Properties

Label 867.2.e.k.616.7
Level $867$
Weight $2$
Character 867.616
Analytic conductor $6.923$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [867,2,Mod(616,867)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(867, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("867.616"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 867 = 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 867.e (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,-36,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.92302985525\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 616.7
Character \(\chi\) \(=\) 867.616
Dual form 867.2.e.k.829.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.907065i q^{2} +(-0.707107 + 0.707107i) q^{3} +1.17723 q^{4} +(2.25802 - 2.25802i) q^{5} +(-0.641392 - 0.641392i) q^{6} +(2.51896 + 2.51896i) q^{7} +2.88196i q^{8} -1.00000i q^{9} +(2.04818 + 2.04818i) q^{10} +(2.31657 + 2.31657i) q^{11} +(-0.832429 + 0.832429i) q^{12} -5.58411 q^{13} +(-2.28486 + 2.28486i) q^{14} +3.19333i q^{15} -0.259660 q^{16} +0.907065 q^{18} -4.23574i q^{19} +(2.65822 - 2.65822i) q^{20} -3.56234 q^{21} +(-2.10128 + 2.10128i) q^{22} +(3.25360 + 3.25360i) q^{23} +(-2.03785 - 2.03785i) q^{24} -5.19735i q^{25} -5.06515i q^{26} +(0.707107 + 0.707107i) q^{27} +(2.96540 + 2.96540i) q^{28} +(1.47382 - 1.47382i) q^{29} -2.89656 q^{30} +(-0.317397 + 0.317397i) q^{31} +5.52839i q^{32} -3.27613 q^{33} +11.3757 q^{35} -1.17723i q^{36} +(0.525318 - 0.525318i) q^{37} +3.84209 q^{38} +(3.94856 - 3.94856i) q^{39} +(6.50753 + 6.50753i) q^{40} +(-3.17713 - 3.17713i) q^{41} -3.23128i q^{42} -6.10953i q^{43} +(2.72715 + 2.72715i) q^{44} +(-2.25802 - 2.25802i) q^{45} +(-2.95123 + 2.95123i) q^{46} +2.26801 q^{47} +(0.183607 - 0.183607i) q^{48} +5.69028i q^{49} +4.71434 q^{50} -6.57379 q^{52} +7.55680i q^{53} +(-0.641392 + 0.641392i) q^{54} +10.4618 q^{55} +(-7.25952 + 7.25952i) q^{56} +(2.99512 + 2.99512i) q^{57} +(1.33685 + 1.33685i) q^{58} +2.83196i q^{59} +3.75929i q^{60} +(-2.76752 - 2.76752i) q^{61} +(-0.287900 - 0.287900i) q^{62} +(2.51896 - 2.51896i) q^{63} -5.53393 q^{64} +(-12.6091 + 12.6091i) q^{65} -2.97167i q^{66} -14.5019 q^{67} -4.60128 q^{69} +10.3185i q^{70} +(2.57685 - 2.57685i) q^{71} +2.88196 q^{72} +(8.24004 - 8.24004i) q^{73} +(0.476498 + 0.476498i) q^{74} +(3.67508 + 3.67508i) q^{75} -4.98645i q^{76} +11.6707i q^{77} +(3.58160 + 3.58160i) q^{78} +(3.98316 + 3.98316i) q^{79} +(-0.586319 + 0.586319i) q^{80} -1.00000 q^{81} +(2.88187 - 2.88187i) q^{82} -3.92274i q^{83} -4.19370 q^{84} +5.54175 q^{86} +2.08430i q^{87} +(-6.67627 + 6.67627i) q^{88} -14.6181 q^{89} +(2.04818 - 2.04818i) q^{90} +(-14.0661 - 14.0661i) q^{91} +(3.83024 + 3.83024i) q^{92} -0.448868i q^{93} +2.05724i q^{94} +(-9.56440 - 9.56440i) q^{95} +(-3.90916 - 3.90916i) q^{96} +(-0.585758 + 0.585758i) q^{97} -5.16145 q^{98} +(2.31657 - 2.31657i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 36 q^{4} - 36 q^{13} + 60 q^{16} + 12 q^{18} - 12 q^{21} - 48 q^{30} - 36 q^{33} + 24 q^{38} - 96 q^{47} + 48 q^{50} - 72 q^{52} + 96 q^{55} - 96 q^{64} - 24 q^{67} - 36 q^{69} - 48 q^{72} - 24 q^{81}+ \cdots + 228 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/867\mathbb{Z}\right)^\times\).

\(n\) \(290\) \(292\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.907065i 0.641392i 0.947182 + 0.320696i \(0.103917\pi\)
−0.947182 + 0.320696i \(0.896083\pi\)
\(3\) −0.707107 + 0.707107i −0.408248 + 0.408248i
\(4\) 1.17723 0.588616
\(5\) 2.25802 2.25802i 1.00982 1.00982i 0.00986808 0.999951i \(-0.496859\pi\)
0.999951 0.00986808i \(-0.00314116\pi\)
\(6\) −0.641392 0.641392i −0.261847 0.261847i
\(7\) 2.51896 + 2.51896i 0.952076 + 0.952076i 0.998903 0.0468272i \(-0.0149110\pi\)
−0.0468272 + 0.998903i \(0.514911\pi\)
\(8\) 2.88196i 1.01893i
\(9\) 1.00000i 0.333333i
\(10\) 2.04818 + 2.04818i 0.647690 + 0.647690i
\(11\) 2.31657 + 2.31657i 0.698473 + 0.698473i 0.964081 0.265608i \(-0.0855726\pi\)
−0.265608 + 0.964081i \(0.585573\pi\)
\(12\) −0.832429 + 0.832429i −0.240302 + 0.240302i
\(13\) −5.58411 −1.54875 −0.774377 0.632725i \(-0.781936\pi\)
−0.774377 + 0.632725i \(0.781936\pi\)
\(14\) −2.28486 + 2.28486i −0.610654 + 0.610654i
\(15\) 3.19333i 0.824514i
\(16\) −0.259660 −0.0649150
\(17\) 0 0
\(18\) 0.907065 0.213797
\(19\) 4.23574i 0.971745i −0.874030 0.485872i \(-0.838502\pi\)
0.874030 0.485872i \(-0.161498\pi\)
\(20\) 2.65822 2.65822i 0.594396 0.594396i
\(21\) −3.56234 −0.777367
\(22\) −2.10128 + 2.10128i −0.447995 + 0.447995i
\(23\) 3.25360 + 3.25360i 0.678422 + 0.678422i 0.959643 0.281221i \(-0.0907393\pi\)
−0.281221 + 0.959643i \(0.590739\pi\)
\(24\) −2.03785 2.03785i −0.415975 0.415975i
\(25\) 5.19735i 1.03947i
\(26\) 5.06515i 0.993358i
\(27\) 0.707107 + 0.707107i 0.136083 + 0.136083i
\(28\) 2.96540 + 2.96540i 0.560407 + 0.560407i
\(29\) 1.47382 1.47382i 0.273682 0.273682i −0.556899 0.830580i \(-0.688009\pi\)
0.830580 + 0.556899i \(0.188009\pi\)
\(30\) −2.89656 −0.528837
\(31\) −0.317397 + 0.317397i −0.0570063 + 0.0570063i −0.735035 0.678029i \(-0.762834\pi\)
0.678029 + 0.735035i \(0.262834\pi\)
\(32\) 5.52839i 0.977290i
\(33\) −3.27613 −0.570301
\(34\) 0 0
\(35\) 11.3757 1.92285
\(36\) 1.17723i 0.196205i
\(37\) 0.525318 0.525318i 0.0863618 0.0863618i −0.662606 0.748968i \(-0.730550\pi\)
0.748968 + 0.662606i \(0.230550\pi\)
\(38\) 3.84209 0.623270
\(39\) 3.94856 3.94856i 0.632276 0.632276i
\(40\) 6.50753 + 6.50753i 1.02893 + 1.02893i
\(41\) −3.17713 3.17713i −0.496185 0.496185i 0.414063 0.910248i \(-0.364109\pi\)
−0.910248 + 0.414063i \(0.864109\pi\)
\(42\) 3.23128i 0.498597i
\(43\) 6.10953i 0.931695i −0.884865 0.465848i \(-0.845750\pi\)
0.884865 0.465848i \(-0.154250\pi\)
\(44\) 2.72715 + 2.72715i 0.411133 + 0.411133i
\(45\) −2.25802 2.25802i −0.336606 0.336606i
\(46\) −2.95123 + 2.95123i −0.435135 + 0.435135i
\(47\) 2.26801 0.330824 0.165412 0.986225i \(-0.447105\pi\)
0.165412 + 0.986225i \(0.447105\pi\)
\(48\) 0.183607 0.183607i 0.0265014 0.0265014i
\(49\) 5.69028i 0.812897i
\(50\) 4.71434 0.666708
\(51\) 0 0
\(52\) −6.57379 −0.911621
\(53\) 7.55680i 1.03801i 0.854772 + 0.519003i \(0.173697\pi\)
−0.854772 + 0.519003i \(0.826303\pi\)
\(54\) −0.641392 + 0.641392i −0.0872824 + 0.0872824i
\(55\) 10.4618 1.41066
\(56\) −7.25952 + 7.25952i −0.970095 + 0.970095i
\(57\) 2.99512 + 2.99512i 0.396713 + 0.396713i
\(58\) 1.33685 + 1.33685i 0.175537 + 0.175537i
\(59\) 2.83196i 0.368690i 0.982862 + 0.184345i \(0.0590163\pi\)
−0.982862 + 0.184345i \(0.940984\pi\)
\(60\) 3.75929i 0.485322i
\(61\) −2.76752 2.76752i −0.354344 0.354344i 0.507379 0.861723i \(-0.330614\pi\)
−0.861723 + 0.507379i \(0.830614\pi\)
\(62\) −0.287900 0.287900i −0.0365634 0.0365634i
\(63\) 2.51896 2.51896i 0.317359 0.317359i
\(64\) −5.53393 −0.691741
\(65\) −12.6091 + 12.6091i −1.56396 + 1.56396i
\(66\) 2.97167i 0.365787i
\(67\) −14.5019 −1.77168 −0.885842 0.463986i \(-0.846419\pi\)
−0.885842 + 0.463986i \(0.846419\pi\)
\(68\) 0 0
\(69\) −4.60128 −0.553930
\(70\) 10.3185i 1.23330i
\(71\) 2.57685 2.57685i 0.305816 0.305816i −0.537468 0.843284i \(-0.680619\pi\)
0.843284 + 0.537468i \(0.180619\pi\)
\(72\) 2.88196 0.339642
\(73\) 8.24004 8.24004i 0.964424 0.964424i −0.0349648 0.999389i \(-0.511132\pi\)
0.999389 + 0.0349648i \(0.0111319\pi\)
\(74\) 0.476498 + 0.476498i 0.0553918 + 0.0553918i
\(75\) 3.67508 + 3.67508i 0.424362 + 0.424362i
\(76\) 4.98645i 0.571985i
\(77\) 11.6707i 1.33000i
\(78\) 3.58160 + 3.58160i 0.405537 + 0.405537i
\(79\) 3.98316 + 3.98316i 0.448140 + 0.448140i 0.894736 0.446596i \(-0.147364\pi\)
−0.446596 + 0.894736i \(0.647364\pi\)
\(80\) −0.586319 + 0.586319i −0.0655524 + 0.0655524i
\(81\) −1.00000 −0.111111
\(82\) 2.88187 2.88187i 0.318249 0.318249i
\(83\) 3.92274i 0.430577i −0.976551 0.215288i \(-0.930931\pi\)
0.976551 0.215288i \(-0.0690691\pi\)
\(84\) −4.19370 −0.457571
\(85\) 0 0
\(86\) 5.54175 0.597582
\(87\) 2.08430i 0.223460i
\(88\) −6.67627 + 6.67627i −0.711693 + 0.711693i
\(89\) −14.6181 −1.54951 −0.774757 0.632259i \(-0.782128\pi\)
−0.774757 + 0.632259i \(0.782128\pi\)
\(90\) 2.04818 2.04818i 0.215897 0.215897i
\(91\) −14.0661 14.0661i −1.47453 1.47453i
\(92\) 3.83024 + 3.83024i 0.399330 + 0.399330i
\(93\) 0.448868i 0.0465454i
\(94\) 2.05724i 0.212188i
\(95\) −9.56440 9.56440i −0.981287 0.981287i
\(96\) −3.90916 3.90916i −0.398977 0.398977i
\(97\) −0.585758 + 0.585758i −0.0594747 + 0.0594747i −0.736219 0.676744i \(-0.763390\pi\)
0.676744 + 0.736219i \(0.263390\pi\)
\(98\) −5.16145 −0.521386
\(99\) 2.31657 2.31657i 0.232824 0.232824i
\(100\) 6.11849i 0.611849i
\(101\) 4.92944 0.490497 0.245249 0.969460i \(-0.421130\pi\)
0.245249 + 0.969460i \(0.421130\pi\)
\(102\) 0 0
\(103\) 11.4347 1.12669 0.563347 0.826221i \(-0.309514\pi\)
0.563347 + 0.826221i \(0.309514\pi\)
\(104\) 16.0932i 1.57807i
\(105\) −8.04386 + 8.04386i −0.785000 + 0.785000i
\(106\) −6.85452 −0.665769
\(107\) −12.4398 + 12.4398i −1.20260 + 1.20260i −0.229226 + 0.973373i \(0.573619\pi\)
−0.973373 + 0.229226i \(0.926381\pi\)
\(108\) 0.832429 + 0.832429i 0.0801005 + 0.0801005i
\(109\) −10.0066 10.0066i −0.958458 0.958458i 0.0407126 0.999171i \(-0.487037\pi\)
−0.999171 + 0.0407126i \(0.987037\pi\)
\(110\) 9.48951i 0.904789i
\(111\) 0.742912i 0.0705141i
\(112\) −0.654072 0.654072i −0.0618040 0.0618040i
\(113\) 14.4260 + 14.4260i 1.35709 + 1.35709i 0.877486 + 0.479603i \(0.159219\pi\)
0.479603 + 0.877486i \(0.340781\pi\)
\(114\) −2.71677 + 2.71677i −0.254449 + 0.254449i
\(115\) 14.6934 1.37017
\(116\) 1.73503 1.73503i 0.161093 0.161093i
\(117\) 5.58411i 0.516251i
\(118\) −2.56877 −0.236475
\(119\) 0 0
\(120\) −9.20304 −0.840119
\(121\) 0.266966i 0.0242696i
\(122\) 2.51032 2.51032i 0.227274 0.227274i
\(123\) 4.49315 0.405133
\(124\) −0.373650 + 0.373650i −0.0335548 + 0.0335548i
\(125\) −0.445626 0.445626i −0.0398580 0.0398580i
\(126\) 2.28486 + 2.28486i 0.203551 + 0.203551i
\(127\) 2.93340i 0.260297i −0.991495 0.130148i \(-0.958455\pi\)
0.991495 0.130148i \(-0.0415454\pi\)
\(128\) 6.03714i 0.533613i
\(129\) 4.32009 + 4.32009i 0.380363 + 0.380363i
\(130\) −11.4372 11.4372i −1.00311 1.00311i
\(131\) 4.67872 4.67872i 0.408782 0.408782i −0.472532 0.881314i \(-0.656660\pi\)
0.881314 + 0.472532i \(0.156660\pi\)
\(132\) −3.85677 −0.335688
\(133\) 10.6696 10.6696i 0.925175 0.925175i
\(134\) 13.1541i 1.13634i
\(135\) 3.19333 0.274838
\(136\) 0 0
\(137\) −10.4851 −0.895804 −0.447902 0.894083i \(-0.647829\pi\)
−0.447902 + 0.894083i \(0.647829\pi\)
\(138\) 4.17367i 0.355286i
\(139\) −3.73775 + 3.73775i −0.317032 + 0.317032i −0.847626 0.530594i \(-0.821969\pi\)
0.530594 + 0.847626i \(0.321969\pi\)
\(140\) 13.3919 1.13182
\(141\) −1.60373 + 1.60373i −0.135058 + 0.135058i
\(142\) 2.33737 + 2.33737i 0.196148 + 0.196148i
\(143\) −12.9360 12.9360i −1.08176 1.08176i
\(144\) 0.259660i 0.0216383i
\(145\) 6.65585i 0.552738i
\(146\) 7.47426 + 7.47426i 0.618574 + 0.618574i
\(147\) −4.02363 4.02363i −0.331864 0.331864i
\(148\) 0.618422 0.618422i 0.0508340 0.0508340i
\(149\) 22.4592 1.83993 0.919965 0.392000i \(-0.128217\pi\)
0.919965 + 0.392000i \(0.128217\pi\)
\(150\) −3.33354 + 3.33354i −0.272182 + 0.272182i
\(151\) 9.52717i 0.775310i −0.921804 0.387655i \(-0.873285\pi\)
0.921804 0.387655i \(-0.126715\pi\)
\(152\) 12.2072 0.990136
\(153\) 0 0
\(154\) −10.5861 −0.853051
\(155\) 1.43338i 0.115132i
\(156\) 4.64837 4.64837i 0.372168 0.372168i
\(157\) −14.1185 −1.12678 −0.563390 0.826191i \(-0.690503\pi\)
−0.563390 + 0.826191i \(0.690503\pi\)
\(158\) −3.61298 + 3.61298i −0.287434 + 0.287434i
\(159\) −5.34347 5.34347i −0.423765 0.423765i
\(160\) 12.4832 + 12.4832i 0.986886 + 0.986886i
\(161\) 16.3913i 1.29182i
\(162\) 0.907065i 0.0712658i
\(163\) 2.49885 + 2.49885i 0.195725 + 0.195725i 0.798164 0.602440i \(-0.205805\pi\)
−0.602440 + 0.798164i \(0.705805\pi\)
\(164\) −3.74022 3.74022i −0.292062 0.292062i
\(165\) −7.39759 + 7.39759i −0.575901 + 0.575901i
\(166\) 3.55818 0.276169
\(167\) 11.4461 11.4461i 0.885722 0.885722i −0.108387 0.994109i \(-0.534568\pi\)
0.994109 + 0.108387i \(0.0345684\pi\)
\(168\) 10.2665i 0.792079i
\(169\) 18.1823 1.39864
\(170\) 0 0
\(171\) −4.23574 −0.323915
\(172\) 7.19234i 0.548411i
\(173\) 12.9528 12.9528i 0.984782 0.984782i −0.0151035 0.999886i \(-0.504808\pi\)
0.999886 + 0.0151035i \(0.00480777\pi\)
\(174\) −1.89059 −0.143326
\(175\) 13.0919 13.0919i 0.989655 0.989655i
\(176\) −0.601522 0.601522i −0.0453414 0.0453414i
\(177\) −2.00250 2.00250i −0.150517 0.150517i
\(178\) 13.2596i 0.993846i
\(179\) 20.7057i 1.54762i −0.633419 0.773809i \(-0.718349\pi\)
0.633419 0.773809i \(-0.281651\pi\)
\(180\) −2.65822 2.65822i −0.198132 0.198132i
\(181\) −13.1875 13.1875i −0.980223 0.980223i 0.0195857 0.999808i \(-0.493765\pi\)
−0.999808 + 0.0195857i \(0.993765\pi\)
\(182\) 12.7589 12.7589i 0.945753 0.945753i
\(183\) 3.91386 0.289321
\(184\) −9.37674 + 9.37674i −0.691262 + 0.691262i
\(185\) 2.37236i 0.174420i
\(186\) 0.407152 0.0298539
\(187\) 0 0
\(188\) 2.66998 0.194728
\(189\) 3.56234i 0.259122i
\(190\) 8.67554 8.67554i 0.629390 0.629390i
\(191\) −2.19374 −0.158734 −0.0793669 0.996845i \(-0.525290\pi\)
−0.0793669 + 0.996845i \(0.525290\pi\)
\(192\) 3.91308 3.91308i 0.282402 0.282402i
\(193\) −2.34198 2.34198i −0.168579 0.168579i 0.617775 0.786355i \(-0.288034\pi\)
−0.786355 + 0.617775i \(0.788034\pi\)
\(194\) −0.531321 0.531321i −0.0381466 0.0381466i
\(195\) 17.8319i 1.27697i
\(196\) 6.69878i 0.478484i
\(197\) −12.7408 12.7408i −0.907745 0.907745i 0.0883452 0.996090i \(-0.471842\pi\)
−0.996090 + 0.0883452i \(0.971842\pi\)
\(198\) 2.10128 + 2.10128i 0.149332 + 0.149332i
\(199\) −2.81539 + 2.81539i −0.199577 + 0.199577i −0.799819 0.600241i \(-0.795071\pi\)
0.600241 + 0.799819i \(0.295071\pi\)
\(200\) 14.9785 1.05914
\(201\) 10.2544 10.2544i 0.723287 0.723287i
\(202\) 4.47132i 0.314601i
\(203\) 7.42498 0.521131
\(204\) 0 0
\(205\) −14.3481 −1.00211
\(206\) 10.3720i 0.722652i
\(207\) 3.25360 3.25360i 0.226141 0.226141i
\(208\) 1.44997 0.100537
\(209\) 9.81240 9.81240i 0.678738 0.678738i
\(210\) −7.29630 7.29630i −0.503493 0.503493i
\(211\) −0.142055 0.142055i −0.00977948 0.00977948i 0.702200 0.711980i \(-0.252201\pi\)
−0.711980 + 0.702200i \(0.752201\pi\)
\(212\) 8.89611i 0.610988i
\(213\) 3.64422i 0.249698i
\(214\) −11.2837 11.2837i −0.771338 0.771338i
\(215\) −13.7955 13.7955i −0.940844 0.940844i
\(216\) −2.03785 + 2.03785i −0.138658 + 0.138658i
\(217\) −1.59902 −0.108549
\(218\) 9.07664 9.07664i 0.614748 0.614748i
\(219\) 11.6532i 0.787449i
\(220\) 12.3159 0.830340
\(221\) 0 0
\(222\) −0.673870 −0.0452272
\(223\) 11.5997i 0.776770i −0.921497 0.388385i \(-0.873033\pi\)
0.921497 0.388385i \(-0.126967\pi\)
\(224\) −13.9258 + 13.9258i −0.930454 + 0.930454i
\(225\) −5.19735 −0.346490
\(226\) −13.0854 + 13.0854i −0.870426 + 0.870426i
\(227\) −6.72737 6.72737i −0.446511 0.446511i 0.447682 0.894193i \(-0.352250\pi\)
−0.894193 + 0.447682i \(0.852250\pi\)
\(228\) 3.52595 + 3.52595i 0.233512 + 0.233512i
\(229\) 16.7700i 1.10819i 0.832452 + 0.554097i \(0.186936\pi\)
−0.832452 + 0.554097i \(0.813064\pi\)
\(230\) 13.3279i 0.878815i
\(231\) −8.25243 8.25243i −0.542970 0.542970i
\(232\) 4.24749 + 4.24749i 0.278861 + 0.278861i
\(233\) −6.68122 + 6.68122i −0.437701 + 0.437701i −0.891238 0.453537i \(-0.850162\pi\)
0.453537 + 0.891238i \(0.350162\pi\)
\(234\) −5.06515 −0.331119
\(235\) 5.12123 5.12123i 0.334072 0.334072i
\(236\) 3.33387i 0.217017i
\(237\) −5.63303 −0.365905
\(238\) 0 0
\(239\) 6.42079 0.415326 0.207663 0.978200i \(-0.433414\pi\)
0.207663 + 0.978200i \(0.433414\pi\)
\(240\) 0.829180i 0.0535233i
\(241\) −10.9482 + 10.9482i −0.705237 + 0.705237i −0.965530 0.260293i \(-0.916181\pi\)
0.260293 + 0.965530i \(0.416181\pi\)
\(242\) 0.242155 0.0155663
\(243\) 0.707107 0.707107i 0.0453609 0.0453609i
\(244\) −3.25801 3.25801i −0.208573 0.208573i
\(245\) 12.8488 + 12.8488i 0.820879 + 0.820879i
\(246\) 4.07558i 0.259849i
\(247\) 23.6528i 1.50499i
\(248\) −0.914726 0.914726i −0.0580851 0.0580851i
\(249\) 2.77380 + 2.77380i 0.175782 + 0.175782i
\(250\) 0.404212 0.404212i 0.0255646 0.0255646i
\(251\) −25.7024 −1.62232 −0.811162 0.584821i \(-0.801165\pi\)
−0.811162 + 0.584821i \(0.801165\pi\)
\(252\) 2.96540 2.96540i 0.186802 0.186802i
\(253\) 15.0744i 0.947720i
\(254\) 2.66078 0.166952
\(255\) 0 0
\(256\) −16.5439 −1.03400
\(257\) 2.50466i 0.156236i 0.996944 + 0.0781182i \(0.0248911\pi\)
−0.996944 + 0.0781182i \(0.975109\pi\)
\(258\) −3.91861 + 3.91861i −0.243962 + 0.243962i
\(259\) 2.64651 0.164446
\(260\) −14.8438 + 14.8438i −0.920573 + 0.920573i
\(261\) −1.47382 1.47382i −0.0912272 0.0912272i
\(262\) 4.24390 + 4.24390i 0.262189 + 0.262189i
\(263\) 6.09867i 0.376060i −0.982163 0.188030i \(-0.939790\pi\)
0.982163 0.188030i \(-0.0602102\pi\)
\(264\) 9.44167i 0.581095i
\(265\) 17.0635 + 17.0635i 1.04820 + 1.04820i
\(266\) 9.67806 + 9.67806i 0.593400 + 0.593400i
\(267\) 10.3365 10.3365i 0.632586 0.632586i
\(268\) −17.0721 −1.04284
\(269\) 2.90940 2.90940i 0.177389 0.177389i −0.612828 0.790217i \(-0.709968\pi\)
0.790217 + 0.612828i \(0.209968\pi\)
\(270\) 2.89656i 0.176279i
\(271\) −11.8548 −0.720128 −0.360064 0.932928i \(-0.617245\pi\)
−0.360064 + 0.932928i \(0.617245\pi\)
\(272\) 0 0
\(273\) 19.8925 1.20395
\(274\) 9.51068i 0.574561i
\(275\) 12.0401 12.0401i 0.726043 0.726043i
\(276\) −5.41678 −0.326052
\(277\) −11.5086 + 11.5086i −0.691486 + 0.691486i −0.962559 0.271073i \(-0.912621\pi\)
0.271073 + 0.962559i \(0.412621\pi\)
\(278\) −3.39038 3.39038i −0.203342 0.203342i
\(279\) 0.317397 + 0.317397i 0.0190021 + 0.0190021i
\(280\) 32.7844i 1.95924i
\(281\) 15.2506i 0.909774i −0.890549 0.454887i \(-0.849680\pi\)
0.890549 0.454887i \(-0.150320\pi\)
\(282\) −1.45469 1.45469i −0.0866253 0.0866253i
\(283\) −14.7723 14.7723i −0.878119 0.878119i 0.115221 0.993340i \(-0.463242\pi\)
−0.993340 + 0.115221i \(0.963242\pi\)
\(284\) 3.03355 3.03355i 0.180008 0.180008i
\(285\) 13.5261 0.801217
\(286\) 11.7338 11.7338i 0.693835 0.693835i
\(287\) 16.0061i 0.944811i
\(288\) 5.52839 0.325763
\(289\) 0 0
\(290\) 6.03729 0.354522
\(291\) 0.828387i 0.0485609i
\(292\) 9.70044 9.70044i 0.567675 0.567675i
\(293\) −22.4544 −1.31180 −0.655900 0.754848i \(-0.727711\pi\)
−0.655900 + 0.754848i \(0.727711\pi\)
\(294\) 3.64970 3.64970i 0.212855 0.212855i
\(295\) 6.39463 + 6.39463i 0.372310 + 0.372310i
\(296\) 1.51395 + 1.51395i 0.0879963 + 0.0879963i
\(297\) 3.27613i 0.190100i
\(298\) 20.3720i 1.18012i
\(299\) −18.1685 18.1685i −1.05071 1.05071i
\(300\) 4.32643 + 4.32643i 0.249786 + 0.249786i
\(301\) 15.3896 15.3896i 0.887044 0.887044i
\(302\) 8.64177 0.497278
\(303\) −3.48564 + 3.48564i −0.200245 + 0.200245i
\(304\) 1.09985i 0.0630808i
\(305\) −12.4982 −0.715647
\(306\) 0 0
\(307\) −0.733467 −0.0418611 −0.0209306 0.999781i \(-0.506663\pi\)
−0.0209306 + 0.999781i \(0.506663\pi\)
\(308\) 13.7391i 0.782859i
\(309\) −8.08554 + 8.08554i −0.459971 + 0.459971i
\(310\) −1.30017 −0.0738448
\(311\) 17.1258 17.1258i 0.971114 0.971114i −0.0284806 0.999594i \(-0.509067\pi\)
0.999594 + 0.0284806i \(0.00906688\pi\)
\(312\) 11.3796 + 11.3796i 0.644242 + 0.644242i
\(313\) −2.70711 2.70711i −0.153015 0.153015i 0.626448 0.779463i \(-0.284508\pi\)
−0.779463 + 0.626448i \(0.784508\pi\)
\(314\) 12.8064i 0.722708i
\(315\) 11.3757i 0.640950i
\(316\) 4.68910 + 4.68910i 0.263782 + 0.263782i
\(317\) 2.46980 + 2.46980i 0.138718 + 0.138718i 0.773056 0.634338i \(-0.218727\pi\)
−0.634338 + 0.773056i \(0.718727\pi\)
\(318\) 4.84688 4.84688i 0.271799 0.271799i
\(319\) 6.82843 0.382319
\(320\) −12.4957 + 12.4957i −0.698534 + 0.698534i
\(321\) 17.5925i 0.981918i
\(322\) −14.8680 −0.828563
\(323\) 0 0
\(324\) −1.17723 −0.0654018
\(325\) 29.0226i 1.60988i
\(326\) −2.26662 + 2.26662i −0.125536 + 0.125536i
\(327\) 14.1515 0.782578
\(328\) 9.15637 9.15637i 0.505576 0.505576i
\(329\) 5.71303 + 5.71303i 0.314969 + 0.314969i
\(330\) −6.71009 6.71009i −0.369379 0.369379i
\(331\) 5.00357i 0.275021i −0.990500 0.137511i \(-0.956090\pi\)
0.990500 0.137511i \(-0.0439101\pi\)
\(332\) 4.61798i 0.253444i
\(333\) −0.525318 0.525318i −0.0287873 0.0287873i
\(334\) 10.3823 + 10.3823i 0.568095 + 0.568095i
\(335\) −32.7456 + 32.7456i −1.78908 + 1.78908i
\(336\) 0.924998 0.0504628
\(337\) −19.1226 + 19.1226i −1.04167 + 1.04167i −0.0425789 + 0.999093i \(0.513557\pi\)
−0.999093 + 0.0425789i \(0.986443\pi\)
\(338\) 16.4925i 0.897075i
\(339\) −20.4015 −1.10806
\(340\) 0 0
\(341\) −1.47055 −0.0796347
\(342\) 3.84209i 0.207757i
\(343\) 3.29913 3.29913i 0.178136 0.178136i
\(344\) 17.6074 0.949328
\(345\) −10.3898 + 10.3898i −0.559369 + 0.559369i
\(346\) 11.7490 + 11.7490i 0.631632 + 0.631632i
\(347\) 3.04979 + 3.04979i 0.163721 + 0.163721i 0.784213 0.620492i \(-0.213067\pi\)
−0.620492 + 0.784213i \(0.713067\pi\)
\(348\) 2.45370i 0.131532i
\(349\) 29.1251i 1.55903i −0.626382 0.779516i \(-0.715465\pi\)
0.626382 0.779516i \(-0.284535\pi\)
\(350\) 11.8752 + 11.8752i 0.634757 + 0.634757i
\(351\) −3.94856 3.94856i −0.210759 0.210759i
\(352\) −12.8069 + 12.8069i −0.682611 + 0.682611i
\(353\) 11.5730 0.615971 0.307985 0.951391i \(-0.400345\pi\)
0.307985 + 0.951391i \(0.400345\pi\)
\(354\) 1.81640 1.81640i 0.0965404 0.0965404i
\(355\) 11.6372i 0.617638i
\(356\) −17.2089 −0.912069
\(357\) 0 0
\(358\) 18.7814 0.992630
\(359\) 26.1470i 1.37998i −0.723817 0.689992i \(-0.757614\pi\)
0.723817 0.689992i \(-0.242386\pi\)
\(360\) 6.50753 6.50753i 0.342977 0.342977i
\(361\) 1.05852 0.0557118
\(362\) 11.9620 11.9620i 0.628707 0.628707i
\(363\) 0.188773 + 0.188773i 0.00990802 + 0.00990802i
\(364\) −16.5591 16.5591i −0.867933 0.867933i
\(365\) 37.2124i 1.94779i
\(366\) 3.55013i 0.185568i
\(367\) 15.4451 + 15.4451i 0.806228 + 0.806228i 0.984061 0.177833i \(-0.0569087\pi\)
−0.177833 + 0.984061i \(0.556909\pi\)
\(368\) −0.844830 0.844830i −0.0440398 0.0440398i
\(369\) −3.17713 + 3.17713i −0.165395 + 0.165395i
\(370\) 2.15189 0.111871
\(371\) −19.0353 + 19.0353i −0.988261 + 0.988261i
\(372\) 0.528421i 0.0273974i
\(373\) 31.0065 1.60545 0.802727 0.596347i \(-0.203382\pi\)
0.802727 + 0.596347i \(0.203382\pi\)
\(374\) 0 0
\(375\) 0.630210 0.0325439
\(376\) 6.53632i 0.337085i
\(377\) −8.22998 + 8.22998i −0.423866 + 0.423866i
\(378\) −3.23128 −0.166199
\(379\) −8.32166 + 8.32166i −0.427455 + 0.427455i −0.887761 0.460305i \(-0.847740\pi\)
0.460305 + 0.887761i \(0.347740\pi\)
\(380\) −11.2595 11.2595i −0.577601 0.577601i
\(381\) 2.07422 + 2.07422i 0.106266 + 0.106266i
\(382\) 1.98987i 0.101811i
\(383\) 20.0262i 1.02329i 0.859197 + 0.511645i \(0.170964\pi\)
−0.859197 + 0.511645i \(0.829036\pi\)
\(384\) −4.26890 4.26890i −0.217846 0.217846i
\(385\) 26.3527 + 26.3527i 1.34306 + 1.34306i
\(386\) 2.12432 2.12432i 0.108125 0.108125i
\(387\) −6.10953 −0.310565
\(388\) −0.689573 + 0.689573i −0.0350078 + 0.0350078i
\(389\) 12.7561i 0.646758i 0.946270 + 0.323379i \(0.104819\pi\)
−0.946270 + 0.323379i \(0.895181\pi\)
\(390\) 16.1747 0.819038
\(391\) 0 0
\(392\) −16.3991 −0.828282
\(393\) 6.61671i 0.333769i
\(394\) 11.5567 11.5567i 0.582220 0.582220i
\(395\) 17.9881 0.905081
\(396\) 2.72715 2.72715i 0.137044 0.137044i
\(397\) 19.3140 + 19.3140i 0.969342 + 0.969342i 0.999544 0.0302019i \(-0.00961503\pi\)
−0.0302019 + 0.999544i \(0.509615\pi\)
\(398\) −2.55374 2.55374i −0.128007 0.128007i
\(399\) 15.0891i 0.755402i
\(400\) 1.34954i 0.0674772i
\(401\) 22.1745 + 22.1745i 1.10734 + 1.10734i 0.993499 + 0.113840i \(0.0363153\pi\)
0.113840 + 0.993499i \(0.463685\pi\)
\(402\) 9.30138 + 9.30138i 0.463911 + 0.463911i
\(403\) 1.77238 1.77238i 0.0882886 0.0882886i
\(404\) 5.80309 0.288715
\(405\) −2.25802 + 2.25802i −0.112202 + 0.112202i
\(406\) 6.73494i 0.334250i
\(407\) 2.43388 0.120643
\(408\) 0 0
\(409\) 17.1030 0.845688 0.422844 0.906202i \(-0.361032\pi\)
0.422844 + 0.906202i \(0.361032\pi\)
\(410\) 13.0147i 0.642748i
\(411\) 7.41409 7.41409i 0.365710 0.365710i
\(412\) 13.4613 0.663190
\(413\) −7.13358 + 7.13358i −0.351021 + 0.351021i
\(414\) 2.95123 + 2.95123i 0.145045 + 0.145045i
\(415\) −8.85765 8.85765i −0.434805 0.434805i
\(416\) 30.8711i 1.51358i
\(417\) 5.28597i 0.258855i
\(418\) 8.90049 + 8.90049i 0.435337 + 0.435337i
\(419\) −10.7783 10.7783i −0.526554 0.526554i 0.392989 0.919543i \(-0.371441\pi\)
−0.919543 + 0.392989i \(0.871441\pi\)
\(420\) −9.46949 + 9.46949i −0.462064 + 0.462064i
\(421\) −6.96252 −0.339332 −0.169666 0.985502i \(-0.554269\pi\)
−0.169666 + 0.985502i \(0.554269\pi\)
\(422\) 0.128853 0.128853i 0.00627248 0.00627248i
\(423\) 2.26801i 0.110275i
\(424\) −21.7784 −1.05765
\(425\) 0 0
\(426\) −3.30555 −0.160154
\(427\) 13.9425i 0.674725i
\(428\) −14.6445 + 14.6445i −0.707869 + 0.707869i
\(429\) 18.2943 0.883256
\(430\) 12.5134 12.5134i 0.603450 0.603450i
\(431\) 15.1805 + 15.1805i 0.731218 + 0.731218i 0.970861 0.239643i \(-0.0770305\pi\)
−0.239643 + 0.970861i \(0.577031\pi\)
\(432\) −0.183607 0.183607i −0.00883381 0.00883381i
\(433\) 33.1954i 1.59527i −0.603140 0.797635i \(-0.706084\pi\)
0.603140 0.797635i \(-0.293916\pi\)
\(434\) 1.45042i 0.0696222i
\(435\) 4.70640 + 4.70640i 0.225654 + 0.225654i
\(436\) −11.7801 11.7801i −0.564164 0.564164i
\(437\) 13.7814 13.7814i 0.659253 0.659253i
\(438\) −10.5702 −0.505063
\(439\) −25.2580 + 25.2580i −1.20550 + 1.20550i −0.233032 + 0.972469i \(0.574865\pi\)
−0.972469 + 0.233032i \(0.925135\pi\)
\(440\) 30.1504i 1.43736i
\(441\) 5.69028 0.270966
\(442\) 0 0
\(443\) 13.8366 0.657398 0.328699 0.944435i \(-0.393390\pi\)
0.328699 + 0.944435i \(0.393390\pi\)
\(444\) 0.874580i 0.0415057i
\(445\) −33.0080 + 33.0080i −1.56473 + 1.56473i
\(446\) 10.5216 0.498214
\(447\) −15.8811 + 15.8811i −0.751148 + 0.751148i
\(448\) −13.9397 13.9397i −0.658590 0.658590i
\(449\) 3.30552 + 3.30552i 0.155997 + 0.155997i 0.780790 0.624793i \(-0.214817\pi\)
−0.624793 + 0.780790i \(0.714817\pi\)
\(450\) 4.71434i 0.222236i
\(451\) 14.7201i 0.693144i
\(452\) 16.9828 + 16.9828i 0.798804 + 0.798804i
\(453\) 6.73673 + 6.73673i 0.316519 + 0.316519i
\(454\) 6.10217 6.10217i 0.286389 0.286389i
\(455\) −63.5233 −2.97802
\(456\) −8.63181 + 8.63181i −0.404221 + 0.404221i
\(457\) 5.17186i 0.241930i −0.992657 0.120965i \(-0.961401\pi\)
0.992657 0.120965i \(-0.0385988\pi\)
\(458\) −15.2115 −0.710787
\(459\) 0 0
\(460\) 17.2976 0.806503
\(461\) 22.6450i 1.05468i 0.849654 + 0.527341i \(0.176811\pi\)
−0.849654 + 0.527341i \(0.823189\pi\)
\(462\) 7.48549 7.48549i 0.348257 0.348257i
\(463\) −38.8961 −1.80766 −0.903828 0.427897i \(-0.859255\pi\)
−0.903828 + 0.427897i \(0.859255\pi\)
\(464\) −0.382692 + 0.382692i −0.0177660 + 0.0177660i
\(465\) −1.01355 1.01355i −0.0470025 0.0470025i
\(466\) −6.06030 6.06030i −0.280738 0.280738i
\(467\) 16.7116i 0.773322i 0.922222 + 0.386661i \(0.126372\pi\)
−0.922222 + 0.386661i \(0.873628\pi\)
\(468\) 6.57379i 0.303874i
\(469\) −36.5296 36.5296i −1.68678 1.68678i
\(470\) 4.64529 + 4.64529i 0.214271 + 0.214271i
\(471\) 9.98330 9.98330i 0.460006 0.460006i
\(472\) −8.16159 −0.375667
\(473\) 14.1532 14.1532i 0.650764 0.650764i
\(474\) 5.10953i 0.234688i
\(475\) −22.0146 −1.01010
\(476\) 0 0
\(477\) 7.55680 0.346002
\(478\) 5.82408i 0.266387i
\(479\) −7.42681 + 7.42681i −0.339340 + 0.339340i −0.856119 0.516779i \(-0.827131\pi\)
0.516779 + 0.856119i \(0.327131\pi\)
\(480\) −17.6540 −0.805789
\(481\) −2.93344 + 2.93344i −0.133753 + 0.133753i
\(482\) −9.93075 9.93075i −0.452333 0.452333i
\(483\) −11.5904 11.5904i −0.527383 0.527383i
\(484\) 0.314280i 0.0142855i
\(485\) 2.64531i 0.120117i
\(486\) 0.641392 + 0.641392i 0.0290941 + 0.0290941i
\(487\) 17.1442 + 17.1442i 0.776879 + 0.776879i 0.979299 0.202420i \(-0.0648805\pi\)
−0.202420 + 0.979299i \(0.564881\pi\)
\(488\) 7.97587 7.97587i 0.361050 0.361050i
\(489\) −3.53391 −0.159809
\(490\) −11.6547 + 11.6547i −0.526505 + 0.526505i
\(491\) 14.7261i 0.664580i −0.943177 0.332290i \(-0.892179\pi\)
0.943177 0.332290i \(-0.107821\pi\)
\(492\) 5.28948 0.238468
\(493\) 0 0
\(494\) −21.4547 −0.965291
\(495\) 10.4618i 0.470221i
\(496\) 0.0824154 0.0824154i 0.00370056 0.00370056i
\(497\) 12.9820 0.582320
\(498\) −2.51602 + 2.51602i −0.112745 + 0.112745i
\(499\) −10.1530 10.1530i −0.454511 0.454511i 0.442338 0.896849i \(-0.354149\pi\)
−0.896849 + 0.442338i \(0.854149\pi\)
\(500\) −0.524605 0.524605i −0.0234611 0.0234611i
\(501\) 16.1872i 0.723189i
\(502\) 23.3138i 1.04055i
\(503\) 11.7358 + 11.7358i 0.523275 + 0.523275i 0.918559 0.395284i \(-0.129354\pi\)
−0.395284 + 0.918559i \(0.629354\pi\)
\(504\) 7.25952 + 7.25952i 0.323365 + 0.323365i
\(505\) 11.1308 11.1308i 0.495314 0.495314i
\(506\) −13.6735 −0.607860
\(507\) −12.8568 + 12.8568i −0.570992 + 0.570992i
\(508\) 3.45329i 0.153215i
\(509\) −33.1048 −1.46734 −0.733672 0.679503i \(-0.762195\pi\)
−0.733672 + 0.679503i \(0.762195\pi\)
\(510\) 0 0
\(511\) 41.5126 1.83641
\(512\) 2.93216i 0.129584i
\(513\) 2.99512 2.99512i 0.132238 0.132238i
\(514\) −2.27189 −0.100209
\(515\) 25.8198 25.8198i 1.13776 1.13776i
\(516\) 5.08575 + 5.08575i 0.223888 + 0.223888i
\(517\) 5.25402 + 5.25402i 0.231072 + 0.231072i
\(518\) 2.40056i 0.105474i
\(519\) 18.3180i 0.804072i
\(520\) −36.3388 36.3388i −1.59356 1.59356i
\(521\) 17.1502 + 17.1502i 0.751365 + 0.751365i 0.974734 0.223369i \(-0.0717056\pi\)
−0.223369 + 0.974734i \(0.571706\pi\)
\(522\) 1.33685 1.33685i 0.0585124 0.0585124i
\(523\) 2.14935 0.0939843 0.0469922 0.998895i \(-0.485036\pi\)
0.0469922 + 0.998895i \(0.485036\pi\)
\(524\) 5.50794 5.50794i 0.240615 0.240615i
\(525\) 18.5147i 0.808050i
\(526\) 5.53189 0.241202
\(527\) 0 0
\(528\) 0.850680 0.0370211
\(529\) 1.82818i 0.0794862i
\(530\) −15.4777 + 15.4777i −0.672307 + 0.672307i
\(531\) 2.83196 0.122897
\(532\) 12.5606 12.5606i 0.544573 0.544573i
\(533\) 17.7415 + 17.7415i 0.768468 + 0.768468i
\(534\) 9.37592 + 9.37592i 0.405736 + 0.405736i
\(535\) 56.1787i 2.42882i
\(536\) 41.7938i 1.80522i
\(537\) 14.6411 + 14.6411i 0.631812 + 0.631812i
\(538\) 2.63901 + 2.63901i 0.113776 + 0.113776i
\(539\) −13.1820 + 13.1820i −0.567787 + 0.567787i
\(540\) 3.75929 0.161774
\(541\) 2.86223 2.86223i 0.123057 0.123057i −0.642896 0.765953i \(-0.722267\pi\)
0.765953 + 0.642896i \(0.222267\pi\)
\(542\) 10.7531i 0.461884i
\(543\) 18.6500 0.800348
\(544\) 0 0
\(545\) −45.1903 −1.93574
\(546\) 18.0438i 0.772204i
\(547\) 26.9431 26.9431i 1.15201 1.15201i 0.165855 0.986150i \(-0.446961\pi\)
0.986150 0.165855i \(-0.0530385\pi\)
\(548\) −12.3434 −0.527284
\(549\) −2.76752 + 2.76752i −0.118115 + 0.118115i
\(550\) 10.9211 + 10.9211i 0.465678 + 0.465678i
\(551\) −6.24272 6.24272i −0.265949 0.265949i
\(552\) 13.2607i 0.564413i
\(553\) 20.0668i 0.853327i
\(554\) −10.4391 10.4391i −0.443513 0.443513i
\(555\) 1.67751 + 1.67751i 0.0712065 + 0.0712065i
\(556\) −4.40020 + 4.40020i −0.186610 + 0.186610i
\(557\) −47.0274 −1.99262 −0.996308 0.0858461i \(-0.972641\pi\)
−0.996308 + 0.0858461i \(0.972641\pi\)
\(558\) −0.287900 + 0.287900i −0.0121878 + 0.0121878i
\(559\) 34.1163i 1.44297i
\(560\) −2.95382 −0.124822
\(561\) 0 0
\(562\) 13.8333 0.583522
\(563\) 28.7543i 1.21185i 0.795521 + 0.605925i \(0.207197\pi\)
−0.795521 + 0.605925i \(0.792803\pi\)
\(564\) −1.88796 + 1.88796i −0.0794975 + 0.0794975i
\(565\) 65.1488 2.74083
\(566\) 13.3994 13.3994i 0.563219 0.563219i
\(567\) −2.51896 2.51896i −0.105786 0.105786i
\(568\) 7.42638 + 7.42638i 0.311604 + 0.311604i
\(569\) 1.04600i 0.0438505i 0.999760 + 0.0219252i \(0.00697958\pi\)
−0.999760 + 0.0219252i \(0.993020\pi\)
\(570\) 12.2691i 0.513895i
\(571\) 18.5638 + 18.5638i 0.776869 + 0.776869i 0.979297 0.202428i \(-0.0648832\pi\)
−0.202428 + 0.979297i \(0.564883\pi\)
\(572\) −15.2287 15.2287i −0.636743 0.636743i
\(573\) 1.55121 1.55121i 0.0648028 0.0648028i
\(574\) 14.5186 0.605995
\(575\) 16.9101 16.9101i 0.705200 0.705200i
\(576\) 5.53393i 0.230580i
\(577\) 38.7607 1.61363 0.806814 0.590806i \(-0.201190\pi\)
0.806814 + 0.590806i \(0.201190\pi\)
\(578\) 0 0
\(579\) 3.31205 0.137644
\(580\) 7.83548i 0.325351i
\(581\) 9.88121 9.88121i 0.409942 0.409942i
\(582\) 0.751401 0.0311466
\(583\) −17.5059 + 17.5059i −0.725020 + 0.725020i
\(584\) 23.7474 + 23.7474i 0.982676 + 0.982676i
\(585\) 12.6091 + 12.6091i 0.521320 + 0.521320i
\(586\) 20.3676i 0.841378i
\(587\) 41.5716i 1.71584i 0.513781 + 0.857921i \(0.328244\pi\)
−0.513781 + 0.857921i \(0.671756\pi\)
\(588\) −4.73675 4.73675i −0.195340 0.195340i
\(589\) 1.34441 + 1.34441i 0.0553955 + 0.0553955i
\(590\) −5.80035 + 5.80035i −0.238797 + 0.238797i
\(591\) 18.0182 0.741170
\(592\) −0.136404 + 0.136404i −0.00560618 + 0.00560618i
\(593\) 13.7886i 0.566230i −0.959086 0.283115i \(-0.908632\pi\)
0.959086 0.283115i \(-0.0913678\pi\)
\(594\) −2.97167 −0.121929
\(595\) 0 0
\(596\) 26.4397 1.08301
\(597\) 3.98156i 0.162954i
\(598\) 16.4800 16.4800i 0.673917 0.673917i
\(599\) −0.372690 −0.0152277 −0.00761386 0.999971i \(-0.502424\pi\)
−0.00761386 + 0.999971i \(0.502424\pi\)
\(600\) −10.5914 + 10.5914i −0.432393 + 0.432393i
\(601\) −16.2864 16.2864i −0.664337 0.664337i 0.292062 0.956399i \(-0.405659\pi\)
−0.956399 + 0.292062i \(0.905659\pi\)
\(602\) 13.9594 + 13.9594i 0.568943 + 0.568943i
\(603\) 14.5019i 0.590562i
\(604\) 11.2157i 0.456360i
\(605\) −0.602815 0.602815i −0.0245079 0.0245079i
\(606\) −3.16170 3.16170i −0.128435 0.128435i
\(607\) −11.3879 + 11.3879i −0.462222 + 0.462222i −0.899383 0.437161i \(-0.855984\pi\)
0.437161 + 0.899383i \(0.355984\pi\)
\(608\) 23.4168 0.949677
\(609\) −5.25025 + 5.25025i −0.212751 + 0.212751i
\(610\) 11.3367i 0.459011i
\(611\) −12.6648 −0.512365
\(612\) 0 0
\(613\) −14.9606 −0.604251 −0.302126 0.953268i \(-0.597696\pi\)
−0.302126 + 0.953268i \(0.597696\pi\)
\(614\) 0.665302i 0.0268494i
\(615\) 10.1456 10.1456i 0.409112 0.409112i
\(616\) −33.6345 −1.35517
\(617\) −3.36259 + 3.36259i −0.135373 + 0.135373i −0.771546 0.636173i \(-0.780516\pi\)
0.636173 + 0.771546i \(0.280516\pi\)
\(618\) −7.33412 7.33412i −0.295021 0.295021i
\(619\) 30.4760 + 30.4760i 1.22493 + 1.22493i 0.965857 + 0.259076i \(0.0834179\pi\)
0.259076 + 0.965857i \(0.416582\pi\)
\(620\) 1.68742i 0.0677686i
\(621\) 4.60128i 0.184643i
\(622\) 15.5342 + 15.5342i 0.622865 + 0.622865i
\(623\) −36.8223 36.8223i −1.47525 1.47525i
\(624\) −1.02528 + 1.02528i −0.0410442 + 0.0410442i
\(625\) 23.9743 0.958972
\(626\) 2.45553 2.45553i 0.0981426 0.0981426i
\(627\) 13.8768i 0.554187i
\(628\) −16.6208 −0.663241
\(629\) 0 0
\(630\) 10.3185 0.411100
\(631\) 11.3212i 0.450690i 0.974279 + 0.225345i \(0.0723510\pi\)
−0.974279 + 0.225345i \(0.927649\pi\)
\(632\) −11.4793 + 11.4793i −0.456622 + 0.456622i
\(633\) 0.200896 0.00798491
\(634\) −2.24027 + 2.24027i −0.0889726 + 0.0889726i
\(635\) −6.62368 6.62368i −0.262853 0.262853i
\(636\) −6.29050 6.29050i −0.249435 0.249435i
\(637\) 31.7751i 1.25898i
\(638\) 6.19384i 0.245216i
\(639\) −2.57685 2.57685i −0.101939 0.101939i
\(640\) 13.6320 + 13.6320i 0.538852 + 0.538852i
\(641\) −11.2263 + 11.2263i −0.443414 + 0.443414i −0.893158 0.449744i \(-0.851515\pi\)
0.449744 + 0.893158i \(0.351515\pi\)
\(642\) 15.9576 0.629795
\(643\) 18.1975 18.1975i 0.717640 0.717640i −0.250481 0.968121i \(-0.580589\pi\)
0.968121 + 0.250481i \(0.0805889\pi\)
\(644\) 19.2964i 0.760386i
\(645\) 19.5097 0.768196
\(646\) 0 0
\(647\) −26.9015 −1.05761 −0.528804 0.848744i \(-0.677359\pi\)
−0.528804 + 0.848744i \(0.677359\pi\)
\(648\) 2.88196i 0.113214i
\(649\) −6.56044 + 6.56044i −0.257520 + 0.257520i
\(650\) −26.3254 −1.03257
\(651\) 1.13068 1.13068i 0.0443148 0.0443148i
\(652\) 2.94172 + 2.94172i 0.115207 + 0.115207i
\(653\) 14.6088 + 14.6088i 0.571685 + 0.571685i 0.932599 0.360914i \(-0.117535\pi\)
−0.360914 + 0.932599i \(0.617535\pi\)
\(654\) 12.8363i 0.501939i
\(655\) 21.1293i 0.825591i
\(656\) 0.824975 + 0.824975i 0.0322099 + 0.0322099i
\(657\) −8.24004 8.24004i −0.321475 0.321475i
\(658\) −5.18209 + 5.18209i −0.202019 + 0.202019i
\(659\) 25.5651 0.995875 0.497937 0.867213i \(-0.334091\pi\)
0.497937 + 0.867213i \(0.334091\pi\)
\(660\) −8.70868 + 8.70868i −0.338985 + 0.338985i
\(661\) 27.9387i 1.08669i 0.839510 + 0.543345i \(0.182842\pi\)
−0.839510 + 0.543345i \(0.817158\pi\)
\(662\) 4.53857 0.176396
\(663\) 0 0
\(664\) 11.3052 0.438726
\(665\) 48.1846i 1.86852i
\(666\) 0.476498 0.476498i 0.0184639 0.0184639i
\(667\) 9.59045 0.371344
\(668\) 13.4747 13.4747i 0.521350 0.521350i
\(669\) 8.20219 + 8.20219i 0.317115 + 0.317115i
\(670\) −29.7024 29.7024i −1.14750 1.14750i
\(671\) 12.8223i 0.495000i
\(672\) 19.6940i 0.759713i
\(673\) 1.82876 + 1.82876i 0.0704934 + 0.0704934i 0.741474 0.670981i \(-0.234127\pi\)
−0.670981 + 0.741474i \(0.734127\pi\)
\(674\) −17.3454 17.3454i −0.668120 0.668120i
\(675\) 3.67508 3.67508i 0.141454 0.141454i
\(676\) 21.4048 0.823261
\(677\) −0.627088 + 0.627088i −0.0241010 + 0.0241010i −0.719055 0.694954i \(-0.755425\pi\)
0.694954 + 0.719055i \(0.255425\pi\)
\(678\) 18.5055i 0.710700i
\(679\) −2.95100 −0.113249
\(680\) 0 0
\(681\) 9.51394 0.364575
\(682\) 1.33388i 0.0510771i
\(683\) 19.0444 19.0444i 0.728712 0.728712i −0.241651 0.970363i \(-0.577689\pi\)
0.970363 + 0.241651i \(0.0776890\pi\)
\(684\) −4.98645 −0.190662
\(685\) −23.6756 + 23.6756i −0.904600 + 0.904600i
\(686\) 2.99253 + 2.99253i 0.114255 + 0.114255i
\(687\) −11.8582 11.8582i −0.452418 0.452418i
\(688\) 1.58640i 0.0604810i
\(689\) 42.1980i 1.60762i
\(690\) −9.42424 9.42424i −0.358775 0.358775i
\(691\) 7.34201 + 7.34201i 0.279303 + 0.279303i 0.832831 0.553528i \(-0.186719\pi\)
−0.553528 + 0.832831i \(0.686719\pi\)
\(692\) 15.2484 15.2484i 0.579659 0.579659i
\(693\) 11.6707 0.443333
\(694\) −2.76636 + 2.76636i −0.105009 + 0.105009i
\(695\) 16.8798i 0.640289i
\(696\) −6.00686 −0.227689
\(697\) 0 0
\(698\) 26.4184 0.999951
\(699\) 9.44867i 0.357381i
\(700\) 15.4122 15.4122i 0.582527 0.582527i
\(701\) −49.5351 −1.87091 −0.935457 0.353440i \(-0.885012\pi\)
−0.935457 + 0.353440i \(0.885012\pi\)
\(702\) 3.58160 3.58160i 0.135179 0.135179i
\(703\) −2.22511 2.22511i −0.0839217 0.0839217i
\(704\) −12.8198 12.8198i −0.483163 0.483163i
\(705\) 7.24251i 0.272769i
\(706\) 10.4975i 0.395079i
\(707\) 12.4170 + 12.4170i 0.466991 + 0.466991i
\(708\) −2.35740 2.35740i −0.0885967 0.0885967i
\(709\) −25.7053 + 25.7053i −0.965381 + 0.965381i −0.999421 0.0340391i \(-0.989163\pi\)
0.0340391 + 0.999421i \(0.489163\pi\)
\(710\) 10.5557 0.396148
\(711\) 3.98316 3.98316i 0.149380 0.149380i
\(712\) 42.1287i 1.57884i
\(713\) −2.06537 −0.0773486
\(714\) 0 0
\(715\) −58.4197 −2.18477
\(716\) 24.3754i 0.910953i
\(717\) −4.54018 + 4.54018i −0.169556 + 0.169556i
\(718\) 23.7170 0.885112
\(719\) 12.7637 12.7637i 0.476007 0.476007i −0.427845 0.903852i \(-0.640727\pi\)
0.903852 + 0.427845i \(0.140727\pi\)
\(720\) 0.586319 + 0.586319i 0.0218508 + 0.0218508i
\(721\) 28.8035 + 28.8035i 1.07270 + 1.07270i
\(722\) 0.960151i 0.0357331i
\(723\) 15.4831i 0.575823i
\(724\) −15.5248 15.5248i −0.576975 0.576975i
\(725\) −7.65997 7.65997i −0.284484 0.284484i
\(726\) −0.171230 + 0.171230i −0.00635493 + 0.00635493i
\(727\) −25.6114 −0.949873 −0.474936 0.880020i \(-0.657529\pi\)
−0.474936 + 0.880020i \(0.657529\pi\)
\(728\) 40.5380 40.5380i 1.50244 1.50244i
\(729\) 1.00000i 0.0370370i
\(730\) 33.7541 1.24930
\(731\) 0 0
\(732\) 4.60752 0.170299
\(733\) 31.6733i 1.16988i 0.811076 + 0.584941i \(0.198882\pi\)
−0.811076 + 0.584941i \(0.801118\pi\)
\(734\) −14.0097 + 14.0097i −0.517108 + 0.517108i
\(735\) −18.1709 −0.670245
\(736\) −17.9872 + 17.9872i −0.663015 + 0.663015i
\(737\) −33.5946 33.5946i −1.23747 1.23747i
\(738\) −2.88187 2.88187i −0.106083 0.106083i
\(739\) 31.3462i 1.15309i 0.817066 + 0.576543i \(0.195599\pi\)
−0.817066 + 0.576543i \(0.804401\pi\)
\(740\) 2.79282i 0.102666i
\(741\) −16.7251 16.7251i −0.614411 0.614411i
\(742\) −17.2662 17.2662i −0.633863 0.633863i
\(743\) 2.26275 2.26275i 0.0830121 0.0830121i −0.664381 0.747394i \(-0.731305\pi\)
0.747394 + 0.664381i \(0.231305\pi\)
\(744\) 1.29362 0.0474263
\(745\) 50.7134 50.7134i 1.85800 1.85800i
\(746\) 28.1249i 1.02973i
\(747\) −3.92274 −0.143526
\(748\) 0 0
\(749\) −62.6705 −2.28993
\(750\) 0.571642i 0.0208734i
\(751\) 19.5114 19.5114i 0.711981 0.711981i −0.254969 0.966949i \(-0.582065\pi\)
0.966949 + 0.254969i \(0.0820651\pi\)
\(752\) −0.588913 −0.0214754
\(753\) 18.1744 18.1744i 0.662311 0.662311i
\(754\) −7.46513 7.46513i −0.271864 0.271864i
\(755\) −21.5126 21.5126i −0.782923 0.782923i
\(756\) 4.19370i 0.152524i
\(757\) 10.1597i 0.369259i 0.982808 + 0.184629i \(0.0591085\pi\)
−0.982808 + 0.184629i \(0.940892\pi\)
\(758\) −7.54829 7.54829i −0.274166 0.274166i
\(759\) −10.6592 10.6592i −0.386905 0.386905i
\(760\) 27.5642 27.5642i 0.999859 0.999859i
\(761\) −8.12911 −0.294680 −0.147340 0.989086i \(-0.547071\pi\)
−0.147340 + 0.989086i \(0.547071\pi\)
\(762\) −1.88146 + 1.88146i −0.0681580 + 0.0681580i
\(763\) 50.4124i 1.82505i
\(764\) −2.58255 −0.0934333
\(765\) 0 0
\(766\) −18.1650 −0.656330
\(767\) 15.8140i 0.571009i
\(768\) 11.6983 11.6983i 0.422127 0.422127i
\(769\) −16.6656 −0.600978 −0.300489 0.953785i \(-0.597150\pi\)
−0.300489 + 0.953785i \(0.597150\pi\)
\(770\) −23.9036 + 23.9036i −0.861428 + 0.861428i
\(771\) −1.77106 1.77106i −0.0637832 0.0637832i
\(772\) −2.75705 2.75705i −0.0992284 0.0992284i
\(773\) 42.9077i 1.54328i −0.636058 0.771641i \(-0.719436\pi\)
0.636058 0.771641i \(-0.280564\pi\)
\(774\) 5.54175i 0.199194i
\(775\) 1.64963 + 1.64963i 0.0592563 + 0.0592563i
\(776\) −1.68813 1.68813i −0.0606003 0.0606003i
\(777\) −1.87136 + 1.87136i −0.0671348 + 0.0671348i
\(778\) −11.5706 −0.414826
\(779\) −13.4575 + 13.4575i −0.482165 + 0.482165i
\(780\) 20.9923i 0.751645i
\(781\) 11.9389 0.427209
\(782\) 0 0
\(783\) 2.08430 0.0744867
\(784\) 1.47754i 0.0527692i
\(785\) −31.8800 + 31.8800i −1.13784 + 1.13784i
\(786\) −6.00179 −0.214077
\(787\) −7.52696 + 7.52696i −0.268307 + 0.268307i −0.828418 0.560111i \(-0.810759\pi\)
0.560111 + 0.828418i \(0.310759\pi\)
\(788\) −14.9989 14.9989i −0.534313 0.534313i
\(789\) 4.31241 + 4.31241i 0.153526 + 0.153526i
\(790\) 16.3164i 0.580512i
\(791\) 72.6772i 2.58410i
\(792\) 6.67627 + 6.67627i 0.237231 + 0.237231i
\(793\) 15.4541 + 15.4541i 0.548792 + 0.548792i
\(794\) −17.5191 + 17.5191i −0.621728 + 0.621728i
\(795\) −24.1314 −0.855851
\(796\) −3.31436 + 3.31436i −0.117474 + 0.117474i
\(797\) 29.6872i 1.05157i −0.850617 0.525787i \(-0.823771\pi\)
0.850617 0.525787i \(-0.176229\pi\)
\(798\) −13.6868 −0.484509
\(799\) 0 0
\(800\) 28.7330 1.01586
\(801\) 14.6181i 0.516505i
\(802\) −20.1137 + 20.1137i −0.710239 + 0.710239i
\(803\) 38.1773 1.34725
\(804\) 12.0718 12.0718i 0.425738 0.425738i
\(805\) 37.0121 + 37.0121i 1.30450 + 1.30450i
\(806\) 1.60767 + 1.60767i 0.0566276 + 0.0566276i
\(807\) 4.11451i 0.144838i
\(808\) 14.2064i 0.499780i
\(809\) −16.1439 16.1439i −0.567590 0.567590i 0.363862 0.931453i \(-0.381458\pi\)
−0.931453 + 0.363862i \(0.881458\pi\)
\(810\) −2.04818 2.04818i −0.0719656 0.0719656i
\(811\) 26.3402 26.3402i 0.924928 0.924928i −0.0724446 0.997372i \(-0.523080\pi\)
0.997372 + 0.0724446i \(0.0230800\pi\)
\(812\) 8.74093 0.306746
\(813\) 8.38261 8.38261i 0.293991 0.293991i
\(814\) 2.20769i 0.0773794i
\(815\) 11.2849 0.395294
\(816\) 0 0
\(817\) −25.8784 −0.905370
\(818\) 15.5135i 0.542418i
\(819\) −14.0661 + 14.0661i −0.491510 + 0.491510i
\(820\) −16.8910 −0.589861
\(821\) −2.32827 + 2.32827i −0.0812571 + 0.0812571i −0.746567 0.665310i \(-0.768299\pi\)
0.665310 + 0.746567i \(0.268299\pi\)
\(822\) 6.72507 + 6.72507i 0.234564 + 0.234564i
\(823\) −9.04297 9.04297i −0.315218 0.315218i 0.531709 0.846927i \(-0.321550\pi\)
−0.846927 + 0.531709i \(0.821550\pi\)
\(824\) 32.9543i 1.14802i
\(825\) 17.0272i 0.592811i
\(826\) −6.47062 6.47062i −0.225142 0.225142i
\(827\) 25.8039 + 25.8039i 0.897290 + 0.897290i 0.995196 0.0979056i \(-0.0312143\pi\)
−0.0979056 + 0.995196i \(0.531214\pi\)
\(828\) 3.83024 3.83024i 0.133110 0.133110i
\(829\) 0.425058 0.0147629 0.00738144 0.999973i \(-0.497650\pi\)
0.00738144 + 0.999973i \(0.497650\pi\)
\(830\) 8.03446 8.03446i 0.278880 0.278880i
\(831\) 16.2756i 0.564596i
\(832\) 30.9021 1.07134
\(833\) 0 0
\(834\) 4.79472 0.166028
\(835\) 51.6909i 1.78884i
\(836\) 11.5515 11.5515i 0.399516 0.399516i
\(837\) −0.448868 −0.0155151
\(838\) 9.77661 9.77661i 0.337728 0.337728i
\(839\) −22.4020 22.4020i −0.773403 0.773403i 0.205296 0.978700i \(-0.434184\pi\)
−0.978700 + 0.205296i \(0.934184\pi\)
\(840\) −23.1821 23.1821i −0.799857 0.799857i
\(841\) 24.6557i 0.850197i
\(842\) 6.31546i 0.217645i
\(843\) 10.7838 + 10.7838i 0.371414 + 0.371414i
\(844\) −0.167232 0.167232i −0.00575636 0.00575636i
\(845\) 41.0561 41.0561i 1.41237 1.41237i
\(846\) 2.05724 0.0707293
\(847\) 0.672475 0.672475i 0.0231065 0.0231065i
\(848\) 1.96220i 0.0673822i
\(849\) 20.8911 0.716981
\(850\) 0 0
\(851\) 3.41835 0.117180
\(852\) 4.29009i 0.146976i
\(853\) 10.8857 10.8857i 0.372719 0.372719i −0.495748 0.868467i \(-0.665106\pi\)
0.868467 + 0.495748i \(0.165106\pi\)
\(854\) 12.6468 0.432763
\(855\) −9.56440 + 9.56440i −0.327096 + 0.327096i
\(856\) −35.8509 35.8509i −1.22536 1.22536i
\(857\) 28.8158 + 28.8158i 0.984330 + 0.984330i 0.999879 0.0155486i \(-0.00494948\pi\)
−0.0155486 + 0.999879i \(0.504949\pi\)
\(858\) 16.5941i 0.566514i
\(859\) 46.4431i 1.58462i 0.610119 + 0.792310i \(0.291122\pi\)
−0.610119 + 0.792310i \(0.708878\pi\)
\(860\) −16.2405 16.2405i −0.553796 0.553796i
\(861\) 11.3180 + 11.3180i 0.385718 + 0.385718i
\(862\) −13.7697 + 13.7697i −0.468997 + 0.468997i
\(863\) 47.2341 1.60787 0.803934 0.594719i \(-0.202737\pi\)
0.803934 + 0.594719i \(0.202737\pi\)
\(864\) −3.90916 + 3.90916i −0.132992 + 0.132992i
\(865\) 58.4954i 1.98890i
\(866\) 30.1104 1.02319
\(867\) 0 0
\(868\) −1.88242 −0.0638934
\(869\) 18.4546i 0.626028i
\(870\) −4.26901 + 4.26901i −0.144733 + 0.144733i
\(871\) 80.9800 2.74390
\(872\) 28.8386 28.8386i 0.976598 0.976598i
\(873\) 0.585758 + 0.585758i 0.0198249 + 0.0198249i
\(874\) 12.5006 + 12.5006i 0.422840 + 0.422840i
\(875\) 2.24502i 0.0758957i
\(876\) 13.7185i 0.463505i
\(877\) −0.223756 0.223756i −0.00755569 0.00755569i 0.703319 0.710875i \(-0.251701\pi\)
−0.710875 + 0.703319i \(0.751701\pi\)
\(878\) −22.9107 22.9107i −0.773199 0.773199i
\(879\) 15.8777 15.8777i 0.535540 0.535540i
\(880\) −2.71650 −0.0915733
\(881\) −25.5518 + 25.5518i −0.860861 + 0.860861i −0.991438 0.130577i \(-0.958317\pi\)
0.130577 + 0.991438i \(0.458317\pi\)
\(882\) 5.16145i 0.173795i
\(883\) 0.156899 0.00528008 0.00264004 0.999997i \(-0.499160\pi\)
0.00264004 + 0.999997i \(0.499160\pi\)
\(884\) 0 0
\(885\) −9.04338 −0.303990
\(886\) 12.5507i 0.421650i
\(887\) −21.2889 + 21.2889i −0.714811 + 0.714811i −0.967538 0.252726i \(-0.918673\pi\)
0.252726 + 0.967538i \(0.418673\pi\)
\(888\) −2.14104 −0.0718487
\(889\) 7.38909 7.38909i 0.247822 0.247822i
\(890\) −29.9404 29.9404i −1.00360 1.00360i
\(891\) −2.31657 2.31657i −0.0776082 0.0776082i
\(892\) 13.6555i 0.457219i
\(893\) 9.60671i 0.321476i
\(894\) −14.4052 14.4052i −0.481781 0.481781i
\(895\) −46.7540 46.7540i −1.56281 1.56281i
\(896\) −15.2073 + 15.2073i −0.508040 + 0.508040i
\(897\) 25.6941 0.857900
\(898\) −2.99832 + 2.99832i −0.100055 + 0.100055i
\(899\) 0.935574i 0.0312031i
\(900\) −6.11849 −0.203950
\(901\) 0 0
\(902\) 13.3521 0.444577
\(903\) 21.7642i 0.724269i
\(904\) −41.5753 + 41.5753i −1.38277 + 1.38277i
\(905\) −59.5556 −1.97970
\(906\) −6.11065 + 6.11065i −0.203013 + 0.203013i
\(907\) −27.2070 27.2070i −0.903393 0.903393i 0.0923354 0.995728i \(-0.470567\pi\)
−0.995728 + 0.0923354i \(0.970567\pi\)
\(908\) −7.91968 7.91968i −0.262824 0.262824i
\(909\) 4.92944i 0.163499i
\(910\) 57.6198i 1.91008i
\(911\) −1.32358 1.32358i −0.0438521 0.0438521i 0.684841 0.728693i \(-0.259872\pi\)
−0.728693 + 0.684841i \(0.759872\pi\)
\(912\) −0.777713 0.777713i −0.0257526 0.0257526i
\(913\) 9.08732 9.08732i 0.300746 0.300746i
\(914\) 4.69122 0.155172
\(915\) 8.83759 8.83759i 0.292162 0.292162i
\(916\) 19.7422i 0.652301i
\(917\) 23.5710 0.778382
\(918\) 0 0
\(919\) 6.41003 0.211447 0.105724 0.994396i \(-0.466284\pi\)
0.105724 + 0.994396i \(0.466284\pi\)
\(920\) 42.3458i 1.39610i
\(921\) 0.518639 0.518639i 0.0170897 0.0170897i
\(922\) −20.5405 −0.676464
\(923\) −14.3894 + 14.3894i −0.473634 + 0.473634i
\(924\) −9.71503 9.71503i −0.319601 0.319601i
\(925\) −2.73026 2.73026i −0.0897706 0.0897706i
\(926\) 35.2813i 1.15942i
\(927\) 11.4347i 0.375564i
\(928\) 8.14785 + 8.14785i 0.267466 + 0.267466i
\(929\) −4.06041 4.06041i −0.133218 0.133218i 0.637354 0.770571i \(-0.280029\pi\)
−0.770571 + 0.637354i \(0.780029\pi\)
\(930\) 0.919360 0.919360i 0.0301470 0.0301470i
\(931\) 24.1025 0.789928
\(932\) −7.86534 + 7.86534i −0.257638 + 0.257638i
\(933\) 24.2195i 0.792911i
\(934\) −15.1585 −0.496003
\(935\) 0 0
\(936\) −16.0932 −0.526022
\(937\) 35.7264i 1.16713i −0.812066 0.583566i \(-0.801657\pi\)
0.812066 0.583566i \(-0.198343\pi\)
\(938\) 33.1347 33.1347i 1.08189 1.08189i
\(939\) 3.82843 0.124936
\(940\) 6.02888 6.02888i 0.196640 0.196640i
\(941\) 7.75479 + 7.75479i 0.252799 + 0.252799i 0.822117 0.569318i \(-0.192793\pi\)
−0.569318 + 0.822117i \(0.692793\pi\)
\(942\) 9.05550 + 9.05550i 0.295044 + 0.295044i
\(943\) 20.6742i 0.673246i
\(944\) 0.735347i 0.0239335i
\(945\) 8.04386 + 8.04386i 0.261667 + 0.261667i
\(946\) 12.8379 + 12.8379i 0.417395 + 0.417395i
\(947\) −28.0836 + 28.0836i −0.912594 + 0.912594i −0.996476 0.0838820i \(-0.973268\pi\)
0.0838820 + 0.996476i \(0.473268\pi\)
\(948\) −6.63139 −0.215377
\(949\) −46.0133 + 46.0133i −1.49365 + 1.49365i
\(950\) 19.9687i 0.647870i
\(951\) −3.49283 −0.113263
\(952\) 0 0
\(953\) −5.33601 −0.172850 −0.0864252 0.996258i \(-0.527544\pi\)
−0.0864252 + 0.996258i \(0.527544\pi\)
\(954\) 6.85452i 0.221923i
\(955\) −4.95353 + 4.95353i −0.160292 + 0.160292i
\(956\) 7.55876 0.244468
\(957\) −4.82843 + 4.82843i −0.156081 + 0.156081i
\(958\) −6.73661 6.73661i −0.217650 0.217650i
\(959\) −26.4115 26.4115i −0.852873 0.852873i
\(960\) 17.6717i 0.570350i
\(961\) 30.7985i 0.993501i
\(962\) −2.66082 2.66082i −0.0857882 0.0857882i
\(963\) 12.4398 + 12.4398i 0.400866 + 0.400866i
\(964\) −12.8886 + 12.8886i −0.415114 + 0.415114i
\(965\) −10.5765 −0.340469
\(966\) 10.5133 10.5133i 0.338259 0.338259i
\(967\) 49.3477i 1.58692i 0.608625 + 0.793458i \(0.291721\pi\)
−0.608625 + 0.793458i \(0.708279\pi\)
\(968\) 0.769384 0.0247289
\(969\) 0 0
\(970\) −2.39947 −0.0770424
\(971\) 15.7566i 0.505654i −0.967512 0.252827i \(-0.918640\pi\)
0.967512 0.252827i \(-0.0813603\pi\)
\(972\) 0.832429 0.832429i 0.0267002 0.0267002i
\(973\) −18.8304 −0.603676
\(974\) −15.5509 + 15.5509i −0.498284 + 0.498284i
\(975\) −20.5221 20.5221i −0.657232 0.657232i
\(976\) 0.718613 + 0.718613i 0.0230023 + 0.0230023i
\(977\) 37.9092i 1.21282i 0.795151 + 0.606411i \(0.207391\pi\)
−0.795151 + 0.606411i \(0.792609\pi\)
\(978\) 3.20548i 0.102500i
\(979\) −33.8639 33.8639i −1.08229 1.08229i
\(980\) 15.1260 + 15.1260i 0.483183 + 0.483183i
\(981\) −10.0066 + 10.0066i −0.319486 + 0.319486i
\(982\) 13.3575 0.426257
\(983\) 0.764937 0.764937i 0.0243977 0.0243977i −0.694803 0.719200i \(-0.744508\pi\)
0.719200 + 0.694803i \(0.244508\pi\)
\(984\) 12.9491i 0.412801i
\(985\) −57.5381 −1.83332
\(986\) 0 0
\(987\) −8.07944 −0.257171
\(988\) 27.8449i 0.885863i
\(989\) 19.8780 19.8780i 0.632083 0.632083i
\(990\) 9.48951 0.301596
\(991\) −6.81790 + 6.81790i −0.216578 + 0.216578i −0.807055 0.590477i \(-0.798940\pi\)
0.590477 + 0.807055i \(0.298940\pi\)
\(992\) −1.75470 1.75470i −0.0557116 0.0557116i
\(993\) 3.53806 + 3.53806i 0.112277 + 0.112277i
\(994\) 11.7755i 0.373496i
\(995\) 12.7144i 0.403074i
\(996\) 3.26540 + 3.26540i 0.103468 + 0.103468i
\(997\) −4.84046 4.84046i −0.153299 0.153299i 0.626291 0.779590i \(-0.284572\pi\)
−0.779590 + 0.626291i \(0.784572\pi\)
\(998\) 9.20944 9.20944i 0.291520 0.291520i
\(999\) 0.742912 0.0235047
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 867.2.e.k.616.7 24
17.2 even 8 867.2.d.g.577.6 12
17.3 odd 16 867.2.h.m.733.7 48
17.4 even 4 inner 867.2.e.k.829.6 24
17.5 odd 16 867.2.h.m.712.5 48
17.6 odd 16 867.2.h.m.688.5 48
17.7 odd 16 867.2.h.m.757.8 48
17.8 even 8 867.2.a.p.1.4 yes 6
17.9 even 8 867.2.a.o.1.4 6
17.10 odd 16 867.2.h.m.757.7 48
17.11 odd 16 867.2.h.m.688.6 48
17.12 odd 16 867.2.h.m.712.6 48
17.13 even 4 inner 867.2.e.k.829.5 24
17.14 odd 16 867.2.h.m.733.8 48
17.15 even 8 867.2.d.g.577.5 12
17.16 even 2 inner 867.2.e.k.616.8 24
51.8 odd 8 2601.2.a.bi.1.3 6
51.26 odd 8 2601.2.a.bh.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
867.2.a.o.1.4 6 17.9 even 8
867.2.a.p.1.4 yes 6 17.8 even 8
867.2.d.g.577.5 12 17.15 even 8
867.2.d.g.577.6 12 17.2 even 8
867.2.e.k.616.7 24 1.1 even 1 trivial
867.2.e.k.616.8 24 17.16 even 2 inner
867.2.e.k.829.5 24 17.13 even 4 inner
867.2.e.k.829.6 24 17.4 even 4 inner
867.2.h.m.688.5 48 17.6 odd 16
867.2.h.m.688.6 48 17.11 odd 16
867.2.h.m.712.5 48 17.5 odd 16
867.2.h.m.712.6 48 17.12 odd 16
867.2.h.m.733.7 48 17.3 odd 16
867.2.h.m.733.8 48 17.14 odd 16
867.2.h.m.757.7 48 17.10 odd 16
867.2.h.m.757.8 48 17.7 odd 16
2601.2.a.bh.1.3 6 51.26 odd 8
2601.2.a.bi.1.3 6 51.8 odd 8