Properties

Label 867.2.a.o.1.4
Level $867$
Weight $2$
Character 867.1
Self dual yes
Analytic conductor $6.923$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [867,2,Mod(1,867)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(867, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("867.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 867 = 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 867.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,3,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.92302985525\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.3418281.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 9x^{4} - 4x^{3} + 18x^{2} + 12x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-0.857616\) of defining polynomial
Character \(\chi\) \(=\) 867.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.907065 q^{2} -1.00000 q^{3} -1.17723 q^{4} -3.19333 q^{5} -0.907065 q^{6} -3.56234 q^{7} -2.88196 q^{8} +1.00000 q^{9} -2.89656 q^{10} +3.27613 q^{11} +1.17723 q^{12} +5.58411 q^{13} -3.23128 q^{14} +3.19333 q^{15} -0.259660 q^{16} +0.907065 q^{18} -4.23574 q^{19} +3.75929 q^{20} +3.56234 q^{21} +2.97167 q^{22} +4.60128 q^{23} +2.88196 q^{24} +5.19735 q^{25} +5.06515 q^{26} -1.00000 q^{27} +4.19370 q^{28} -2.08430 q^{29} +2.89656 q^{30} -0.448868 q^{31} +5.52839 q^{32} -3.27613 q^{33} +11.3757 q^{35} -1.17723 q^{36} +0.742912 q^{37} -3.84209 q^{38} -5.58411 q^{39} +9.20304 q^{40} +4.49315 q^{41} +3.23128 q^{42} +6.10953 q^{43} -3.85677 q^{44} -3.19333 q^{45} +4.17367 q^{46} -2.26801 q^{47} +0.259660 q^{48} +5.69028 q^{49} +4.71434 q^{50} -6.57379 q^{52} +7.55680 q^{53} -0.907065 q^{54} -10.4618 q^{55} +10.2665 q^{56} +4.23574 q^{57} -1.89059 q^{58} -2.83196 q^{59} -3.75929 q^{60} +3.91386 q^{61} -0.407152 q^{62} -3.56234 q^{63} +5.53393 q^{64} -17.8319 q^{65} -2.97167 q^{66} -14.5019 q^{67} -4.60128 q^{69} +10.3185 q^{70} +3.64422 q^{71} -2.88196 q^{72} -11.6532 q^{73} +0.673870 q^{74} -5.19735 q^{75} +4.98645 q^{76} -11.6707 q^{77} -5.06515 q^{78} +5.63303 q^{79} +0.829180 q^{80} +1.00000 q^{81} +4.07558 q^{82} -3.92274 q^{83} -4.19370 q^{84} +5.54175 q^{86} +2.08430 q^{87} -9.44167 q^{88} +14.6181 q^{89} -2.89656 q^{90} -19.8925 q^{91} -5.41678 q^{92} +0.448868 q^{93} -2.05724 q^{94} +13.5261 q^{95} -5.52839 q^{96} +0.828387 q^{97} +5.16145 q^{98} +3.27613 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} - 6 q^{3} + 9 q^{4} + 3 q^{5} - 3 q^{6} - 3 q^{7} + 12 q^{8} + 6 q^{9} - 12 q^{10} + 9 q^{11} - 9 q^{12} + 9 q^{13} + 6 q^{14} - 3 q^{15} + 15 q^{16} + 3 q^{18} + 9 q^{19} - 6 q^{20} + 3 q^{21}+ \cdots + 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.907065 0.641392 0.320696 0.947182i \(-0.396083\pi\)
0.320696 + 0.947182i \(0.396083\pi\)
\(3\) −1.00000 −0.577350
\(4\) −1.17723 −0.588616
\(5\) −3.19333 −1.42810 −0.714050 0.700095i \(-0.753141\pi\)
−0.714050 + 0.700095i \(0.753141\pi\)
\(6\) −0.907065 −0.370308
\(7\) −3.56234 −1.34644 −0.673219 0.739443i \(-0.735089\pi\)
−0.673219 + 0.739443i \(0.735089\pi\)
\(8\) −2.88196 −1.01893
\(9\) 1.00000 0.333333
\(10\) −2.89656 −0.915972
\(11\) 3.27613 0.987791 0.493895 0.869521i \(-0.335573\pi\)
0.493895 + 0.869521i \(0.335573\pi\)
\(12\) 1.17723 0.339838
\(13\) 5.58411 1.54875 0.774377 0.632725i \(-0.218064\pi\)
0.774377 + 0.632725i \(0.218064\pi\)
\(14\) −3.23128 −0.863595
\(15\) 3.19333 0.824514
\(16\) −0.259660 −0.0649150
\(17\) 0 0
\(18\) 0.907065 0.213797
\(19\) −4.23574 −0.971745 −0.485872 0.874030i \(-0.661498\pi\)
−0.485872 + 0.874030i \(0.661498\pi\)
\(20\) 3.75929 0.840603
\(21\) 3.56234 0.777367
\(22\) 2.97167 0.633561
\(23\) 4.60128 0.959434 0.479717 0.877423i \(-0.340739\pi\)
0.479717 + 0.877423i \(0.340739\pi\)
\(24\) 2.88196 0.588277
\(25\) 5.19735 1.03947
\(26\) 5.06515 0.993358
\(27\) −1.00000 −0.192450
\(28\) 4.19370 0.792535
\(29\) −2.08430 −0.387044 −0.193522 0.981096i \(-0.561991\pi\)
−0.193522 + 0.981096i \(0.561991\pi\)
\(30\) 2.89656 0.528837
\(31\) −0.448868 −0.0806190 −0.0403095 0.999187i \(-0.512834\pi\)
−0.0403095 + 0.999187i \(0.512834\pi\)
\(32\) 5.52839 0.977290
\(33\) −3.27613 −0.570301
\(34\) 0 0
\(35\) 11.3757 1.92285
\(36\) −1.17723 −0.196205
\(37\) 0.742912 0.122134 0.0610670 0.998134i \(-0.480550\pi\)
0.0610670 + 0.998134i \(0.480550\pi\)
\(38\) −3.84209 −0.623270
\(39\) −5.58411 −0.894173
\(40\) 9.20304 1.45513
\(41\) 4.49315 0.701712 0.350856 0.936430i \(-0.385891\pi\)
0.350856 + 0.936430i \(0.385891\pi\)
\(42\) 3.23128 0.498597
\(43\) 6.10953 0.931695 0.465848 0.884865i \(-0.345750\pi\)
0.465848 + 0.884865i \(0.345750\pi\)
\(44\) −3.85677 −0.581429
\(45\) −3.19333 −0.476033
\(46\) 4.17367 0.615374
\(47\) −2.26801 −0.330824 −0.165412 0.986225i \(-0.552895\pi\)
−0.165412 + 0.986225i \(0.552895\pi\)
\(48\) 0.259660 0.0374787
\(49\) 5.69028 0.812897
\(50\) 4.71434 0.666708
\(51\) 0 0
\(52\) −6.57379 −0.911621
\(53\) 7.55680 1.03801 0.519003 0.854772i \(-0.326303\pi\)
0.519003 + 0.854772i \(0.326303\pi\)
\(54\) −0.907065 −0.123436
\(55\) −10.4618 −1.41066
\(56\) 10.2665 1.37192
\(57\) 4.23574 0.561037
\(58\) −1.89059 −0.248247
\(59\) −2.83196 −0.368690 −0.184345 0.982862i \(-0.559016\pi\)
−0.184345 + 0.982862i \(0.559016\pi\)
\(60\) −3.75929 −0.485322
\(61\) 3.91386 0.501118 0.250559 0.968101i \(-0.419386\pi\)
0.250559 + 0.968101i \(0.419386\pi\)
\(62\) −0.407152 −0.0517084
\(63\) −3.56234 −0.448813
\(64\) 5.53393 0.691741
\(65\) −17.8319 −2.21178
\(66\) −2.97167 −0.365787
\(67\) −14.5019 −1.77168 −0.885842 0.463986i \(-0.846419\pi\)
−0.885842 + 0.463986i \(0.846419\pi\)
\(68\) 0 0
\(69\) −4.60128 −0.553930
\(70\) 10.3185 1.23330
\(71\) 3.64422 0.432489 0.216245 0.976339i \(-0.430619\pi\)
0.216245 + 0.976339i \(0.430619\pi\)
\(72\) −2.88196 −0.339642
\(73\) −11.6532 −1.36390 −0.681951 0.731398i \(-0.738868\pi\)
−0.681951 + 0.731398i \(0.738868\pi\)
\(74\) 0.673870 0.0783358
\(75\) −5.19735 −0.600139
\(76\) 4.98645 0.571985
\(77\) −11.6707 −1.33000
\(78\) −5.06515 −0.573516
\(79\) 5.63303 0.633766 0.316883 0.948465i \(-0.397364\pi\)
0.316883 + 0.948465i \(0.397364\pi\)
\(80\) 0.829180 0.0927051
\(81\) 1.00000 0.111111
\(82\) 4.07558 0.450072
\(83\) −3.92274 −0.430577 −0.215288 0.976551i \(-0.569069\pi\)
−0.215288 + 0.976551i \(0.569069\pi\)
\(84\) −4.19370 −0.457571
\(85\) 0 0
\(86\) 5.54175 0.597582
\(87\) 2.08430 0.223460
\(88\) −9.44167 −1.00649
\(89\) 14.6181 1.54951 0.774757 0.632259i \(-0.217872\pi\)
0.774757 + 0.632259i \(0.217872\pi\)
\(90\) −2.89656 −0.305324
\(91\) −19.8925 −2.08530
\(92\) −5.41678 −0.564738
\(93\) 0.448868 0.0465454
\(94\) −2.05724 −0.212188
\(95\) 13.5261 1.38775
\(96\) −5.52839 −0.564239
\(97\) 0.828387 0.0841099 0.0420550 0.999115i \(-0.486610\pi\)
0.0420550 + 0.999115i \(0.486610\pi\)
\(98\) 5.16145 0.521386
\(99\) 3.27613 0.329264
\(100\) −6.11849 −0.611849
\(101\) 4.92944 0.490497 0.245249 0.969460i \(-0.421130\pi\)
0.245249 + 0.969460i \(0.421130\pi\)
\(102\) 0 0
\(103\) 11.4347 1.12669 0.563347 0.826221i \(-0.309514\pi\)
0.563347 + 0.826221i \(0.309514\pi\)
\(104\) −16.0932 −1.57807
\(105\) −11.3757 −1.11016
\(106\) 6.85452 0.665769
\(107\) 17.5925 1.70073 0.850366 0.526192i \(-0.176381\pi\)
0.850366 + 0.526192i \(0.176381\pi\)
\(108\) 1.17723 0.113279
\(109\) 14.1515 1.35546 0.677732 0.735309i \(-0.262963\pi\)
0.677732 + 0.735309i \(0.262963\pi\)
\(110\) −9.48951 −0.904789
\(111\) −0.742912 −0.0705141
\(112\) 0.924998 0.0874041
\(113\) 20.4015 1.91921 0.959607 0.281346i \(-0.0907807\pi\)
0.959607 + 0.281346i \(0.0907807\pi\)
\(114\) 3.84209 0.359845
\(115\) −14.6934 −1.37017
\(116\) 2.45370 0.227821
\(117\) 5.58411 0.516251
\(118\) −2.56877 −0.236475
\(119\) 0 0
\(120\) −9.20304 −0.840119
\(121\) −0.266966 −0.0242696
\(122\) 3.55013 0.321413
\(123\) −4.49315 −0.405133
\(124\) 0.528421 0.0474536
\(125\) −0.630210 −0.0563677
\(126\) −3.23128 −0.287865
\(127\) 2.93340 0.260297 0.130148 0.991495i \(-0.458455\pi\)
0.130148 + 0.991495i \(0.458455\pi\)
\(128\) −6.03714 −0.533613
\(129\) −6.10953 −0.537914
\(130\) −16.1747 −1.41862
\(131\) −6.61671 −0.578104 −0.289052 0.957313i \(-0.593340\pi\)
−0.289052 + 0.957313i \(0.593340\pi\)
\(132\) 3.85677 0.335688
\(133\) 15.0891 1.30839
\(134\) −13.1541 −1.13634
\(135\) 3.19333 0.274838
\(136\) 0 0
\(137\) −10.4851 −0.895804 −0.447902 0.894083i \(-0.647829\pi\)
−0.447902 + 0.894083i \(0.647829\pi\)
\(138\) −4.17367 −0.355286
\(139\) −5.28597 −0.448350 −0.224175 0.974549i \(-0.571969\pi\)
−0.224175 + 0.974549i \(0.571969\pi\)
\(140\) −13.3919 −1.13182
\(141\) 2.26801 0.191001
\(142\) 3.30555 0.277395
\(143\) 18.2943 1.52984
\(144\) −0.259660 −0.0216383
\(145\) 6.65585 0.552738
\(146\) −10.5702 −0.874795
\(147\) −5.69028 −0.469326
\(148\) −0.874580 −0.0718901
\(149\) −22.4592 −1.83993 −0.919965 0.392000i \(-0.871783\pi\)
−0.919965 + 0.392000i \(0.871783\pi\)
\(150\) −4.71434 −0.384924
\(151\) −9.52717 −0.775310 −0.387655 0.921804i \(-0.626715\pi\)
−0.387655 + 0.921804i \(0.626715\pi\)
\(152\) 12.2072 0.990136
\(153\) 0 0
\(154\) −10.5861 −0.853051
\(155\) 1.43338 0.115132
\(156\) 6.57379 0.526325
\(157\) 14.1185 1.12678 0.563390 0.826191i \(-0.309497\pi\)
0.563390 + 0.826191i \(0.309497\pi\)
\(158\) 5.10953 0.406492
\(159\) −7.55680 −0.599294
\(160\) −17.6540 −1.39567
\(161\) −16.3913 −1.29182
\(162\) 0.907065 0.0712658
\(163\) −3.53391 −0.276797 −0.138398 0.990377i \(-0.544195\pi\)
−0.138398 + 0.990377i \(0.544195\pi\)
\(164\) −5.28948 −0.413039
\(165\) 10.4618 0.814447
\(166\) −3.55818 −0.276169
\(167\) 16.1872 1.25260 0.626300 0.779582i \(-0.284568\pi\)
0.626300 + 0.779582i \(0.284568\pi\)
\(168\) −10.2665 −0.792079
\(169\) 18.1823 1.39864
\(170\) 0 0
\(171\) −4.23574 −0.323915
\(172\) −7.19234 −0.548411
\(173\) 18.3180 1.39269 0.696346 0.717706i \(-0.254808\pi\)
0.696346 + 0.717706i \(0.254808\pi\)
\(174\) 1.89059 0.143326
\(175\) −18.5147 −1.39958
\(176\) −0.850680 −0.0641224
\(177\) 2.83196 0.212863
\(178\) 13.2596 0.993846
\(179\) 20.7057 1.54762 0.773809 0.633419i \(-0.218349\pi\)
0.773809 + 0.633419i \(0.218349\pi\)
\(180\) 3.75929 0.280201
\(181\) −18.6500 −1.38624 −0.693122 0.720820i \(-0.743765\pi\)
−0.693122 + 0.720820i \(0.743765\pi\)
\(182\) −18.0438 −1.33750
\(183\) −3.91386 −0.289321
\(184\) −13.2607 −0.977592
\(185\) −2.37236 −0.174420
\(186\) 0.407152 0.0298539
\(187\) 0 0
\(188\) 2.66998 0.194728
\(189\) 3.56234 0.259122
\(190\) 12.2691 0.890091
\(191\) 2.19374 0.158734 0.0793669 0.996845i \(-0.474710\pi\)
0.0793669 + 0.996845i \(0.474710\pi\)
\(192\) −5.53393 −0.399377
\(193\) −3.31205 −0.238407 −0.119203 0.992870i \(-0.538034\pi\)
−0.119203 + 0.992870i \(0.538034\pi\)
\(194\) 0.751401 0.0539474
\(195\) 17.8319 1.27697
\(196\) −6.69878 −0.478484
\(197\) 18.0182 1.28374 0.641872 0.766811i \(-0.278158\pi\)
0.641872 + 0.766811i \(0.278158\pi\)
\(198\) 2.97167 0.211187
\(199\) 3.98156 0.282245 0.141123 0.989992i \(-0.454929\pi\)
0.141123 + 0.989992i \(0.454929\pi\)
\(200\) −14.9785 −1.05914
\(201\) 14.5019 1.02288
\(202\) 4.47132 0.314601
\(203\) 7.42498 0.521131
\(204\) 0 0
\(205\) −14.3481 −1.00211
\(206\) 10.3720 0.722652
\(207\) 4.60128 0.319811
\(208\) −1.44997 −0.100537
\(209\) −13.8768 −0.959881
\(210\) −10.3185 −0.712046
\(211\) 0.200896 0.0138303 0.00691514 0.999976i \(-0.497799\pi\)
0.00691514 + 0.999976i \(0.497799\pi\)
\(212\) −8.89611 −0.610988
\(213\) −3.64422 −0.249698
\(214\) 15.9576 1.09084
\(215\) −19.5097 −1.33055
\(216\) 2.88196 0.196092
\(217\) 1.59902 0.108549
\(218\) 12.8363 0.869384
\(219\) 11.6532 0.787449
\(220\) 12.3159 0.830340
\(221\) 0 0
\(222\) −0.673870 −0.0452272
\(223\) −11.5997 −0.776770 −0.388385 0.921497i \(-0.626967\pi\)
−0.388385 + 0.921497i \(0.626967\pi\)
\(224\) −19.6940 −1.31586
\(225\) 5.19735 0.346490
\(226\) 18.5055 1.23097
\(227\) −9.51394 −0.631462 −0.315731 0.948849i \(-0.602250\pi\)
−0.315731 + 0.948849i \(0.602250\pi\)
\(228\) −4.98645 −0.330236
\(229\) −16.7700 −1.10819 −0.554097 0.832452i \(-0.686936\pi\)
−0.554097 + 0.832452i \(0.686936\pi\)
\(230\) −13.3279 −0.878815
\(231\) 11.6707 0.767876
\(232\) 6.00686 0.394370
\(233\) 9.44867 0.619003 0.309501 0.950899i \(-0.399838\pi\)
0.309501 + 0.950899i \(0.399838\pi\)
\(234\) 5.06515 0.331119
\(235\) 7.24251 0.472450
\(236\) 3.33387 0.217017
\(237\) −5.63303 −0.365905
\(238\) 0 0
\(239\) 6.42079 0.415326 0.207663 0.978200i \(-0.433414\pi\)
0.207663 + 0.978200i \(0.433414\pi\)
\(240\) −0.829180 −0.0535233
\(241\) −15.4831 −0.997355 −0.498678 0.866788i \(-0.666181\pi\)
−0.498678 + 0.866788i \(0.666181\pi\)
\(242\) −0.242155 −0.0155663
\(243\) −1.00000 −0.0641500
\(244\) −4.60752 −0.294966
\(245\) −18.1709 −1.16090
\(246\) −4.07558 −0.259849
\(247\) −23.6528 −1.50499
\(248\) 1.29362 0.0821448
\(249\) 3.92274 0.248594
\(250\) −0.571642 −0.0361538
\(251\) 25.7024 1.62232 0.811162 0.584821i \(-0.198835\pi\)
0.811162 + 0.584821i \(0.198835\pi\)
\(252\) 4.19370 0.264178
\(253\) 15.0744 0.947720
\(254\) 2.66078 0.166952
\(255\) 0 0
\(256\) −16.5439 −1.03400
\(257\) 2.50466 0.156236 0.0781182 0.996944i \(-0.475109\pi\)
0.0781182 + 0.996944i \(0.475109\pi\)
\(258\) −5.54175 −0.345014
\(259\) −2.64651 −0.164446
\(260\) 20.9923 1.30189
\(261\) −2.08430 −0.129015
\(262\) −6.00179 −0.370792
\(263\) 6.09867 0.376060 0.188030 0.982163i \(-0.439790\pi\)
0.188030 + 0.982163i \(0.439790\pi\)
\(264\) 9.44167 0.581095
\(265\) −24.1314 −1.48238
\(266\) 13.6868 0.839194
\(267\) −14.6181 −0.894612
\(268\) 17.0721 1.04284
\(269\) 4.11451 0.250866 0.125433 0.992102i \(-0.459968\pi\)
0.125433 + 0.992102i \(0.459968\pi\)
\(270\) 2.89656 0.176279
\(271\) −11.8548 −0.720128 −0.360064 0.932928i \(-0.617245\pi\)
−0.360064 + 0.932928i \(0.617245\pi\)
\(272\) 0 0
\(273\) 19.8925 1.20395
\(274\) −9.51068 −0.574561
\(275\) 17.0272 1.02678
\(276\) 5.41678 0.326052
\(277\) 16.2756 0.977908 0.488954 0.872309i \(-0.337379\pi\)
0.488954 + 0.872309i \(0.337379\pi\)
\(278\) −4.79472 −0.287568
\(279\) −0.448868 −0.0268730
\(280\) −32.7844 −1.95924
\(281\) 15.2506 0.909774 0.454887 0.890549i \(-0.349680\pi\)
0.454887 + 0.890549i \(0.349680\pi\)
\(282\) 2.05724 0.122507
\(283\) −20.8911 −1.24185 −0.620924 0.783871i \(-0.713242\pi\)
−0.620924 + 0.783871i \(0.713242\pi\)
\(284\) −4.29009 −0.254570
\(285\) −13.5261 −0.801217
\(286\) 16.5941 0.981230
\(287\) −16.0061 −0.944811
\(288\) 5.52839 0.325763
\(289\) 0 0
\(290\) 6.03729 0.354522
\(291\) −0.828387 −0.0485609
\(292\) 13.7185 0.802814
\(293\) 22.4544 1.31180 0.655900 0.754848i \(-0.272289\pi\)
0.655900 + 0.754848i \(0.272289\pi\)
\(294\) −5.16145 −0.301022
\(295\) 9.04338 0.526526
\(296\) −2.14104 −0.124446
\(297\) −3.27613 −0.190100
\(298\) −20.3720 −1.18012
\(299\) 25.6941 1.48593
\(300\) 6.11849 0.353251
\(301\) −21.7642 −1.25447
\(302\) −8.64177 −0.497278
\(303\) −4.92944 −0.283189
\(304\) 1.09985 0.0630808
\(305\) −12.4982 −0.715647
\(306\) 0 0
\(307\) −0.733467 −0.0418611 −0.0209306 0.999781i \(-0.506663\pi\)
−0.0209306 + 0.999781i \(0.506663\pi\)
\(308\) 13.7391 0.782859
\(309\) −11.4347 −0.650497
\(310\) 1.30017 0.0738448
\(311\) −24.2195 −1.37336 −0.686681 0.726959i \(-0.740933\pi\)
−0.686681 + 0.726959i \(0.740933\pi\)
\(312\) 16.0932 0.911096
\(313\) 3.82843 0.216396 0.108198 0.994129i \(-0.465492\pi\)
0.108198 + 0.994129i \(0.465492\pi\)
\(314\) 12.8064 0.722708
\(315\) 11.3757 0.640950
\(316\) −6.63139 −0.373045
\(317\) 3.49283 0.196177 0.0980885 0.995178i \(-0.468727\pi\)
0.0980885 + 0.995178i \(0.468727\pi\)
\(318\) −6.85452 −0.384382
\(319\) −6.82843 −0.382319
\(320\) −17.6717 −0.987876
\(321\) −17.5925 −0.981918
\(322\) −14.8680 −0.828563
\(323\) 0 0
\(324\) −1.17723 −0.0654018
\(325\) 29.0226 1.60988
\(326\) −3.20548 −0.177535
\(327\) −14.1515 −0.782578
\(328\) −12.9491 −0.714992
\(329\) 8.07944 0.445434
\(330\) 9.48951 0.522380
\(331\) 5.00357 0.275021 0.137511 0.990500i \(-0.456090\pi\)
0.137511 + 0.990500i \(0.456090\pi\)
\(332\) 4.61798 0.253444
\(333\) 0.742912 0.0407113
\(334\) 14.6828 0.803408
\(335\) 46.3092 2.53014
\(336\) −0.924998 −0.0504628
\(337\) −27.0434 −1.47315 −0.736573 0.676358i \(-0.763557\pi\)
−0.736573 + 0.676358i \(0.763557\pi\)
\(338\) 16.4925 0.897075
\(339\) −20.4015 −1.10806
\(340\) 0 0
\(341\) −1.47055 −0.0796347
\(342\) −3.84209 −0.207757
\(343\) 4.66568 0.251923
\(344\) −17.6074 −0.949328
\(345\) 14.6934 0.791067
\(346\) 16.6156 0.893262
\(347\) −4.31305 −0.231537 −0.115768 0.993276i \(-0.536933\pi\)
−0.115768 + 0.993276i \(0.536933\pi\)
\(348\) −2.45370 −0.131532
\(349\) 29.1251 1.55903 0.779516 0.626382i \(-0.215465\pi\)
0.779516 + 0.626382i \(0.215465\pi\)
\(350\) −16.7941 −0.897682
\(351\) −5.58411 −0.298058
\(352\) 18.1117 0.965358
\(353\) −11.5730 −0.615971 −0.307985 0.951391i \(-0.599655\pi\)
−0.307985 + 0.951391i \(0.599655\pi\)
\(354\) 2.56877 0.136529
\(355\) −11.6372 −0.617638
\(356\) −17.2089 −0.912069
\(357\) 0 0
\(358\) 18.7814 0.992630
\(359\) −26.1470 −1.37998 −0.689992 0.723817i \(-0.742386\pi\)
−0.689992 + 0.723817i \(0.742386\pi\)
\(360\) 9.20304 0.485043
\(361\) −1.05852 −0.0557118
\(362\) −16.9168 −0.889126
\(363\) 0.266966 0.0140121
\(364\) 23.4181 1.22744
\(365\) 37.2124 1.94779
\(366\) −3.55013 −0.185568
\(367\) −21.8427 −1.14018 −0.570089 0.821583i \(-0.693091\pi\)
−0.570089 + 0.821583i \(0.693091\pi\)
\(368\) −1.19477 −0.0622817
\(369\) 4.49315 0.233904
\(370\) −2.15189 −0.111871
\(371\) −26.9199 −1.39761
\(372\) −0.528421 −0.0273974
\(373\) 31.0065 1.60545 0.802727 0.596347i \(-0.203382\pi\)
0.802727 + 0.596347i \(0.203382\pi\)
\(374\) 0 0
\(375\) 0.630210 0.0325439
\(376\) 6.53632 0.337085
\(377\) −11.6389 −0.599436
\(378\) 3.23128 0.166199
\(379\) 11.7686 0.604513 0.302256 0.953227i \(-0.402260\pi\)
0.302256 + 0.953227i \(0.402260\pi\)
\(380\) −15.9234 −0.816852
\(381\) −2.93340 −0.150282
\(382\) 1.98987 0.101811
\(383\) −20.0262 −1.02329 −0.511645 0.859197i \(-0.670964\pi\)
−0.511645 + 0.859197i \(0.670964\pi\)
\(384\) 6.03714 0.308081
\(385\) 37.2684 1.89937
\(386\) −3.00425 −0.152912
\(387\) 6.10953 0.310565
\(388\) −0.975203 −0.0495085
\(389\) 12.7561 0.646758 0.323379 0.946270i \(-0.395181\pi\)
0.323379 + 0.946270i \(0.395181\pi\)
\(390\) 16.1747 0.819038
\(391\) 0 0
\(392\) −16.3991 −0.828282
\(393\) 6.61671 0.333769
\(394\) 16.3437 0.823384
\(395\) −17.9881 −0.905081
\(396\) −3.85677 −0.193810
\(397\) 27.3141 1.37086 0.685428 0.728140i \(-0.259615\pi\)
0.685428 + 0.728140i \(0.259615\pi\)
\(398\) 3.61153 0.181030
\(399\) −15.0891 −0.755402
\(400\) −1.34954 −0.0674772
\(401\) −31.3594 −1.56601 −0.783007 0.622013i \(-0.786315\pi\)
−0.783007 + 0.622013i \(0.786315\pi\)
\(402\) 13.1541 0.656069
\(403\) −2.50653 −0.124859
\(404\) −5.80309 −0.288715
\(405\) −3.19333 −0.158678
\(406\) 6.73494 0.334250
\(407\) 2.43388 0.120643
\(408\) 0 0
\(409\) 17.1030 0.845688 0.422844 0.906202i \(-0.361032\pi\)
0.422844 + 0.906202i \(0.361032\pi\)
\(410\) −13.0147 −0.642748
\(411\) 10.4851 0.517192
\(412\) −13.4613 −0.663190
\(413\) 10.0884 0.496418
\(414\) 4.17367 0.205125
\(415\) 12.5266 0.614907
\(416\) 30.8711 1.51358
\(417\) 5.28597 0.258855
\(418\) −12.5872 −0.615660
\(419\) −15.2428 −0.744660 −0.372330 0.928100i \(-0.621441\pi\)
−0.372330 + 0.928100i \(0.621441\pi\)
\(420\) 13.3919 0.653457
\(421\) 6.96252 0.339332 0.169666 0.985502i \(-0.445731\pi\)
0.169666 + 0.985502i \(0.445731\pi\)
\(422\) 0.182226 0.00887063
\(423\) −2.26801 −0.110275
\(424\) −21.7784 −1.05765
\(425\) 0 0
\(426\) −3.30555 −0.160154
\(427\) −13.9425 −0.674725
\(428\) −20.7105 −1.00108
\(429\) −18.2943 −0.883256
\(430\) −17.6966 −0.853407
\(431\) 21.4684 1.03410 0.517049 0.855956i \(-0.327031\pi\)
0.517049 + 0.855956i \(0.327031\pi\)
\(432\) 0.259660 0.0124929
\(433\) 33.1954 1.59527 0.797635 0.603140i \(-0.206084\pi\)
0.797635 + 0.603140i \(0.206084\pi\)
\(434\) 1.45042 0.0696222
\(435\) −6.65585 −0.319124
\(436\) −16.6596 −0.797848
\(437\) −19.4898 −0.932325
\(438\) 10.5702 0.505063
\(439\) −35.7203 −1.70484 −0.852418 0.522861i \(-0.824865\pi\)
−0.852418 + 0.522861i \(0.824865\pi\)
\(440\) 30.1504 1.43736
\(441\) 5.69028 0.270966
\(442\) 0 0
\(443\) 13.8366 0.657398 0.328699 0.944435i \(-0.393390\pi\)
0.328699 + 0.944435i \(0.393390\pi\)
\(444\) 0.874580 0.0415057
\(445\) −46.6803 −2.21286
\(446\) −10.5216 −0.498214
\(447\) 22.4592 1.06228
\(448\) −19.7137 −0.931387
\(449\) −4.67471 −0.220613 −0.110307 0.993898i \(-0.535183\pi\)
−0.110307 + 0.993898i \(0.535183\pi\)
\(450\) 4.71434 0.222236
\(451\) 14.7201 0.693144
\(452\) −24.0173 −1.12968
\(453\) 9.52717 0.447626
\(454\) −8.62977 −0.405015
\(455\) 63.5233 2.97802
\(456\) −12.2072 −0.571655
\(457\) −5.17186 −0.241930 −0.120965 0.992657i \(-0.538599\pi\)
−0.120965 + 0.992657i \(0.538599\pi\)
\(458\) −15.2115 −0.710787
\(459\) 0 0
\(460\) 17.2976 0.806503
\(461\) 22.6450 1.05468 0.527341 0.849654i \(-0.323189\pi\)
0.527341 + 0.849654i \(0.323189\pi\)
\(462\) 10.5861 0.492509
\(463\) 38.8961 1.80766 0.903828 0.427897i \(-0.140745\pi\)
0.903828 + 0.427897i \(0.140745\pi\)
\(464\) 0.541209 0.0251250
\(465\) −1.43338 −0.0664715
\(466\) 8.57056 0.397023
\(467\) −16.7116 −0.773322 −0.386661 0.922222i \(-0.626372\pi\)
−0.386661 + 0.922222i \(0.626372\pi\)
\(468\) −6.57379 −0.303874
\(469\) 51.6606 2.38546
\(470\) 6.56944 0.303025
\(471\) −14.1185 −0.650547
\(472\) 8.16159 0.375667
\(473\) 20.0156 0.920320
\(474\) −5.10953 −0.234688
\(475\) −22.0146 −1.01010
\(476\) 0 0
\(477\) 7.55680 0.346002
\(478\) 5.82408 0.266387
\(479\) −10.5031 −0.479899 −0.239949 0.970785i \(-0.577131\pi\)
−0.239949 + 0.970785i \(0.577131\pi\)
\(480\) 17.6540 0.805789
\(481\) 4.14851 0.189156
\(482\) −14.0442 −0.639696
\(483\) 16.3913 0.745832
\(484\) 0.314280 0.0142855
\(485\) −2.64531 −0.120117
\(486\) −0.907065 −0.0411453
\(487\) 24.2456 1.09867 0.549336 0.835601i \(-0.314881\pi\)
0.549336 + 0.835601i \(0.314881\pi\)
\(488\) −11.2796 −0.510603
\(489\) 3.53391 0.159809
\(490\) −16.4822 −0.744591
\(491\) −14.7261 −0.664580 −0.332290 0.943177i \(-0.607821\pi\)
−0.332290 + 0.943177i \(0.607821\pi\)
\(492\) 5.28948 0.238468
\(493\) 0 0
\(494\) −21.4547 −0.965291
\(495\) −10.4618 −0.470221
\(496\) 0.116553 0.00523338
\(497\) −12.9820 −0.582320
\(498\) 3.55818 0.159446
\(499\) −14.3585 −0.642775 −0.321388 0.946948i \(-0.604149\pi\)
−0.321388 + 0.946948i \(0.604149\pi\)
\(500\) 0.741904 0.0331789
\(501\) −16.1872 −0.723189
\(502\) 23.3138 1.04055
\(503\) −16.5970 −0.740022 −0.370011 0.929027i \(-0.620646\pi\)
−0.370011 + 0.929027i \(0.620646\pi\)
\(504\) 10.2665 0.457307
\(505\) −15.7413 −0.700479
\(506\) 13.6735 0.607860
\(507\) −18.1823 −0.807504
\(508\) −3.45329 −0.153215
\(509\) −33.1048 −1.46734 −0.733672 0.679503i \(-0.762195\pi\)
−0.733672 + 0.679503i \(0.762195\pi\)
\(510\) 0 0
\(511\) 41.5126 1.83641
\(512\) −2.93216 −0.129584
\(513\) 4.23574 0.187012
\(514\) 2.27189 0.100209
\(515\) −36.5147 −1.60903
\(516\) 7.19234 0.316625
\(517\) −7.43031 −0.326785
\(518\) −2.40056 −0.105474
\(519\) −18.3180 −0.804072
\(520\) 51.3908 2.25364
\(521\) 24.2541 1.06259 0.531295 0.847187i \(-0.321706\pi\)
0.531295 + 0.847187i \(0.321706\pi\)
\(522\) −1.89059 −0.0827491
\(523\) −2.14935 −0.0939843 −0.0469922 0.998895i \(-0.514964\pi\)
−0.0469922 + 0.998895i \(0.514964\pi\)
\(524\) 7.78940 0.340282
\(525\) 18.5147 0.808050
\(526\) 5.53189 0.241202
\(527\) 0 0
\(528\) 0.850680 0.0370211
\(529\) −1.82818 −0.0794862
\(530\) −21.8887 −0.950786
\(531\) −2.83196 −0.122897
\(532\) −17.7634 −0.770142
\(533\) 25.0902 1.08678
\(534\) −13.2596 −0.573797
\(535\) −56.1787 −2.42882
\(536\) 41.7938 1.80522
\(537\) −20.7057 −0.893517
\(538\) 3.73213 0.160904
\(539\) 18.6421 0.802972
\(540\) −3.75929 −0.161774
\(541\) 4.04781 0.174029 0.0870145 0.996207i \(-0.472267\pi\)
0.0870145 + 0.996207i \(0.472267\pi\)
\(542\) −10.7531 −0.461884
\(543\) 18.6500 0.800348
\(544\) 0 0
\(545\) −45.1903 −1.93574
\(546\) 18.0438 0.772204
\(547\) 38.1034 1.62918 0.814591 0.580036i \(-0.196961\pi\)
0.814591 + 0.580036i \(0.196961\pi\)
\(548\) 12.3434 0.527284
\(549\) 3.91386 0.167039
\(550\) 15.4448 0.658568
\(551\) 8.82854 0.376108
\(552\) 13.2607 0.564413
\(553\) −20.0668 −0.853327
\(554\) 14.7631 0.627223
\(555\) 2.37236 0.100701
\(556\) 6.22282 0.263906
\(557\) 47.0274 1.99262 0.996308 0.0858461i \(-0.0273593\pi\)
0.996308 + 0.0858461i \(0.0273593\pi\)
\(558\) −0.407152 −0.0172361
\(559\) 34.1163 1.44297
\(560\) −2.95382 −0.124822
\(561\) 0 0
\(562\) 13.8333 0.583522
\(563\) 28.7543 1.21185 0.605925 0.795521i \(-0.292803\pi\)
0.605925 + 0.795521i \(0.292803\pi\)
\(564\) −2.66998 −0.112426
\(565\) −65.1488 −2.74083
\(566\) −18.9496 −0.796512
\(567\) −3.56234 −0.149604
\(568\) −10.5025 −0.440675
\(569\) −1.04600 −0.0438505 −0.0219252 0.999760i \(-0.506980\pi\)
−0.0219252 + 0.999760i \(0.506980\pi\)
\(570\) −12.2691 −0.513895
\(571\) −26.2531 −1.09866 −0.549330 0.835606i \(-0.685117\pi\)
−0.549330 + 0.835606i \(0.685117\pi\)
\(572\) −21.5366 −0.900491
\(573\) −2.19374 −0.0916450
\(574\) −14.5186 −0.605995
\(575\) 23.9145 0.997303
\(576\) 5.53393 0.230580
\(577\) 38.7607 1.61363 0.806814 0.590806i \(-0.201190\pi\)
0.806814 + 0.590806i \(0.201190\pi\)
\(578\) 0 0
\(579\) 3.31205 0.137644
\(580\) −7.83548 −0.325351
\(581\) 13.9741 0.579745
\(582\) −0.751401 −0.0311466
\(583\) 24.7571 1.02533
\(584\) 33.5840 1.38971
\(585\) −17.8319 −0.737259
\(586\) 20.3676 0.841378
\(587\) −41.5716 −1.71584 −0.857921 0.513781i \(-0.828244\pi\)
−0.857921 + 0.513781i \(0.828244\pi\)
\(588\) 6.69878 0.276253
\(589\) 1.90129 0.0783411
\(590\) 8.20294 0.337710
\(591\) −18.0182 −0.741170
\(592\) −0.192905 −0.00792833
\(593\) −13.7886 −0.566230 −0.283115 0.959086i \(-0.591368\pi\)
−0.283115 + 0.959086i \(0.591368\pi\)
\(594\) −2.97167 −0.121929
\(595\) 0 0
\(596\) 26.4397 1.08301
\(597\) −3.98156 −0.162954
\(598\) 23.3062 0.953062
\(599\) 0.372690 0.0152277 0.00761386 0.999971i \(-0.497576\pi\)
0.00761386 + 0.999971i \(0.497576\pi\)
\(600\) 14.9785 0.611497
\(601\) −23.0325 −0.939515 −0.469757 0.882796i \(-0.655659\pi\)
−0.469757 + 0.882796i \(0.655659\pi\)
\(602\) −19.7416 −0.804607
\(603\) −14.5019 −0.590562
\(604\) 11.2157 0.456360
\(605\) 0.852509 0.0346594
\(606\) −4.47132 −0.181635
\(607\) 16.1050 0.653681 0.326840 0.945080i \(-0.394016\pi\)
0.326840 + 0.945080i \(0.394016\pi\)
\(608\) −23.4168 −0.949677
\(609\) −7.42498 −0.300875
\(610\) −11.3367 −0.459011
\(611\) −12.6648 −0.512365
\(612\) 0 0
\(613\) −14.9606 −0.604251 −0.302126 0.953268i \(-0.597696\pi\)
−0.302126 + 0.953268i \(0.597696\pi\)
\(614\) −0.665302 −0.0268494
\(615\) 14.3481 0.578571
\(616\) 33.6345 1.35517
\(617\) 4.75542 0.191446 0.0957230 0.995408i \(-0.469484\pi\)
0.0957230 + 0.995408i \(0.469484\pi\)
\(618\) −10.3720 −0.417223
\(619\) −43.0995 −1.73232 −0.866158 0.499770i \(-0.833418\pi\)
−0.866158 + 0.499770i \(0.833418\pi\)
\(620\) −1.68742 −0.0677686
\(621\) −4.60128 −0.184643
\(622\) −21.9687 −0.880864
\(623\) −52.0746 −2.08632
\(624\) 1.44997 0.0580453
\(625\) −23.9743 −0.958972
\(626\) 3.47264 0.138795
\(627\) 13.8768 0.554187
\(628\) −16.6208 −0.663241
\(629\) 0 0
\(630\) 10.3185 0.411100
\(631\) 11.3212 0.450690 0.225345 0.974279i \(-0.427649\pi\)
0.225345 + 0.974279i \(0.427649\pi\)
\(632\) −16.2342 −0.645760
\(633\) −0.200896 −0.00798491
\(634\) 3.16823 0.125826
\(635\) −9.36730 −0.371730
\(636\) 8.89611 0.352754
\(637\) 31.7751 1.25898
\(638\) −6.19384 −0.245216
\(639\) 3.64422 0.144163
\(640\) 19.2786 0.762052
\(641\) 15.8764 0.627081 0.313541 0.949575i \(-0.398485\pi\)
0.313541 + 0.949575i \(0.398485\pi\)
\(642\) −15.9576 −0.629795
\(643\) 25.7352 1.01490 0.507448 0.861682i \(-0.330589\pi\)
0.507448 + 0.861682i \(0.330589\pi\)
\(644\) 19.2964 0.760386
\(645\) 19.5097 0.768196
\(646\) 0 0
\(647\) −26.9015 −1.05761 −0.528804 0.848744i \(-0.677359\pi\)
−0.528804 + 0.848744i \(0.677359\pi\)
\(648\) −2.88196 −0.113214
\(649\) −9.27787 −0.364188
\(650\) 26.3254 1.03257
\(651\) −1.59902 −0.0626705
\(652\) 4.16023 0.162927
\(653\) −20.6599 −0.808484 −0.404242 0.914652i \(-0.632465\pi\)
−0.404242 + 0.914652i \(0.632465\pi\)
\(654\) −12.8363 −0.501939
\(655\) 21.1293 0.825591
\(656\) −1.16669 −0.0455516
\(657\) −11.6532 −0.454634
\(658\) 7.32858 0.285698
\(659\) −25.5651 −0.995875 −0.497937 0.867213i \(-0.665909\pi\)
−0.497937 + 0.867213i \(0.665909\pi\)
\(660\) −12.3159 −0.479397
\(661\) 27.9387 1.08669 0.543345 0.839510i \(-0.317158\pi\)
0.543345 + 0.839510i \(0.317158\pi\)
\(662\) 4.53857 0.176396
\(663\) 0 0
\(664\) 11.3052 0.438726
\(665\) −48.1846 −1.86852
\(666\) 0.673870 0.0261119
\(667\) −9.59045 −0.371344
\(668\) −19.0561 −0.737301
\(669\) 11.5997 0.448468
\(670\) 42.0055 1.62281
\(671\) 12.8223 0.495000
\(672\) 19.6940 0.759713
\(673\) −2.58625 −0.0996927 −0.0498464 0.998757i \(-0.515873\pi\)
−0.0498464 + 0.998757i \(0.515873\pi\)
\(674\) −24.5301 −0.944865
\(675\) −5.19735 −0.200046
\(676\) −21.4048 −0.823261
\(677\) −0.886837 −0.0340839 −0.0170420 0.999855i \(-0.505425\pi\)
−0.0170420 + 0.999855i \(0.505425\pi\)
\(678\) −18.5055 −0.710700
\(679\) −2.95100 −0.113249
\(680\) 0 0
\(681\) 9.51394 0.364575
\(682\) −1.33388 −0.0510771
\(683\) 26.9328 1.03055 0.515277 0.857024i \(-0.327689\pi\)
0.515277 + 0.857024i \(0.327689\pi\)
\(684\) 4.98645 0.190662
\(685\) 33.4824 1.27930
\(686\) 4.23208 0.161581
\(687\) 16.7700 0.639816
\(688\) −1.58640 −0.0604810
\(689\) 42.1980 1.60762
\(690\) 13.3279 0.507384
\(691\) 10.3832 0.394994 0.197497 0.980303i \(-0.436719\pi\)
0.197497 + 0.980303i \(0.436719\pi\)
\(692\) −21.5646 −0.819761
\(693\) −11.6707 −0.443333
\(694\) −3.91222 −0.148506
\(695\) 16.8798 0.640289
\(696\) −6.00686 −0.227689
\(697\) 0 0
\(698\) 26.4184 0.999951
\(699\) −9.44867 −0.357381
\(700\) 21.7962 0.823817
\(701\) 49.5351 1.87091 0.935457 0.353440i \(-0.114988\pi\)
0.935457 + 0.353440i \(0.114988\pi\)
\(702\) −5.06515 −0.191172
\(703\) −3.14678 −0.118683
\(704\) 18.1299 0.683295
\(705\) −7.24251 −0.272769
\(706\) −10.4975 −0.395079
\(707\) −17.5603 −0.660424
\(708\) −3.33387 −0.125295
\(709\) 36.3527 1.36526 0.682628 0.730766i \(-0.260837\pi\)
0.682628 + 0.730766i \(0.260837\pi\)
\(710\) −10.5557 −0.396148
\(711\) 5.63303 0.211255
\(712\) −42.1287 −1.57884
\(713\) −2.06537 −0.0773486
\(714\) 0 0
\(715\) −58.4197 −2.18477
\(716\) −24.3754 −0.910953
\(717\) −6.42079 −0.239789
\(718\) −23.7170 −0.885112
\(719\) −18.0506 −0.673175 −0.336588 0.941652i \(-0.609273\pi\)
−0.336588 + 0.941652i \(0.609273\pi\)
\(720\) 0.829180 0.0309017
\(721\) −40.7343 −1.51702
\(722\) −0.960151 −0.0357331
\(723\) 15.4831 0.575823
\(724\) 21.9554 0.815966
\(725\) −10.8328 −0.402321
\(726\) 0.242155 0.00898723
\(727\) 25.6114 0.949873 0.474936 0.880020i \(-0.342471\pi\)
0.474936 + 0.880020i \(0.342471\pi\)
\(728\) 57.3294 2.12477
\(729\) 1.00000 0.0370370
\(730\) 33.7541 1.24930
\(731\) 0 0
\(732\) 4.60752 0.170299
\(733\) 31.6733 1.16988 0.584941 0.811076i \(-0.301118\pi\)
0.584941 + 0.811076i \(0.301118\pi\)
\(734\) −19.8127 −0.731301
\(735\) 18.1709 0.670245
\(736\) 25.4377 0.937645
\(737\) −47.5100 −1.75005
\(738\) 4.07558 0.150024
\(739\) −31.3462 −1.15309 −0.576543 0.817066i \(-0.695599\pi\)
−0.576543 + 0.817066i \(0.695599\pi\)
\(740\) 2.79282 0.102666
\(741\) 23.6528 0.868908
\(742\) −24.4181 −0.896418
\(743\) −3.20001 −0.117397 −0.0586984 0.998276i \(-0.518695\pi\)
−0.0586984 + 0.998276i \(0.518695\pi\)
\(744\) −1.29362 −0.0474263
\(745\) 71.7196 2.62760
\(746\) 28.1249 1.02973
\(747\) −3.92274 −0.143526
\(748\) 0 0
\(749\) −62.6705 −2.28993
\(750\) 0.571642 0.0208734
\(751\) 27.5933 1.00689 0.503446 0.864026i \(-0.332065\pi\)
0.503446 + 0.864026i \(0.332065\pi\)
\(752\) 0.588913 0.0214754
\(753\) −25.7024 −0.936649
\(754\) −10.5573 −0.384474
\(755\) 30.4234 1.10722
\(756\) −4.19370 −0.152524
\(757\) −10.1597 −0.369259 −0.184629 0.982808i \(-0.559108\pi\)
−0.184629 + 0.982808i \(0.559108\pi\)
\(758\) 10.6749 0.387730
\(759\) −15.0744 −0.547166
\(760\) −38.9817 −1.41401
\(761\) 8.12911 0.294680 0.147340 0.989086i \(-0.452929\pi\)
0.147340 + 0.989086i \(0.452929\pi\)
\(762\) −2.66078 −0.0963900
\(763\) −50.4124 −1.82505
\(764\) −2.58255 −0.0934333
\(765\) 0 0
\(766\) −18.1650 −0.656330
\(767\) −15.8140 −0.571009
\(768\) 16.5439 0.596978
\(769\) 16.6656 0.600978 0.300489 0.953785i \(-0.402850\pi\)
0.300489 + 0.953785i \(0.402850\pi\)
\(770\) 33.8049 1.21824
\(771\) −2.50466 −0.0902031
\(772\) 3.89906 0.140330
\(773\) 42.9077 1.54328 0.771641 0.636058i \(-0.219436\pi\)
0.771641 + 0.636058i \(0.219436\pi\)
\(774\) 5.54175 0.199194
\(775\) −2.33292 −0.0838011
\(776\) −2.38738 −0.0857018
\(777\) 2.64651 0.0949429
\(778\) 11.5706 0.414826
\(779\) −19.0318 −0.681885
\(780\) −20.9923 −0.751645
\(781\) 11.9389 0.427209
\(782\) 0 0
\(783\) 2.08430 0.0744867
\(784\) −1.47754 −0.0527692
\(785\) −45.0851 −1.60916
\(786\) 6.00179 0.214077
\(787\) 10.6447 0.379444 0.189722 0.981838i \(-0.439241\pi\)
0.189722 + 0.981838i \(0.439241\pi\)
\(788\) −21.2116 −0.755633
\(789\) −6.09867 −0.217118
\(790\) −16.3164 −0.580512
\(791\) −72.6772 −2.58410
\(792\) −9.44167 −0.335495
\(793\) 21.8554 0.776109
\(794\) 24.7757 0.879257
\(795\) 24.1314 0.855851
\(796\) −4.68722 −0.166134
\(797\) −29.6872 −1.05157 −0.525787 0.850617i \(-0.676229\pi\)
−0.525787 + 0.850617i \(0.676229\pi\)
\(798\) −13.6868 −0.484509
\(799\) 0 0
\(800\) 28.7330 1.01586
\(801\) 14.6181 0.516505
\(802\) −28.4450 −1.00443
\(803\) −38.1773 −1.34725
\(804\) −17.0721 −0.602085
\(805\) 52.3430 1.84485
\(806\) −2.27358 −0.0800836
\(807\) −4.11451 −0.144838
\(808\) −14.2064 −0.499780
\(809\) 22.8310 0.802694 0.401347 0.915926i \(-0.368542\pi\)
0.401347 + 0.915926i \(0.368542\pi\)
\(810\) −2.89656 −0.101775
\(811\) −37.2506 −1.30805 −0.654023 0.756475i \(-0.726920\pi\)
−0.654023 + 0.756475i \(0.726920\pi\)
\(812\) −8.74093 −0.306746
\(813\) 11.8548 0.415766
\(814\) 2.20769 0.0773794
\(815\) 11.2849 0.395294
\(816\) 0 0
\(817\) −25.8784 −0.905370
\(818\) 15.5135 0.542418
\(819\) −19.8925 −0.695101
\(820\) 16.8910 0.589861
\(821\) 3.29267 0.114915 0.0574574 0.998348i \(-0.481701\pi\)
0.0574574 + 0.998348i \(0.481701\pi\)
\(822\) 9.51068 0.331723
\(823\) 12.7887 0.445786 0.222893 0.974843i \(-0.428450\pi\)
0.222893 + 0.974843i \(0.428450\pi\)
\(824\) −32.9543 −1.14802
\(825\) −17.0272 −0.592811
\(826\) 9.15084 0.318399
\(827\) 36.4922 1.26896 0.634480 0.772939i \(-0.281214\pi\)
0.634480 + 0.772939i \(0.281214\pi\)
\(828\) −5.41678 −0.188246
\(829\) −0.425058 −0.0147629 −0.00738144 0.999973i \(-0.502350\pi\)
−0.00738144 + 0.999973i \(0.502350\pi\)
\(830\) 11.3624 0.394396
\(831\) −16.2756 −0.564596
\(832\) 30.9021 1.07134
\(833\) 0 0
\(834\) 4.79472 0.166028
\(835\) −51.6909 −1.78884
\(836\) 16.3363 0.565001
\(837\) 0.448868 0.0155151
\(838\) −13.8262 −0.477619
\(839\) −31.6812 −1.09376 −0.546879 0.837212i \(-0.684184\pi\)
−0.546879 + 0.837212i \(0.684184\pi\)
\(840\) 32.7844 1.13117
\(841\) −24.6557 −0.850197
\(842\) 6.31546 0.217645
\(843\) −15.2506 −0.525258
\(844\) −0.236502 −0.00814072
\(845\) −58.0620 −1.99740
\(846\) −2.05724 −0.0707293
\(847\) 0.951023 0.0326775
\(848\) −1.96220 −0.0673822
\(849\) 20.8911 0.716981
\(850\) 0 0
\(851\) 3.41835 0.117180
\(852\) 4.29009 0.146976
\(853\) 15.3947 0.527104 0.263552 0.964645i \(-0.415106\pi\)
0.263552 + 0.964645i \(0.415106\pi\)
\(854\) −12.6468 −0.432763
\(855\) 13.5261 0.462583
\(856\) −50.7009 −1.73292
\(857\) −40.7518 −1.39205 −0.696027 0.718016i \(-0.745051\pi\)
−0.696027 + 0.718016i \(0.745051\pi\)
\(858\) −16.5941 −0.566514
\(859\) −46.4431 −1.58462 −0.792310 0.610119i \(-0.791122\pi\)
−0.792310 + 0.610119i \(0.791122\pi\)
\(860\) 22.9675 0.783185
\(861\) 16.0061 0.545487
\(862\) 19.4733 0.663262
\(863\) −47.2341 −1.60787 −0.803934 0.594719i \(-0.797263\pi\)
−0.803934 + 0.594719i \(0.797263\pi\)
\(864\) −5.52839 −0.188080
\(865\) −58.4954 −1.98890
\(866\) 30.1104 1.02319
\(867\) 0 0
\(868\) −1.88242 −0.0638934
\(869\) 18.4546 0.626028
\(870\) −6.03729 −0.204683
\(871\) −80.9800 −2.74390
\(872\) −40.7839 −1.38112
\(873\) 0.828387 0.0280366
\(874\) −17.6786 −0.597986
\(875\) 2.24502 0.0758957
\(876\) −13.7185 −0.463505
\(877\) 0.316438 0.0106854 0.00534268 0.999986i \(-0.498299\pi\)
0.00534268 + 0.999986i \(0.498299\pi\)
\(878\) −32.4006 −1.09347
\(879\) −22.4544 −0.757368
\(880\) 2.71650 0.0915733
\(881\) −36.1357 −1.21744 −0.608721 0.793385i \(-0.708317\pi\)
−0.608721 + 0.793385i \(0.708317\pi\)
\(882\) 5.16145 0.173795
\(883\) 0.156899 0.00528008 0.00264004 0.999997i \(-0.499160\pi\)
0.00264004 + 0.999997i \(0.499160\pi\)
\(884\) 0 0
\(885\) −9.04338 −0.303990
\(886\) 12.5507 0.421650
\(887\) −30.1071 −1.01090 −0.505448 0.862857i \(-0.668673\pi\)
−0.505448 + 0.862857i \(0.668673\pi\)
\(888\) 2.14104 0.0718487
\(889\) −10.4498 −0.350474
\(890\) −42.3421 −1.41931
\(891\) 3.27613 0.109755
\(892\) 13.6555 0.457219
\(893\) 9.60671 0.321476
\(894\) 20.3720 0.681341
\(895\) −66.1202 −2.21015
\(896\) 21.5063 0.718477
\(897\) −25.6941 −0.857900
\(898\) −4.24027 −0.141500
\(899\) 0.935574 0.0312031
\(900\) −6.11849 −0.203950
\(901\) 0 0
\(902\) 13.3521 0.444577
\(903\) 21.7642 0.724269
\(904\) −58.7963 −1.95554
\(905\) 59.5556 1.97970
\(906\) 8.64177 0.287104
\(907\) −38.4765 −1.27759 −0.638795 0.769377i \(-0.720567\pi\)
−0.638795 + 0.769377i \(0.720567\pi\)
\(908\) 11.2001 0.371689
\(909\) 4.92944 0.163499
\(910\) 57.6198 1.91008
\(911\) 1.87182 0.0620162 0.0310081 0.999519i \(-0.490128\pi\)
0.0310081 + 0.999519i \(0.490128\pi\)
\(912\) −1.09985 −0.0364197
\(913\) −12.8514 −0.425320
\(914\) −4.69122 −0.155172
\(915\) 12.4982 0.413179
\(916\) 19.7422 0.652301
\(917\) 23.5710 0.778382
\(918\) 0 0
\(919\) 6.41003 0.211447 0.105724 0.994396i \(-0.466284\pi\)
0.105724 + 0.994396i \(0.466284\pi\)
\(920\) 42.3458 1.39610
\(921\) 0.733467 0.0241685
\(922\) 20.5405 0.676464
\(923\) 20.3497 0.669819
\(924\) −13.7391 −0.451984
\(925\) 3.86118 0.126955
\(926\) 35.2813 1.15942
\(927\) 11.4347 0.375564
\(928\) −11.5228 −0.378255
\(929\) −5.74229 −0.188398 −0.0941992 0.995553i \(-0.530029\pi\)
−0.0941992 + 0.995553i \(0.530029\pi\)
\(930\) −1.30017 −0.0426343
\(931\) −24.1025 −0.789928
\(932\) −11.1233 −0.364355
\(933\) 24.2195 0.792911
\(934\) −15.1585 −0.496003
\(935\) 0 0
\(936\) −16.0932 −0.526022
\(937\) −35.7264 −1.16713 −0.583566 0.812066i \(-0.698343\pi\)
−0.583566 + 0.812066i \(0.698343\pi\)
\(938\) 46.8595 1.53002
\(939\) −3.82843 −0.124936
\(940\) −8.52612 −0.278091
\(941\) 10.9669 0.357511 0.178756 0.983893i \(-0.442793\pi\)
0.178756 + 0.983893i \(0.442793\pi\)
\(942\) −12.8064 −0.417256
\(943\) 20.6742 0.673246
\(944\) 0.735347 0.0239335
\(945\) −11.3757 −0.370053
\(946\) 18.1555 0.590286
\(947\) 39.7162 1.29060 0.645301 0.763928i \(-0.276732\pi\)
0.645301 + 0.763928i \(0.276732\pi\)
\(948\) 6.63139 0.215377
\(949\) −65.0726 −2.11235
\(950\) −19.9687 −0.647870
\(951\) −3.49283 −0.113263
\(952\) 0 0
\(953\) −5.33601 −0.172850 −0.0864252 0.996258i \(-0.527544\pi\)
−0.0864252 + 0.996258i \(0.527544\pi\)
\(954\) 6.85452 0.221923
\(955\) −7.00535 −0.226688
\(956\) −7.55876 −0.244468
\(957\) 6.82843 0.220732
\(958\) −9.52700 −0.307803
\(959\) 37.3516 1.20614
\(960\) 17.6717 0.570350
\(961\) −30.7985 −0.993501
\(962\) 3.76297 0.121323
\(963\) 17.5925 0.566911
\(964\) 18.2272 0.587059
\(965\) 10.5765 0.340469
\(966\) 14.8680 0.478371
\(967\) 49.3477 1.58692 0.793458 0.608625i \(-0.208279\pi\)
0.793458 + 0.608625i \(0.208279\pi\)
\(968\) 0.769384 0.0247289
\(969\) 0 0
\(970\) −2.39947 −0.0770424
\(971\) −15.7566 −0.505654 −0.252827 0.967512i \(-0.581360\pi\)
−0.252827 + 0.967512i \(0.581360\pi\)
\(972\) 1.17723 0.0377597
\(973\) 18.8304 0.603676
\(974\) 21.9923 0.704680
\(975\) −29.0226 −0.929467
\(976\) −1.01627 −0.0325301
\(977\) −37.9092 −1.21282 −0.606411 0.795151i \(-0.707391\pi\)
−0.606411 + 0.795151i \(0.707391\pi\)
\(978\) 3.20548 0.102500
\(979\) 47.8908 1.53060
\(980\) 21.3914 0.683323
\(981\) 14.1515 0.451822
\(982\) −13.3575 −0.426257
\(983\) 1.08178 0.0345035 0.0172518 0.999851i \(-0.494508\pi\)
0.0172518 + 0.999851i \(0.494508\pi\)
\(984\) 12.9491 0.412801
\(985\) −57.5381 −1.83332
\(986\) 0 0
\(987\) −8.07944 −0.257171
\(988\) 27.8449 0.885863
\(989\) 28.1117 0.893900
\(990\) −9.48951 −0.301596
\(991\) 9.64197 0.306287 0.153144 0.988204i \(-0.451060\pi\)
0.153144 + 0.988204i \(0.451060\pi\)
\(992\) −2.48151 −0.0787882
\(993\) −5.00357 −0.158784
\(994\) −11.7755 −0.373496
\(995\) −12.7144 −0.403074
\(996\) −4.61798 −0.146326
\(997\) −6.84545 −0.216798 −0.108399 0.994107i \(-0.534572\pi\)
−0.108399 + 0.994107i \(0.534572\pi\)
\(998\) −13.0241 −0.412271
\(999\) −0.742912 −0.0235047
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 867.2.a.o.1.4 6
3.2 odd 2 2601.2.a.bh.1.3 6
17.2 even 8 867.2.e.k.616.7 24
17.3 odd 16 867.2.h.m.757.7 48
17.4 even 4 867.2.d.g.577.6 12
17.5 odd 16 867.2.h.m.688.6 48
17.6 odd 16 867.2.h.m.733.7 48
17.7 odd 16 867.2.h.m.712.6 48
17.8 even 8 867.2.e.k.829.6 24
17.9 even 8 867.2.e.k.829.5 24
17.10 odd 16 867.2.h.m.712.5 48
17.11 odd 16 867.2.h.m.733.8 48
17.12 odd 16 867.2.h.m.688.5 48
17.13 even 4 867.2.d.g.577.5 12
17.14 odd 16 867.2.h.m.757.8 48
17.15 even 8 867.2.e.k.616.8 24
17.16 even 2 867.2.a.p.1.4 yes 6
51.50 odd 2 2601.2.a.bi.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
867.2.a.o.1.4 6 1.1 even 1 trivial
867.2.a.p.1.4 yes 6 17.16 even 2
867.2.d.g.577.5 12 17.13 even 4
867.2.d.g.577.6 12 17.4 even 4
867.2.e.k.616.7 24 17.2 even 8
867.2.e.k.616.8 24 17.15 even 8
867.2.e.k.829.5 24 17.9 even 8
867.2.e.k.829.6 24 17.8 even 8
867.2.h.m.688.5 48 17.12 odd 16
867.2.h.m.688.6 48 17.5 odd 16
867.2.h.m.712.5 48 17.10 odd 16
867.2.h.m.712.6 48 17.7 odd 16
867.2.h.m.733.7 48 17.6 odd 16
867.2.h.m.733.8 48 17.11 odd 16
867.2.h.m.757.7 48 17.3 odd 16
867.2.h.m.757.8 48 17.14 odd 16
2601.2.a.bh.1.3 6 3.2 odd 2
2601.2.a.bi.1.3 6 51.50 odd 2