705i
\(248\) 17.1473 17.1473i 1.08886 1.08886i
\(249\) 3.14987 3.14987i 0.199615 0.199615i
\(250\) −10.9394 10.9394i −0.691867 0.691867i
\(251\) 24.4193 1.54133 0.770667 0.637238i \(-0.219923\pi\)
0.770667 + 0.637238i \(0.219923\pi\)
\(252\) 0.223514 + 0.223514i 0.0140801 + 0.0140801i
\(253\) 2.82963i 0.177897i
\(254\) −4.84557 −0.304038
\(255\) 0 0
\(256\) 1.70583 0.106614
\(257\) 25.9327i 1.61764i −0.588057 0.808819i \(-0.700107\pi\)
0.588057 0.808819i \(-0.299893\pi\)
\(258\) −1.53995 1.53995i −0.0958733 0.0958733i
\(259\) 39.0541 2.42670
\(260\) −0.136779 0.136779i −0.00848266 0.00848266i
\(261\) 1.06796 1.06796i 0.0661049 0.0661049i
\(262\) 1.46504 1.46504i 0.0905108 0.0905108i
\(263\) 1.74151i 0.107386i 0.998557 + 0.0536932i \(0.0170993\pi\)
−0.998557 + 0.0536932i \(0.982901\pi\)
\(264\) 12.5596i 0.772990i
\(265\) −11.6551 + 11.6551i −0.715966 + 0.715966i
\(266\) −21.9953 + 21.9953i −1.34862 + 1.34862i
\(267\) 1.08916 + 1.08916i 0.0666555 + 0.0666555i
\(268\) 0.264594 0.0161626
\(269\) −22.2585 22.2585i −1.35712 1.35712i −0.877445 0.479678i \(-0.840754\pi\)
−0.479678 0.877445i \(-0.659246\pi\)
\(270\) 3.33012i 0.202665i
\(271\) −19.8066 −1.20316 −0.601582 0.798811i \(-0.705463\pi\)
−0.601582 + 0.798811i \(0.705463\pi\)
\(272\) 0 0
\(273\) −5.21752 −0.315779
\(274\) 11.3251i 0.684172i
\(275\) 1.13364 + 1.13364i 0.0683610 + 0.0683610i
\(276\) 0.0445066 0.00267898
\(277\) −1.64808 1.64808i −0.0990234 0.0990234i 0.655860 0.754883i \(-0.272306\pi\)
−0.754883 + 0.655860i \(0.772306\pi\)
\(278\) 10.0012 10.0012i 0.599830 0.599830i
\(279\) 6.17723 6.17723i 0.369821 0.369821i
\(280\) 28.5303i 1.70501i
\(281\) 0.306147i 0.0182632i 0.999958 + 0.00913161i \(0.00290672\pi\)
−0.999958 + 0.00913161i \(0.997093\pi\)
\(282\) −6.12519 + 6.12519i −0.364750 + 0.364750i
\(283\) −12.9501 + 12.9501i −0.769803 + 0.769803i −0.978072 0.208268i \(-0.933217\pi\)
0.208268 + 0.978072i \(0.433217\pi\)
\(284\) −0.767046 0.767046i −0.0455158 0.0455158i
\(285\) 11.2600 0.666985
\(286\) −5.40851 5.40851i −0.319812 0.319812i
\(287\) 2.06525i 0.121908i
\(288\) 0.402383 0.0237106
\(289\) 0 0
\(290\) −5.02955 −0.295345
\(291\) 3.83886i 0.225038i
\(292\) −0.135962 0.135962i −0.00795656 0.00795656i
\(293\) −15.2652 −0.891801 −0.445900 0.895083i \(-0.647116\pi\)
−0.445900 + 0.895083i \(0.647116\pi\)
\(294\) −12.9534 12.9534i −0.755459 0.755459i
\(295\) −17.0206 + 17.0206i −0.990976 + 0.990976i
\(296\) 17.2585 17.2585i 1.00313 1.00313i
\(297\) 4.52453i 0.262540i
\(298\) 9.06739i 0.525260i
\(299\) −0.519461 + 0.519461i −0.0300412 + 0.0300412i
\(300\) −0.0178308 + 0.0178308i −0.00102946 + 0.00102946i
\(301\) 4.75283 + 4.75283i 0.273948 + 0.273948i
\(302\) −15.5830 −0.896699
\(303\) −8.42574 8.42574i −0.484046 0.484046i
\(304\) 20.1326i 1.15468i
\(305\) −5.92097 −0.339034
\(306\) 0 0
\(307\) 29.9884 1.71153 0.855765 0.517365i \(-0.173087\pi\)
0.855765 + 0.517365i \(0.173087\pi\)
\(308\) 1.43019i 0.0814926i
\(309\) 0.998716 + 0.998716i 0.0568150 + 0.0568150i
\(310\) −29.0917 −1.65230
\(311\) 16.4930 + 16.4930i 0.935229 + 0.935229i 0.998026 0.0627969i \(-0.0200020\pi\)
−0.0627969 + 0.998026i \(0.520002\pi\)
\(312\) −2.30568 + 2.30568i −0.130534 + 0.130534i
\(313\) 16.9400 16.9400i 0.957506 0.957506i −0.0416273 0.999133i \(-0.513254\pi\)
0.999133 + 0.0416273i \(0.0132542\pi\)
\(314\) 15.5789i 0.879169i
\(315\) 10.2779i 0.579094i
\(316\) 0.840229 0.840229i 0.0472666 0.0472666i
\(317\) 13.2826 13.2826i 0.746024 0.746024i −0.227706 0.973730i \(-0.573122\pi\)
0.973730 + 0.227706i \(0.0731224\pi\)
\(318\) −7.24886 7.24886i −0.406496 0.406496i
\(319\) −6.83348 −0.382602
\(320\) 12.5913 + 12.5913i 0.703876 + 0.703876i
\(321\) 15.6540i 0.873721i
\(322\) −3.99775 −0.222786
\(323\) 0 0
\(324\) 0.0711653 0.00395363
\(325\) 0.416226i 0.0230880i
\(326\) −11.4770 11.4770i −0.635654 0.635654i
\(327\) −10.1437 −0.560949
\(328\) −0.912657 0.912657i −0.0503930 0.0503930i
\(329\) 18.9045 18.9045i 1.04224 1.04224i
\(330\) −10.6541 + 10.6541i −0.586491 + 0.586491i
\(331\) 23.6869i 1.30195i 0.759099 + 0.650975i \(0.225640\pi\)
−0.759099 + 0.650975i \(0.774360\pi\)
\(332\) 0.317012i 0.0173983i
\(333\) 6.21727 6.21727i 0.340704 0.340704i
\(334\) 12.5850 12.5850i 0.688621 0.688621i
\(335\) 6.08343 + 6.08343i 0.332373 + 0.332373i
\(336\) −18.3766 −1.00253
\(337\) 4.29265 + 4.29265i 0.233835 + 0.233835i 0.814292 0.580456i \(-0.197126\pi\)
−0.580456 + 0.814292i \(0.697126\pi\)
\(338\) 16.7232i 0.909624i
\(339\) −0.798760 −0.0433827
\(340\) 0 0
\(341\) −39.5259 −2.14045
\(342\) 7.00315i 0.378687i
\(343\) 17.9933 + 17.9933i 0.971547 + 0.971547i
\(344\) 4.20066 0.226484
\(345\) 1.02328 + 1.02328i 0.0550915 + 0.0550915i
\(346\) 3.25379 3.25379i 0.174925 0.174925i
\(347\) −5.04525 + 5.04525i −0.270843 + 0.270843i −0.829440 0.558596i \(-0.811340\pi\)
0.558596 + 0.829440i \(0.311340\pi\)
\(348\) 0.107482i 0.00576166i
\(349\) 15.7825i 0.844819i 0.906405 + 0.422410i \(0.138816\pi\)
−0.906405 + 0.422410i \(0.861184\pi\)
\(350\) 1.60163 1.60163i 0.0856105 0.0856105i
\(351\) −0.830610 + 0.830610i −0.0443347 + 0.0443347i
\(352\) −1.28735 1.28735i −0.0686162 0.0686162i
\(353\) −35.2308 −1.87515 −0.937573 0.347788i \(-0.886933\pi\)
−0.937573 + 0.347788i \(0.886933\pi\)
\(354\) −10.5859 10.5859i −0.562635 0.562635i
\(355\) 35.2712i 1.87200i
\(356\) 0.109616 0.00580965
\(357\) 0 0
\(358\) 27.3633 1.44620
\(359\) 25.7316i 1.35806i 0.734110 + 0.679030i \(0.237600\pi\)
−0.734110 + 0.679030i \(0.762400\pi\)
\(360\) 4.54193 + 4.54193i 0.239381 + 0.239381i
\(361\) −4.67944 −0.246287
\(362\) 12.2316 + 12.2316i 0.642877 + 0.642877i
\(363\) −6.69726 + 6.69726i −0.351515 + 0.351515i
\(364\) −0.262553 + 0.262553i −0.0137615 + 0.0137615i
\(365\) 6.25195i 0.327242i
\(366\) 3.68254i 0.192489i
\(367\) −5.84137 + 5.84137i −0.304917 + 0.304917i −0.842934 0.538017i \(-0.819174\pi\)
0.538017 + 0.842934i \(0.319174\pi\)
\(368\) −1.82959 + 1.82959i −0.0953741 + 0.0953741i
\(369\) −0.328780 0.328780i −0.0171156 0.0171156i
\(370\) −29.2802 −1.52221
\(371\) 22.3725 + 22.3725i 1.16152 + 1.16152i
\(372\) 0.621695i 0.0322334i
\(373\) 23.4360 1.21347 0.606734 0.794905i \(-0.292479\pi\)
0.606734 + 0.794905i \(0.292479\pi\)
\(374\) 0 0
\(375\) 10.7498 0.555117
\(376\) 16.7082i 0.861660i
\(377\) 1.25449 + 1.25449i 0.0646093 + 0.0646093i
\(378\) −6.39233 −0.328786
\(379\) −10.6505 10.6505i −0.547079 0.547079i 0.378516 0.925595i \(-0.376435\pi\)
−0.925595 + 0.378516i \(0.876435\pi\)
\(380\) 0.566620 0.566620i 0.0290670 0.0290670i
\(381\) 2.38080 2.38080i 0.121972 0.121972i
\(382\) 32.1078i 1.64278i
\(383\) 15.9980i 0.817459i −0.912656 0.408729i \(-0.865972\pi\)
0.912656 0.408729i \(-0.134028\pi\)
\(384\) −8.40021 + 8.40021i −0.428672 + 0.428672i
\(385\) 32.8824 32.8824i 1.67584 1.67584i
\(386\) 3.55757 + 3.55757i 0.181075 + 0.181075i
\(387\) 1.51327 0.0769236
\(388\) 0.193177 + 0.193177i 0.00980710 + 0.00980710i
\(389\) 2.98991i 0.151595i −0.997123 0.0757973i \(-0.975850\pi\)
0.997123 0.0757973i \(-0.0241502\pi\)
\(390\) 3.91176 0.198080
\(391\) 0 0
\(392\) 35.3341 1.78464
\(393\) 1.43966i 0.0726210i
\(394\) −12.2088 12.2088i −0.615073 0.615073i
\(395\) 38.6364 1.94401
\(396\) −0.227681 0.227681i −0.0114414 0.0114414i
\(397\) 8.94678 8.94678i 0.449026 0.449026i −0.446004 0.895031i \(-0.647153\pi\)
0.895031 + 0.446004i \(0.147153\pi\)
\(398\) −4.09345 + 4.09345i −0.205186 + 0.205186i
\(399\) 21.6141i 1.08206i
\(400\) 1.46599i 0.0732994i
\(401\) 10.3724 10.3724i 0.517975 0.517975i −0.398983 0.916958i \(-0.630637\pi\)
0.916958 + 0.398983i \(0.130637\pi\)
\(402\) −3.78358 + 3.78358i −0.188708 + 0.188708i
\(403\) 7.25615 + 7.25615i 0.361454 + 0.361454i
\(404\) −0.847992 −0.0421892
\(405\) 1.63621 + 1.63621i 0.0813037 + 0.0813037i
\(406\) 9.65446i 0.479143i
\(407\) −39.7821 −1.97193
\(408\) 0 0
\(409\) −16.3219 −0.807067 −0.403534 0.914965i \(-0.632218\pi\)
−0.403534 + 0.914965i \(0.632218\pi\)
\(410\) 1.54839i 0.0764695i
\(411\) −5.56440 5.56440i −0.274471 0.274471i
\(412\) 0.100514 0.00495196
\(413\) 32.6718 + 32.6718i 1.60767 + 1.60767i
\(414\) −0.636427 + 0.636427i −0.0312787 + 0.0312787i
\(415\) 7.28862 7.28862i 0.357784 0.357784i
\(416\) 0.472663i 0.0231742i
\(417\) 9.82784i 0.481271i
\(418\) 22.4053 22.4053i 1.09588 1.09588i
\(419\) 11.1085 11.1085i 0.542685 0.542685i −0.381630 0.924315i \(-0.624637\pi\)
0.924315 + 0.381630i \(0.124637\pi\)
\(420\) 0.517200 + 0.517200i 0.0252368 + 0.0252368i
\(421\) −22.1035 −1.07726 −0.538630 0.842542i \(-0.681058\pi\)
−0.538630 + 0.842542i \(0.681058\pi\)
\(422\) −16.2416 16.2416i −0.790631 0.790631i
\(423\) 6.01904i 0.292656i
\(424\) 19.7733 0.960278
\(425\) 0 0
\(426\) 21.9369 1.06285
\(427\) 11.3656i 0.550019i
\(428\) −0.787733 0.787733i −0.0380765 0.0380765i
\(429\) 5.31478 0.256600
\(430\) −3.56337 3.56337i −0.171841 0.171841i
\(431\) −2.93823 + 2.93823i −0.141529 + 0.141529i −0.774322 0.632792i \(-0.781909\pi\)
0.632792 + 0.774322i \(0.281909\pi\)
\(432\) −2.92549 + 2.92549i −0.140753 + 0.140753i
\(433\) 13.0766i 0.628420i −0.949354 0.314210i \(-0.898260\pi\)
0.949354 0.314210i \(-0.101740\pi\)
\(434\) 55.8429i 2.68055i
\(435\) 2.47119 2.47119i 0.118485 0.118485i
\(436\) −0.510448 + 0.510448i −0.0244460 + 0.0244460i
\(437\) −2.15192 2.15192i −0.102940 0.102940i
\(438\) 3.88839 0.185795
\(439\) −8.19806 8.19806i −0.391272 0.391272i 0.483869 0.875141i \(-0.339231\pi\)
−0.875141 + 0.483869i \(0.839231\pi\)
\(440\) 29.0622i 1.38549i
\(441\) 12.7289 0.606140
\(442\) 0 0
\(443\) 17.6619 0.839144 0.419572 0.907722i \(-0.362180\pi\)
0.419572 + 0.907722i \(0.362180\pi\)
\(444\) 0.625724i 0.0296956i
\(445\) 2.52025 + 2.52025i 0.119471 + 0.119471i
\(446\) 7.70773 0.364971
\(447\) −4.45512 4.45512i −0.210720 0.210720i
\(448\) 24.1697 24.1697i 1.14191 1.14191i
\(449\) 24.8487 24.8487i 1.17268 1.17268i 0.191118 0.981567i \(-0.438789\pi\)
0.981567 0.191118i \(-0.0612112\pi\)
\(450\) 0.509946i 0.0240391i
\(451\) 2.10375i 0.0990616i
\(452\) −0.0401948 + 0.0401948i −0.00189060 + 0.00189060i
\(453\) 7.65646 7.65646i 0.359732 0.359732i
\(454\) −1.74295 1.74295i −0.0818005 0.0818005i
\(455\) −12.0730 −0.565993
\(456\) −9.55153 9.55153i −0.447292 0.447292i
\(457\) 24.6306i 1.15217i −0.817389 0.576086i \(-0.804580\pi\)
0.817389 0.576086i \(-0.195420\pi\)
\(458\) 0.547769 0.0255956
\(459\) 0 0
\(460\) 0.102986 0.00480174
\(461\) 1.00413i 0.0467668i 0.999727 + 0.0233834i \(0.00744385\pi\)
−0.999727 + 0.0233834i \(0.992556\pi\)
\(462\) 20.4511 + 20.4511i 0.951473 + 0.951473i
\(463\) 20.4600 0.950856 0.475428 0.879755i \(-0.342293\pi\)
0.475428 + 0.879755i \(0.342293\pi\)
\(464\) 4.41842 + 4.41842i 0.205120 + 0.205120i
\(465\) 14.2938 14.2938i 0.662858 0.662858i
\(466\) 9.12087 9.12087i 0.422516 0.422516i
\(467\) 35.1659i 1.62728i 0.581366 + 0.813642i \(0.302519\pi\)
−0.581366 + 0.813642i \(0.697481\pi\)
\(468\) 0.0835951i 0.00386418i
\(469\) 11.6774 11.6774i 0.539214 0.539214i
\(470\) −14.1734 + 14.1734i −0.653768 + 0.653768i
\(471\) 7.65446 + 7.65446i 0.352699 + 0.352699i
\(472\) 28.8761 1.32913
\(473\) −4.84143 4.84143i −0.222609 0.222609i
\(474\) 24.0299i 1.10373i
\(475\) 1.72426 0.0791144
\(476\) 0 0
\(477\) 7.12324 0.326151
\(478\) 9.65570i 0.441641i
\(479\) 2.72746 + 2.72746i 0.124621 + 0.124621i 0.766666 0.642046i \(-0.221914\pi\)
−0.642046 + 0.766666i \(0.721914\pi\)
\(480\) 0.931092 0.0424983
\(481\) 7.30317 + 7.30317i 0.332996 + 0.332996i
\(482\) −8.99580 + 8.99580i −0.409748 + 0.409748i
\(483\) 1.96423 1.96423i 0.0893757 0.0893757i
\(484\) 0.674032i 0.0306378i
\(485\) 8.88292i 0.403353i
\(486\) −1.01764 + 1.01764i −0.0461609 + 0.0461609i
\(487\) −14.4030 + 14.4030i −0.652662 + 0.652662i −0.953633 0.300971i \(-0.902689\pi\)
0.300971 + 0.953633i \(0.402689\pi\)
\(488\) 5.02259 + 5.02259i 0.227362 + 0.227362i
\(489\) 11.2781 0.510015
\(490\) −29.9735 29.9735i −1.35406 1.35406i
\(491\) 6.38676i 0.288231i 0.989561 + 0.144115i \(0.0460336\pi\)
−0.989561 + 0.144115i \(0.953966\pi\)
\(492\) −0.0330894 −0.00149178
\(493\) 0 0
\(494\) −8.22631 −0.370119
\(495\) 10.4695i 0.470569i
\(496\) 25.5569 + 25.5569i 1.14754 + 1.14754i
\(497\) −67.7048 −3.03698
\(498\) 4.53315 + 4.53315i 0.203135 + 0.203135i
\(499\) −1.16238 + 1.16238i −0.0520351 + 0.0520351i −0.732646 0.680610i \(-0.761715\pi\)
0.680610 + 0.732646i \(0.261715\pi\)
\(500\) 0.540946 0.540946i 0.0241919 0.0241919i
\(501\) 12.3669i 0.552513i
\(502\) 35.1432i 1.56852i
\(503\) 18.8175 18.8175i 0.839031 0.839031i −0.149700 0.988731i \(-0.547831\pi\)
0.988731 + 0.149700i \(0.0478308\pi\)
\(504\) 8.71845 8.71845i 0.388351 0.388351i
\(505\) −19.4967 19.4967i −0.867592 0.867592i
\(506\) 4.07227 0.181035
\(507\) 8.21670 + 8.21670i 0.364917 + 0.364917i
\(508\) 0.239611i 0.0106310i
\(509\) 14.0065 0.620827 0.310413 0.950602i \(-0.399533\pi\)
0.310413 + 0.950602i \(0.399533\pi\)
\(510\) 0 0
\(511\) −12.0009 −0.530890
\(512\) 21.3044i 0.941532i
\(513\) −3.44089 3.44089i −0.151919 0.151919i
\(514\) 37.3212 1.64617
\(515\) 2.31097 + 2.31097i 0.101834 + 0.101834i
\(516\) 0.0761498 0.0761498i 0.00335231 0.00335231i
\(517\) −19.2569 + 19.2569i −0.846916 + 0.846916i
\(518\) 56.2048i 2.46950i
\(519\) 3.19740i 0.140350i
\(520\) −5.33522 + 5.33522i −0.233965 + 0.233965i
\(521\) −13.4078 + 13.4078i −0.587405 + 0.587405i −0.936928 0.349523i \(-0.886344\pi\)
0.349523 + 0.936928i \(0.386344\pi\)
\(522\) 1.53696 + 1.53696i 0.0672707 + 0.0672707i
\(523\) −20.3838 −0.891320 −0.445660 0.895202i \(-0.647031\pi\)
−0.445660 + 0.895202i \(0.647031\pi\)
\(524\) 0.0724456 + 0.0724456i 0.00316480 + 0.00316480i
\(525\) 1.57387i 0.0686893i
\(526\) −2.50631 −0.109280
\(527\) 0 0
\(528\) 18.7192 0.814648
\(529\) 22.6089i 0.982995i
\(530\) −16.7735 16.7735i −0.728593 0.728593i
\(531\) 10.4025 0.451428
\(532\) −1.08765 1.08765i −0.0471558 0.0471558i
\(533\) 0.386204 0.386204i 0.0167284 0.0167284i
\(534\) −1.56747 + 1.56747i −0.0678310 + 0.0678310i
\(535\) 36.2225i 1.56603i
\(536\) 10.3208i 0.445790i
\(537\) −13.4446 + 13.4446i −0.580176 + 0.580176i
\(538\) 32.0334 32.0334i 1.38106 1.38106i
\(539\) −40.7240 40.7240i −1.75411 1.75411i
\(540\) 0.164673 0.00708638
\(541\) −15.9391 15.9391i −0.685276 0.685276i 0.275908 0.961184i \(-0.411021\pi\)
−0.961184 + 0.275908i \(0.911021\pi\)
\(542\) 28.5047i 1.22438i
\(543\) −12.0196 −0.515810
\(544\) 0 0
\(545\) −23.4720 −1.00543
\(546\) 7.50881i 0.321348i
\(547\) 2.33861 + 2.33861i 0.0999919 + 0.0999919i 0.755333 0.655341i \(-0.227475\pi\)
−0.655341 + 0.755333i \(0.727475\pi\)
\(548\) −0.560018 −0.0239228
\(549\) 1.80936 + 1.80936i 0.0772216 + 0.0772216i
\(550\) −1.63148 + 1.63148i −0.0695666 + 0.0695666i
\(551\) −5.19684 + 5.19684i −0.221393 + 0.221393i
\(552\) 1.73603i 0.0738905i
\(553\) 74.1644i 3.15379i
\(554\) 2.37184 2.37184i 0.100770 0.100770i
\(555\) 14.3864 14.3864i 0.610669 0.610669i
\(556\) 0.494551 + 0.494551i 0.0209737 + 0.0209737i
\(557\) −34.4355 −1.45908 −0.729540 0.683938i \(-0.760266\pi\)
−0.729540 + 0.683938i \(0.760266\pi\)
\(558\) 8.88999 + 8.88999i 0.376343 + 0.376343i
\(559\) 1.77757i 0.0751833i
\(560\) −42.5224 −1.79690
\(561\) 0 0
\(562\) −0.440593 −0.0185853
\(563\) 4.70471i 0.198280i 0.995074 + 0.0991399i \(0.0316091\pi\)
−0.995074 + 0.0991399i \(0.968391\pi\)
\(564\) −0.302887 0.302887i −0.0127539 0.0127539i
\(565\) −1.84829 −0.0777580
\(566\) −18.6372 18.6372i −0.783380 0.783380i
\(567\) 3.14078 3.14078i 0.131900 0.131900i
\(568\) −29.9196 + 29.9196i −1.25540 + 1.25540i
\(569\) 37.2742i 1.56262i 0.624145 + 0.781308i \(0.285447\pi\)
−0.624145 + 0.781308i \(0.714553\pi\)
\(570\) 16.2049i 0.678748i
\(571\) 14.3630 14.3630i 0.601071 0.601071i −0.339526 0.940597i \(-0.610267\pi\)
0.940597 + 0.339526i \(0.110267\pi\)
\(572\) 0.267448 0.267448i 0.0111826 0.0111826i
\(573\) 15.7757 + 15.7757i 0.659039 + 0.659039i
\(574\) 2.97221 0.124058
\(575\) 0.156696 + 0.156696i 0.00653467 + 0.00653467i
\(576\) 7.69544i 0.320643i
\(577\) −33.5408 −1.39632 −0.698161 0.715941i \(-0.745998\pi\)
−0.698161 + 0.715941i \(0.745998\pi\)
\(578\) 0 0
\(579\) −3.49591 −0.145285
\(580\) 0.248708i 0.0103271i
\(581\) −13.9909 13.9909i −0.580438 0.580438i
\(582\) −5.52472 −0.229007
\(583\) −22.7896 22.7896i −0.943847 0.943847i
\(584\) −5.30335 + 5.30335i −0.219454 + 0.219454i
\(585\) −1.92198 + 1.92198i −0.0794643 + 0.0794643i
\(586\) 21.9689i 0.907528i
\(587\) 21.8364i 0.901285i −0.892705 0.450642i \(-0.851195\pi\)
0.892705 0.450642i \(-0.148805\pi\)
\(588\) 0.640539 0.640539i 0.0264154 0.0264154i
\(589\) −30.0594 + 30.0594i −1.23857 + 1.23857i
\(590\) −24.4952 24.4952i −1.00845 1.00845i
\(591\) 11.9973 0.493501
\(592\) 25.7225 + 25.7225i 1.05719 + 1.05719i
\(593\) 24.6066i 1.01047i 0.862981 + 0.505236i \(0.168594\pi\)
−0.862981 + 0.505236i \(0.831406\pi\)
\(594\) 6.51150 0.267170
\(595\) 0 0
\(596\) −0.448377 −0.0183662
\(597\) 4.02251i 0.164630i
\(598\) −0.747585 0.747585i −0.0305710 0.0305710i
\(599\) 40.9057 1.67136 0.835681 0.549215i \(-0.185073\pi\)
0.835681 + 0.549215i \(0.185073\pi\)
\(600\) 0.695511 + 0.695511i 0.0283941 + 0.0283941i
\(601\) 26.0607 26.0607i 1.06304 1.06304i 0.0651648 0.997875i \(-0.479243\pi\)
0.997875 0.0651648i \(-0.0207573\pi\)
\(602\) −6.84005 + 6.84005i −0.278780 + 0.278780i
\(603\) 3.71801i 0.151409i
\(604\) 0.770569i 0.0313540i
\(605\) −15.4971 + 15.4971i −0.630046 + 0.630046i
\(606\) 12.1259 12.1259i 0.492583 0.492583i
\(607\) 34.1097 + 34.1097i 1.38447 + 1.38447i 0.836495 + 0.547975i \(0.184601\pi\)
0.547975 + 0.836495i \(0.315399\pi\)
\(608\) −1.95806 −0.0794097
\(609\) −4.74357 4.74357i −0.192219 0.192219i
\(610\) 8.52119i 0.345013i
\(611\) 7.07033 0.286035
\(612\) 0 0
\(613\) 26.2900 1.06184 0.530922 0.847421i \(-0.321846\pi\)
0.530922 + 0.847421i \(0.321846\pi\)
\(614\) 43.1580i 1.74171i
\(615\) −0.760778 0.760778i −0.0306775 0.0306775i
\(616\) −55.7863 −2.24769
\(617\) −2.76674 2.76674i −0.111385 0.111385i 0.649218 0.760603i \(-0.275096\pi\)
−0.760603 + 0.649218i \(0.775096\pi\)
\(618\) −1.43731 + 1.43731i −0.0578169 + 0.0578169i
\(619\) 6.01489 6.01489i 0.241759 0.241759i −0.575819 0.817578i \(-0.695317\pi\)
0.817578 + 0.575819i \(0.195317\pi\)
\(620\) 1.43857i 0.0577743i
\(621\) 0.625397i 0.0250963i
\(622\) −23.7359 + 23.7359i −0.951723 + 0.951723i
\(623\) 4.83775 4.83775i 0.193820 0.193820i
\(624\) −3.43645 3.43645i −0.137568 0.137568i
\(625\) 26.6461 1.06585
\(626\) 24.3793 + 24.3793i 0.974392 + 0.974392i
\(627\) 22.0170i 0.879276i
\(628\) 0.770368 0.0307410
\(629\) 0 0
\(630\) −14.7915 −0.589307
\(631\) 7.26384i 0.289169i 0.989492 + 0.144584i \(0.0461845\pi\)
−0.989492 + 0.144584i \(0.953815\pi\)
\(632\) −32.7741 32.7741i −1.30369 1.30369i
\(633\) 15.9602 0.634360
\(634\) 19.1157 + 19.1157i 0.759181 + 0.759181i
\(635\) 5.50904 5.50904i 0.218619 0.218619i
\(636\) 0.358452 0.358452i 0.0142136 0.0142136i
\(637\) 14.9522i 0.592427i
\(638\) 9.83444i 0.389349i
\(639\) −10.7784 + 10.7784i −0.426385 + 0.426385i
\(640\) −19.4376 + 19.4376i −0.768339 + 0.768339i
\(641\) 27.3089 + 27.3089i 1.07864 + 1.07864i 0.996632 + 0.0820060i \(0.0261327\pi\)
0.0820060 + 0.996632i \(0.473867\pi\)
\(642\) 22.5285 0.889130
\(643\) −22.3713 22.3713i −0.882238 0.882238i 0.111524 0.993762i \(-0.464427\pi\)
−0.993762 + 0.111524i \(0.964427\pi\)
\(644\) 0.197686i 0.00778993i
\(645\) 3.50161 0.137876
\(646\) 0 0
\(647\) 2.64576 0.104016 0.0520078 0.998647i \(-0.483438\pi\)
0.0520078 + 0.998647i \(0.483438\pi\)
\(648\) 2.77589i 0.109047i
\(649\) −33.2809 33.2809i −1.30639 1.30639i
\(650\) 0.599013 0.0234952
\(651\) −27.4376 27.4376i −1.07536 1.07536i
\(652\) 0.567532 0.567532i 0.0222263 0.0222263i
\(653\) 24.8454 24.8454i 0.972274 0.972274i −0.0273518 0.999626i \(-0.508707\pi\)
0.999626 + 0.0273518i \(0.00870743\pi\)
\(654\) 14.5984i 0.570842i
\(655\) 3.33128i 0.130164i
\(656\) 1.36025 1.36025i 0.0531088 0.0531088i
\(657\) −1.91050 + 1.91050i −0.0745359 + 0.0745359i
\(658\) 27.2064 + 27.2064i 1.06062 + 1.06062i
\(659\) −23.7941 −0.926888 −0.463444 0.886126i \(-0.653387\pi\)
−0.463444 + 0.886126i \(0.653387\pi\)
\(660\) −0.526841 0.526841i −0.0205073 0.0205073i
\(661\) 35.3068i 1.37328i 0.726999 + 0.686639i \(0.240914\pi\)
−0.726999 + 0.686639i \(0.759086\pi\)
\(662\) −34.0891 −1.32491
\(663\) 0 0
\(664\) −12.3654 −0.479872
\(665\) 50.0139i 1.93945i
\(666\) 8.94761 + 8.94761i 0.346713 + 0.346713i
\(667\) −0.944550 −0.0365731
\(668\) 0.622321 + 0.622321i 0.0240783 + 0.0240783i
\(669\) −3.78708 + 3.78708i −0.146417 + 0.146417i
\(670\) −8.75500 + 8.75500i −0.338235 + 0.338235i
\(671\) 11.5775i 0.446943i
\(672\) 1.78728i 0.0689457i
\(673\) 16.4791 16.4791i 0.635223 0.635223i −0.314150 0.949373i \(-0.601720\pi\)
0.949373 + 0.314150i \(0.101720\pi\)
\(674\) −6.17778 + 6.17778i −0.237959 + 0.237959i
\(675\) 0.250554 + 0.250554i 0.00964384 + 0.00964384i
\(676\) 0.826954 0.0318059
\(677\) 7.28515 + 7.28515i 0.279991 + 0.279991i 0.833105 0.553114i \(-0.186561\pi\)
−0.553114 + 0.833105i \(0.686561\pi\)
\(678\) 1.14954i 0.0441478i
\(679\) 17.0512 0.654365
\(680\) 0 0
\(681\) 1.71274 0.0656324
\(682\) 56.8839i 2.17820i
\(683\) 19.5096 + 19.5096i 0.746514 + 0.746514i 0.973823 0.227309i \(-0.0729926\pi\)
−0.227309 + 0.973823i \(0.572993\pi\)
\(684\) −0.346301 −0.0132412
\(685\) −12.8757 12.8757i −0.491955 0.491955i
\(686\) −25.8951 + 25.8951i −0.988681 + 0.988681i
\(687\) −0.269138 + 0.269138i −0.0102683 + 0.0102683i
\(688\) 6.26078i 0.238690i
\(689\) 8.36738i 0.318772i
\(690\) −1.47266 + 1.47266i −0.0560630 + 0.0560630i
\(691\) 18.0483 18.0483i 0.686590 0.686590i −0.274886 0.961477i \(-0.588640\pi\)
0.961477 + 0.274886i \(0.0886403\pi\)
\(692\) 0.160898 + 0.160898i 0.00611642 + 0.00611642i
\(693\) −20.0967 −0.763411
\(694\) −7.26090 7.26090i −0.275620 0.275620i
\(695\) 22.7411i 0.862618i
\(696\) −4.19248 −0.158916
\(697\) 0 0
\(698\) −22.7135 −0.859718
\(699\) 8.96281i 0.339005i
\(700\) 0.0791994 + 0.0791994i 0.00299346 + 0.00299346i
\(701\) 14.8327 0.560225 0.280113 0.959967i \(-0.409628\pi\)
0.280113 + 0.959967i \(0.409628\pi\)
\(702\) −1.19538 1.19538i −0.0451166 0.0451166i
\(703\) −30.2542 + 30.2542i −1.14106 + 1.14106i
\(704\) −24.6202 + 24.6202i −0.927909 + 0.927909i
\(705\) 13.9277i 0.524549i
\(706\) 50.7026i 1.90822i
\(707\) −37.4249 + 37.4249i −1.40751 + 1.40751i
\(708\) 0.523468 0.523468i 0.0196731 0.0196731i
\(709\) 3.31985 + 3.31985i 0.124680 + 0.124680i 0.766693 0.642014i \(-0.221901\pi\)
−0.642014 + 0.766693i \(0.721901\pi\)
\(710\) 50.7607 1.90502
\(711\) −11.8067 11.8067i −0.442786 0.442786i
\(712\) 4.27571i 0.160239i
\(713\) −5.46342 −0.204607
\(714\) 0 0
\(715\) 12.2981 0.459923
\(716\) 1.35310i 0.0505678i
\(717\) 4.74418 + 4.74418i 0.177175 + 0.177175i
\(718\) −37.0317 −1.38201
\(719\) 0.291916 + 0.291916i 0.0108866 + 0.0108866i 0.712529 0.701643i \(-0.247550\pi\)
−0.701643 + 0.712529i \(0.747550\pi\)
\(720\) −6.76942 + 6.76942i −0.252281 + 0.252281i
\(721\) 4.43602 4.43602i 0.165206 0.165206i
\(722\) 6.73444i 0.250630i
\(723\) 8.83991i 0.328760i
\(724\) −0.604844 + 0.604844i −0.0224788 + 0.0224788i
\(725\) 0.378417 0.378417i 0.0140541 0.0140541i
\(726\) −9.63839 9.63839i −0.357714 0.357714i
\(727\) 32.9236 1.22107 0.610534 0.791990i \(-0.290955\pi\)
0.610534 + 0.791990i \(0.290955\pi\)
\(728\) 10.2412 + 10.2412i 0.379565 + 0.379565i
\(729\) 1.00000i 0.0370370i
\(730\) 8.99753 0.333013
\(731\) 0 0
\(732\) 0.182099 0.00673059
\(733\) 36.5965i 1.35172i −0.737029 0.675861i \(-0.763772\pi\)
0.737029 0.675861i \(-0.236228\pi\)
\(734\) −8.40664 8.40664i −0.310295 0.310295i
\(735\) 29.4540 1.08643
\(736\) −0.177943 0.177943i −0.00655906 0.00655906i
\(737\) −11.8951 + 11.8951i −0.438163 + 0.438163i
\(738\) 0.473165 0.473165i 0.0174174 0.0174174i
\(739\) 45.0262i 1.65632i −0.560494 0.828158i \(-0.689389\pi\)
0.560494 0.828158i \(-0.310611\pi\)
\(740\) 1.44789i 0.0532255i
\(741\) 4.04187 4.04187i 0.148482 0.148482i
\(742\) −32.1975 + 32.1975i −1.18201 + 1.18201i
\(743\) −13.9598 13.9598i −0.512137 0.512137i 0.403044 0.915181i \(-0.367952\pi\)
−0.915181 + 0.403044i \(0.867952\pi\)
\(744\) −24.2500 −0.889047
\(745\) −10.3089 10.3089i −0.377689 0.377689i
\(746\) 33.7280i 1.23487i
\(747\) −4.45459 −0.162985
\(748\) 0 0
\(749\) −69.5308 −2.54060
\(750\) 15.4706i 0.564907i
\(751\) 16.4501 + 16.4501i 0.600272 + 0.600272i 0.940385 0.340112i \(-0.110465\pi\)
−0.340112 + 0.940385i \(0.610465\pi\)
\(752\) 24.9024 0.908097
\(753\) −17.2671 17.2671i −0.629247 0.629247i
\(754\) −1.80540 + 1.80540i −0.0657488 + 0.0657488i
\(755\) 17.7166 17.7166i 0.644774 0.644774i
\(756\) 0.316097i 0.0114963i
\(757\) 9.82437i 0.357073i −0.983933 0.178536i \(-0.942864\pi\)
0.983933 0.178536i \(-0.0571362\pi\)
\(758\) 15.3277 15.3277i 0.556728 0.556728i
\(759\) −2.00085 + 2.00085i −0.0726262 + 0.0726262i
\(760\) −22.1017 22.1017i −0.801714 0.801714i
\(761\) 38.2412 1.38624 0.693121 0.720822i \(-0.256235\pi\)
0.693121 + 0.720822i \(0.256235\pi\)
\(762\) 3.42634 + 3.42634i 0.124123 + 0.124123i
\(763\) 45.0557i 1.63112i
\(764\) 1.58771 0.0574414
\(765\) 0 0
\(766\) 23.0236 0.831876
\(767\) 12.2194i 0.441215i
\(768\) −1.20620 1.20620i −0.0435252 0.0435252i
\(769\) −44.2020 −1.59396 −0.796982 0.604002i \(-0.793572\pi\)
−0.796982 + 0.604002i \(0.793572\pi\)
\(770\) 47.3228 + 47.3228i 1.70540 + 1.70540i
\(771\) −18.3372 + 18.3372i −0.660398 + 0.660398i
\(772\) −0.175920 + 0.175920i −0.00633148 + 0.00633148i
\(773\) 5.09149i 0.183128i 0.995799 + 0.0915641i \(0.0291866\pi\)
−0.995799 + 0.0915641i \(0.970813\pi\)
\(774\) 2.17782i 0.0782802i
\(775\) 2.18882 2.18882i 0.0786248 0.0786248i
\(776\) 7.53512 7.53512i 0.270495 0.270495i
\(777\) −27.6154 27.6154i −0.990697 0.990697i
\(778\) 4.30295 0.154268
\(779\) 1.59989 + 1.59989i 0.0573221 + 0.0573221i
\(780\) 0.193434i 0.00692606i
\(781\) 68.9670 2.46783
\(782\) 0 0
\(783\) −1.51032 −0.0539744
\(784\) 52.6630i 1.88082i
\(785\) 17.7120 + 17.7120i 0.632169 + 0.632169i
\(786\) −2.07189 −0.0739017
\(787\) 6.55852 + 6.55852i 0.233786 + 0.233786i 0.814271 0.580485i \(-0.197137\pi\)
−0.580485 + 0.814271i \(0.697137\pi\)
\(788\) 0.603720 0.603720i 0.0215066 0.0215066i
\(789\) 1.23144 1.23144i 0.0438403 0.0438403i
\(790\) 55.6038i 1.97829i
\(791\) 3.54787i 0.126148i
\(792\) −8.88098 + 8.88098i −0.315572 + 0.315572i
\(793\) −2.12538 + 2.12538i −0.0754746 + 0.0754746i
\(794\) 12.8758 + 12.8758i 0.456945 + 0.456945i
\(795\) 16.4828 0.584584
\(796\) −0.202419 0.202419i −0.00717454 0.00717454i
\(797\) 24.7276i 0.875897i −0.899000 0.437949i \(-0.855705\pi\)
0.899000 0.437949i \(-0.144295\pi\)
\(798\) 31.1061 1.10114
\(799\) 0 0
\(800\) 0.142579 0.00504094
\(801\) 1.54030i 0.0544240i
\(802\) 14.9276 + 14.9276i 0.527110 + 0.527110i
\(803\) 12.2246 0.431398
\(804\) −0.187096 0.187096i −0.00659836 0.00659836i
\(805\) 4.54512 4.54512i 0.160195 0.160195i
\(806\) −10.4427 + 10.4427i −0.367829 + 0.367829i
\(807\) 31.4782i 1.10809i
\(808\) 33.0770i 1.16364i
\(809\) 21.0019 21.0019i 0.738388 0.738388i −0.233878 0.972266i \(-0.575142\pi\)
0.972266 + 0.233878i \(0.0751417\pi\)
\(810\) −2.35475 + 2.35475i −0.0827376 + 0.0827376i
\(811\) −19.9949 19.9949i −0.702115 0.702115i 0.262749 0.964864i \(-0.415371\pi\)
−0.964864 + 0.262749i \(0.915371\pi\)
\(812\) −0.477408 −0.0167537
\(813\) 14.0054 + 14.0054i 0.491190 + 0.491190i
\(814\) 57.2526i 2.00670i
\(815\) 26.0970 0.914137
\(816\) 0 0
\(817\) −7.36378 −0.257626
\(818\) 23.4898i 0.821301i
\(819\) 3.68934 + 3.68934i 0.128916 + 0.128916i
\(820\) −0.0765670 −0.00267383
\(821\) −30.3203 30.3203i −1.05819 1.05819i −0.998199 0.0599883i \(-0.980894\pi\)
−0.0599883 0.998199i \(-0.519106\pi\)
\(822\) 8.00803 8.00803i 0.279312 0.279312i
\(823\) −20.6449 + 20.6449i −0.719635 + 0.719635i −0.968530 0.248895i \(-0.919932\pi\)
0.248895 + 0.968530i \(0.419932\pi\)
\(824\) 3.92066i 0.136583i
\(825\) 1.60321i 0.0558166i
\(826\) −47.0198 + 47.0198i −1.63603 + 1.63603i
\(827\) −36.0839 + 36.0839i −1.25476 + 1.25476i −0.301198 + 0.953562i \(0.597387\pi\)
−0.953562 + 0.301198i \(0.902613\pi\)
\(828\) −0.0314709 0.0314709i −0.00109369 0.00109369i
\(829\) 16.2122 0.563072 0.281536 0.959551i \(-0.409156\pi\)
0.281536 + 0.959551i \(0.409156\pi\)
\(830\) 10.4894 + 10.4894i 0.364094 + 0.364094i
\(831\) 2.33073i 0.0808522i
\(832\) 9.03952 0.313389
\(833\) 0 0
\(834\) −14.1438 −0.489759
\(835\) 28.6163i 0.990309i
\(836\) 1.10793 + 1.10793i 0.0383186 + 0.0383186i
\(837\) −8.73592 −0.301958
\(838\) 15.9868 + 15.9868i 0.552256 + 0.552256i
\(839\) 25.2983 25.2983i 0.873394 0.873394i −0.119446 0.992841i \(-0.538112\pi\)
0.992841 + 0.119446i \(0.0381120\pi\)
\(840\) 20.1740 20.1740i 0.696069 0.696069i
\(841\) 26.7189i 0.921343i
\(842\) 31.8104i 1.09626i
\(843\) 0.216479 0.216479i 0.00745593 0.00745593i
\(844\) 0.803140 0.803140i 0.0276452 0.0276452i
\(845\) 19.0130 + 19.0130i 0.654067 + 0.654067i
\(846\) 8.66233 0.297817
\(847\) 29.7474 + 29.7474i 1.02213 + 1.02213i
\(848\) 29.4707i 1.01203i
\(849\) 18.3142 0.628542
\(850\) 0 0
\(851\) −5.49883 −0.188498
\(852\) 1.08477i 0.0371635i
\(853\) −36.7210 36.7210i −1.25730 1.25730i −0.952376 0.304927i \(-0.901368\pi\)
−0.304927 0.952376i \(-0.598632\pi\)
\(854\) −16.3568 −0.559720
\(855\) −7.96203 7.96203i −0.272296 0.272296i
\(856\) −30.7265 + 30.7265i −1.05021 + 1.05021i
\(857\) 25.8044 25.8044i 0.881460 0.881460i −0.112223 0.993683i \(-0.535797\pi\)
0.993683 + 0.112223i \(0.0357970\pi\)
\(858\) 7.64879i 0.261125i
\(859\) 26.0367i 0.888361i 0.895937 + 0.444181i \(0.146505\pi\)
−0.895937 + 0.444181i \(0.853495\pi\)
\(860\) 0.176206 0.176206i 0.00600859 0.00600859i
\(861\) −1.46035 + 1.46035i −0.0497686 + 0.0497686i
\(862\) −4.22856 4.22856i −0.144025 0.144025i
\(863\) −37.5428 −1.27797 −0.638986 0.769218i \(-0.720646\pi\)
−0.638986 + 0.769218i \(0.720646\pi\)
\(864\) −0.284528 0.284528i −0.00967983 0.00967983i
\(865\) 7.39860i 0.251560i
\(866\) 18.8192 0.639502
\(867\) 0 0
\(868\) −2.76140 −0.0937280
\(869\) 75.5470i 2.56276i
\(870\) 3.55643 + 3.55643i 0.120574 + 0.120574i
\(871\) 4.36740 0.147984
\(872\) 19.9106 + 19.9106i 0.674259 + 0.674259i
\(873\) 2.71449 2.71449i 0.0918715 0.0918715i
\(874\) 3.09695 3.09695i 0.104756 0.104756i
\(875\) 47.7477i 1.61417i
\(876\) 0.192279i 0.00649650i
\(877\) 27.6293 27.6293i 0.932976 0.932976i −0.0649145 0.997891i \(-0.520677\pi\)
0.997891 + 0.0649145i \(0.0206775\pi\)
\(878\) 11.7983 11.7983i 0.398173 0.398173i
\(879\) 10.7941 + 10.7941i 0.364076 + 0.364076i
\(880\) 43.3151 1.46015
\(881\) 31.2782 + 31.2782i 1.05379 + 1.05379i 0.998469 + 0.0553191i \(0.0176176\pi\)
0.0553191 + 0.998469i \(0.482382\pi\)
\(882\) 18.3189i 0.616830i
\(883\) −21.8625 −0.735733 −0.367866 0.929879i \(-0.619912\pi\)
−0.367866 + 0.929879i \(0.619912\pi\)
\(884\) 0 0
\(885\) 24.0707 0.809128
\(886\) 25.4182i 0.853943i
\(887\) −0.309008 0.309008i −0.0103755 0.0103755i 0.701900 0.712275i \(-0.252335\pi\)
−0.712275 + 0.701900i \(0.752335\pi\)
\(888\) −24.4071 −0.819050
\(889\) −10.5749 10.5749i −0.354670 0.354670i
\(890\) −3.62703 + 3.62703i −0.121578 + 0.121578i
\(891\) −3.19932 + 3.19932i −0.107181 + 0.107181i
\(892\) 0.381143i 0.0127616i
\(893\) 29.2896i 0.980139i
\(894\) 6.41161 6.41161i 0.214436 0.214436i
\(895\) −31.1100 + 31.1100i −1.03989 + 1.03989i
\(896\) 37.3114 + 37.3114i 1.24649 + 1.24649i
\(897\) 0.734629 0.0245285
\(898\) 35.7612 + 35.7612i 1.19337 + 1.19337i
\(899\) 13.1940i 0.440046i
\(900\) 0.0252165 0.000840551
\(901\) 0 0
\(902\) −3.02762 −0.100809
\(903\) 6.72151i 0.223678i
\(904\) 1.56785 + 1.56785i 0.0521458 + 0.0521458i
\(905\) −27.8127 −0.924524
\(906\) 11.0188 + 11.0188i 0.366076 + 0.366076i
\(907\) −12.0258 + 12.0258i −0.399310 + 0.399310i −0.877990 0.478680i \(-0.841116\pi\)
0.478680 + 0.877990i \(0.341116\pi\)
\(908\) 0.0861877 0.0861877i 0.00286024 0.00286024i
\(909\) 11.9158i 0.395222i
\(910\) 17.3750i 0.575975i
\(911\) 13.5337 13.5337i 0.448392 0.448392i −0.446428 0.894820i \(-0.647304\pi\)
0.894820 + 0.446428i \(0.147304\pi\)
\(912\) 14.2359 14.2359i 0.471397 0.471397i
\(913\) 14.2517 + 14.2517i 0.471661 + 0.471661i
\(914\) 35.4472 1.17249
\(915\) 4.18676 + 4.18676i 0.138410 + 0.138410i
\(916\) 0.0270869i 0.000894975i
\(917\) 6.39456 0.211167
\(918\) 0 0
\(919\) −48.0934 −1.58645 −0.793227 0.608926i \(-0.791601\pi\)
−0.793227 + 0.608926i \(0.791601\pi\)
\(920\) 4.01709i 0.132439i
\(921\) −21.2050 21.2050i −0.698729 0.698729i
\(922\) −1.44509 −0.0475916
\(923\) −12.6609 12.6609i −0.416739 0.416739i
\(924\) −1.01130 + 1.01130i −0.0332692 + 0.0332692i
\(925\) 2.20301 2.20301i 0.0724345 0.0724345i
\(926\) 29.4451i 0.967625i
\(927\) 1.41240i 0.0463892i
\(928\) −0.429728 + 0.429728i −0.0141065 + 0.0141065i
\(929\) −3.69272 + 3.69272i −0.121154 + 0.121154i −0.765084 0.643930i \(-0.777303\pi\)
0.643930 + 0.765084i \(0.277303\pi\)
\(930\) 20.5709 + 20.5709i 0.674548 + 0.674548i
\(931\) −61.9410 −2.03003
\(932\) 0.451022 + 0.451022i 0.0147737 + 0.0147737i
\(933\) 23.3246i 0.763612i
\(934\) −50.6092 −1.65598
\(935\) 0 0
\(936\) 3.26073 0.106580
\(937\) 6.53593i 0.213520i 0.994285 + 0.106760i \(0.0340476\pi\)
−0.994285 + 0.106760i \(0.965952\pi\)
\(938\) 16.8056 + 16.8056i 0.548723 + 0.548723i
\(939\) −23.9568 −0.781800
\(940\) −0.700864 0.700864i −0.0228597 0.0228597i
\(941\) 5.97644 5.97644i 0.194826 0.194826i −0.602951 0.797778i \(-0.706009\pi\)
0.797778 + 0.602951i \(0.206009\pi\)
\(942\) −11.0160 + 11.0160i −0.358919 + 0.358919i
\(943\) 0.290788i 0.00946935i
\(944\) 43.0378i 1.40076i
\(945\) 7.26758 7.26758i 0.236414 0.236414i
\(946\) 6.96756 6.96756i 0.226535 0.226535i
\(947\) −32.7585 32.7585i −1.06451 1.06451i −0.997770 0.0667393i \(-0.978740\pi\)
−0.0667393 0.997770i \(-0.521260\pi\)
\(948\) −1.18826 −0.0385930
\(949\) −2.24419 2.24419i −0.0728496 0.0728496i
\(950\) 2.48147i 0.0805097i
\(951\) −18.7844 −0.609126
\(952\) 0 0
\(953\) 34.8809 1.12990 0.564951 0.825124i \(-0.308895\pi\)
0.564951 + 0.825124i \(0.308895\pi\)
\(954\) 10.2514i 0.331903i
\(955\) 36.5040 + 36.5040i 1.18124 + 1.18124i
\(956\) 0.477468 0.0154424
\(957\) 4.83200 + 4.83200i 0.156196 + 0.156196i
\(958\) −3.92523 + 3.92523i −0.126818 + 0.126818i
\(959\) −24.7155 + 24.7155i −0.798106 + 0.798106i
\(960\) 17.8068i 0.574713i
\(961\) 45.3164i 1.46182i
\(962\) −10.5104 + 10.5104i −0.338869 + 0.338869i
\(963\) −11.0690 + 11.0690i −0.356695 + 0.356695i
\(964\) −0.444837 0.444837i −0.0143272 0.0143272i
\(965\) −8.08934 −0.260405
\(966\) 2.82683 + 2.82683i 0.0909519 + 0.0909519i
\(967\) 45.1412i 1.45164i −0.687884 0.725821i \(-0.741460\pi\)
0.687884 0.725821i \(-0.258540\pi\)
\(968\) 26.2915 0.845039
\(969\) 0 0
\(970\) −12.7839 −0.410466
\(971\) 42.2005i 1.35428i −0.735855 0.677139i \(-0.763220\pi\)
0.735855 0.677139i \(-0.236780\pi\)
\(972\) −0.0503215 0.0503215i −0.00161406 0.00161406i
\(973\) 43.6526 1.39944
\(974\) −20.7281 20.7281i −0.664172 0.664172i
\(975\) −0.294316 + 0.294316i −0.00942565 + 0.00942565i
\(976\) −7.48581 + 7.48581i −0.239615 + 0.239615i
\(977\) 38.0075i 1.21597i −0.793950 0.607983i \(-0.791979\pi\)
0.793950 0.607983i \(-0.208021\pi\)
\(978\) 16.2310i 0.519009i
\(979\) −4.92793 + 4.92793i −0.157497 + 0.157497i
\(980\) 1.48217 1.48217i 0.0473462 0.0473462i
\(981\) 7.17270 + 7.17270i 0.229007 + 0.229007i
\(982\) −9.19154 −0.293314
\(983\) 30.6728 + 30.6728i 0.978310 + 0.978310i 0.999770 0.0214593i \(-0.00683124\pi\)
−0.0214593 + 0.999770i \(0.506831\pi\)
\(984\) 1.29069i 0.0411457i
\(985\) 27.7610 0.884539
\(986\) 0 0
\(987\) −26.7349 −0.850983
\(988\) 0.406786i 0.0129416i
\(989\) −0.669200 0.669200i −0.0212793 0.0212793i
\(990\) 15.0672 0.478868
\(991\) 28.4673 + 28.4673i 0.904292 + 0.904292i 0.995804 0.0915120i \(-0.0291700\pi\)
−0.0915120 + 0.995804i \(0.529170\pi\)
\(992\) −2.48561 + 2.48561i −0.0789183 + 0.0789183i
\(993\) 16.7492 16.7492i 0.531519 0.531519i
\(994\) 97.4377i 3.09054i
\(995\) 9.30787i 0.295079i
\(996\) −0.224161 + 0.224161i −0.00710283 + 0.00710283i
\(997\) 22.5059 22.5059i 0.712770 0.712770i −0.254343 0.967114i \(-0.581859\pi\)
0.967114 + 0.254343i \(0.0818594\pi\)
\(998\) −1.67284 1.67284i −0.0529528 0.0529528i
\(999\) −8.79254 −0.278184
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 867.2.e.k.829.9 24
17.2 even 8 867.2.a.o.1.2 6
17.3 odd 16 867.2.h.m.712.9 48
17.4 even 4 inner 867.2.e.k.616.3 24
17.5 odd 16 867.2.h.m.733.4 48
17.6 odd 16 867.2.h.m.757.3 48
17.7 odd 16 867.2.h.m.688.9 48
17.8 even 8 867.2.d.g.577.10 12
17.9 even 8 867.2.d.g.577.9 12
17.10 odd 16 867.2.h.m.688.10 48
17.11 odd 16 867.2.h.m.757.4 48
17.12 odd 16 867.2.h.m.733.3 48
17.13 even 4 inner 867.2.e.k.616.4 24
17.14 odd 16 867.2.h.m.712.10 48
17.15 even 8 867.2.a.p.1.2 yes 6
17.16 even 2 inner 867.2.e.k.829.10 24
51.2 odd 8 2601.2.a.bh.1.5 6
51.32 odd 8 2601.2.a.bi.1.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
867.2.a.o.1.2 6 17.2 even 8
867.2.a.p.1.2 yes 6 17.15 even 8
867.2.d.g.577.9 12 17.9 even 8
867.2.d.g.577.10 12 17.8 even 8
867.2.e.k.616.3 24 17.4 even 4 inner
867.2.e.k.616.4 24 17.13 even 4 inner
867.2.e.k.829.9 24 1.1 even 1 trivial
867.2.e.k.829.10 24 17.16 even 2 inner
867.2.h.m.688.9 48 17.7 odd 16
867.2.h.m.688.10 48 17.10 odd 16
867.2.h.m.712.9 48 17.3 odd 16
867.2.h.m.712.10 48 17.14 odd 16
867.2.h.m.733.3 48 17.12 odd 16
867.2.h.m.733.4 48 17.5 odd 16
867.2.h.m.757.3 48 17.6 odd 16
867.2.h.m.757.4 48 17.11 odd 16
2601.2.a.bh.1.5 6 51.2 odd 8
2601.2.a.bi.1.5 6 51.32 odd 8