Properties

Label 2601.2.a.bh.1.3
Level $2601$
Weight $2$
Character 2601.1
Self dual yes
Analytic conductor $20.769$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2601,2,Mod(1,2601)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2601, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2601.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2601 = 3^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2601.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-3,0,9,-3,0,-3,-12,0,-12,-9,0,9,-6,0,15,0,0,9,6,0,18,-9,0, 15,12,0,15,-6,0,-24,-42,0,0,0,0,3,6,0,3,-18,0,0,-3,0,-15,-24,0,21,-12, 0,-18,-24,0,-24,-54,0,-3,9,0,-21,-30,0,24,9,0,-6,0,0,-3,-27,0,-18] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(73)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(20.7690895657\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.3418281.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 9x^{4} - 4x^{3} + 18x^{2} + 12x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 867)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.857616\) of defining polynomial
Character \(\chi\) \(=\) 2601.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.907065 q^{2} -1.17723 q^{4} +3.19333 q^{5} -3.56234 q^{7} +2.88196 q^{8} -2.89656 q^{10} -3.27613 q^{11} +5.58411 q^{13} +3.23128 q^{14} -0.259660 q^{16} -4.23574 q^{19} -3.75929 q^{20} +2.97167 q^{22} -4.60128 q^{23} +5.19735 q^{25} -5.06515 q^{26} +4.19370 q^{28} +2.08430 q^{29} -0.448868 q^{31} -5.52839 q^{32} -11.3757 q^{35} +0.742912 q^{37} +3.84209 q^{38} +9.20304 q^{40} -4.49315 q^{41} +6.10953 q^{43} +3.85677 q^{44} +4.17367 q^{46} +2.26801 q^{47} +5.69028 q^{49} -4.71434 q^{50} -6.57379 q^{52} -7.55680 q^{53} -10.4618 q^{55} -10.2665 q^{56} -1.89059 q^{58} +2.83196 q^{59} +3.91386 q^{61} +0.407152 q^{62} +5.53393 q^{64} +17.8319 q^{65} -14.5019 q^{67} +10.3185 q^{70} -3.64422 q^{71} -11.6532 q^{73} -0.673870 q^{74} +4.98645 q^{76} +11.6707 q^{77} +5.63303 q^{79} -0.829180 q^{80} +4.07558 q^{82} +3.92274 q^{83} -5.54175 q^{86} -9.44167 q^{88} -14.6181 q^{89} -19.8925 q^{91} +5.41678 q^{92} -2.05724 q^{94} -13.5261 q^{95} +0.828387 q^{97} -5.16145 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{2} + 9 q^{4} - 3 q^{5} - 3 q^{7} - 12 q^{8} - 12 q^{10} - 9 q^{11} + 9 q^{13} - 6 q^{14} + 15 q^{16} + 9 q^{19} + 6 q^{20} + 18 q^{22} - 9 q^{23} + 15 q^{25} + 12 q^{26} + 15 q^{28} - 6 q^{29}+ \cdots + 57 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.907065 −0.641392 −0.320696 0.947182i \(-0.603917\pi\)
−0.320696 + 0.947182i \(0.603917\pi\)
\(3\) 0 0
\(4\) −1.17723 −0.588616
\(5\) 3.19333 1.42810 0.714050 0.700095i \(-0.246859\pi\)
0.714050 + 0.700095i \(0.246859\pi\)
\(6\) 0 0
\(7\) −3.56234 −1.34644 −0.673219 0.739443i \(-0.735089\pi\)
−0.673219 + 0.739443i \(0.735089\pi\)
\(8\) 2.88196 1.01893
\(9\) 0 0
\(10\) −2.89656 −0.915972
\(11\) −3.27613 −0.987791 −0.493895 0.869521i \(-0.664427\pi\)
−0.493895 + 0.869521i \(0.664427\pi\)
\(12\) 0 0
\(13\) 5.58411 1.54875 0.774377 0.632725i \(-0.218064\pi\)
0.774377 + 0.632725i \(0.218064\pi\)
\(14\) 3.23128 0.863595
\(15\) 0 0
\(16\) −0.259660 −0.0649150
\(17\) 0 0
\(18\) 0 0
\(19\) −4.23574 −0.971745 −0.485872 0.874030i \(-0.661498\pi\)
−0.485872 + 0.874030i \(0.661498\pi\)
\(20\) −3.75929 −0.840603
\(21\) 0 0
\(22\) 2.97167 0.633561
\(23\) −4.60128 −0.959434 −0.479717 0.877423i \(-0.659261\pi\)
−0.479717 + 0.877423i \(0.659261\pi\)
\(24\) 0 0
\(25\) 5.19735 1.03947
\(26\) −5.06515 −0.993358
\(27\) 0 0
\(28\) 4.19370 0.792535
\(29\) 2.08430 0.387044 0.193522 0.981096i \(-0.438009\pi\)
0.193522 + 0.981096i \(0.438009\pi\)
\(30\) 0 0
\(31\) −0.448868 −0.0806190 −0.0403095 0.999187i \(-0.512834\pi\)
−0.0403095 + 0.999187i \(0.512834\pi\)
\(32\) −5.52839 −0.977290
\(33\) 0 0
\(34\) 0 0
\(35\) −11.3757 −1.92285
\(36\) 0 0
\(37\) 0.742912 0.122134 0.0610670 0.998134i \(-0.480550\pi\)
0.0610670 + 0.998134i \(0.480550\pi\)
\(38\) 3.84209 0.623270
\(39\) 0 0
\(40\) 9.20304 1.45513
\(41\) −4.49315 −0.701712 −0.350856 0.936430i \(-0.614109\pi\)
−0.350856 + 0.936430i \(0.614109\pi\)
\(42\) 0 0
\(43\) 6.10953 0.931695 0.465848 0.884865i \(-0.345750\pi\)
0.465848 + 0.884865i \(0.345750\pi\)
\(44\) 3.85677 0.581429
\(45\) 0 0
\(46\) 4.17367 0.615374
\(47\) 2.26801 0.330824 0.165412 0.986225i \(-0.447105\pi\)
0.165412 + 0.986225i \(0.447105\pi\)
\(48\) 0 0
\(49\) 5.69028 0.812897
\(50\) −4.71434 −0.666708
\(51\) 0 0
\(52\) −6.57379 −0.911621
\(53\) −7.55680 −1.03801 −0.519003 0.854772i \(-0.673697\pi\)
−0.519003 + 0.854772i \(0.673697\pi\)
\(54\) 0 0
\(55\) −10.4618 −1.41066
\(56\) −10.2665 −1.37192
\(57\) 0 0
\(58\) −1.89059 −0.248247
\(59\) 2.83196 0.368690 0.184345 0.982862i \(-0.440984\pi\)
0.184345 + 0.982862i \(0.440984\pi\)
\(60\) 0 0
\(61\) 3.91386 0.501118 0.250559 0.968101i \(-0.419386\pi\)
0.250559 + 0.968101i \(0.419386\pi\)
\(62\) 0.407152 0.0517084
\(63\) 0 0
\(64\) 5.53393 0.691741
\(65\) 17.8319 2.21178
\(66\) 0 0
\(67\) −14.5019 −1.77168 −0.885842 0.463986i \(-0.846419\pi\)
−0.885842 + 0.463986i \(0.846419\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 10.3185 1.23330
\(71\) −3.64422 −0.432489 −0.216245 0.976339i \(-0.569381\pi\)
−0.216245 + 0.976339i \(0.569381\pi\)
\(72\) 0 0
\(73\) −11.6532 −1.36390 −0.681951 0.731398i \(-0.738868\pi\)
−0.681951 + 0.731398i \(0.738868\pi\)
\(74\) −0.673870 −0.0783358
\(75\) 0 0
\(76\) 4.98645 0.571985
\(77\) 11.6707 1.33000
\(78\) 0 0
\(79\) 5.63303 0.633766 0.316883 0.948465i \(-0.397364\pi\)
0.316883 + 0.948465i \(0.397364\pi\)
\(80\) −0.829180 −0.0927051
\(81\) 0 0
\(82\) 4.07558 0.450072
\(83\) 3.92274 0.430577 0.215288 0.976551i \(-0.430931\pi\)
0.215288 + 0.976551i \(0.430931\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −5.54175 −0.597582
\(87\) 0 0
\(88\) −9.44167 −1.00649
\(89\) −14.6181 −1.54951 −0.774757 0.632259i \(-0.782128\pi\)
−0.774757 + 0.632259i \(0.782128\pi\)
\(90\) 0 0
\(91\) −19.8925 −2.08530
\(92\) 5.41678 0.564738
\(93\) 0 0
\(94\) −2.05724 −0.212188
\(95\) −13.5261 −1.38775
\(96\) 0 0
\(97\) 0.828387 0.0841099 0.0420550 0.999115i \(-0.486610\pi\)
0.0420550 + 0.999115i \(0.486610\pi\)
\(98\) −5.16145 −0.521386
\(99\) 0 0
\(100\) −6.11849 −0.611849
\(101\) −4.92944 −0.490497 −0.245249 0.969460i \(-0.578870\pi\)
−0.245249 + 0.969460i \(0.578870\pi\)
\(102\) 0 0
\(103\) 11.4347 1.12669 0.563347 0.826221i \(-0.309514\pi\)
0.563347 + 0.826221i \(0.309514\pi\)
\(104\) 16.0932 1.57807
\(105\) 0 0
\(106\) 6.85452 0.665769
\(107\) −17.5925 −1.70073 −0.850366 0.526192i \(-0.823619\pi\)
−0.850366 + 0.526192i \(0.823619\pi\)
\(108\) 0 0
\(109\) 14.1515 1.35546 0.677732 0.735309i \(-0.262963\pi\)
0.677732 + 0.735309i \(0.262963\pi\)
\(110\) 9.48951 0.904789
\(111\) 0 0
\(112\) 0.924998 0.0874041
\(113\) −20.4015 −1.91921 −0.959607 0.281346i \(-0.909219\pi\)
−0.959607 + 0.281346i \(0.909219\pi\)
\(114\) 0 0
\(115\) −14.6934 −1.37017
\(116\) −2.45370 −0.227821
\(117\) 0 0
\(118\) −2.56877 −0.236475
\(119\) 0 0
\(120\) 0 0
\(121\) −0.266966 −0.0242696
\(122\) −3.55013 −0.321413
\(123\) 0 0
\(124\) 0.528421 0.0474536
\(125\) 0.630210 0.0563677
\(126\) 0 0
\(127\) 2.93340 0.260297 0.130148 0.991495i \(-0.458455\pi\)
0.130148 + 0.991495i \(0.458455\pi\)
\(128\) 6.03714 0.533613
\(129\) 0 0
\(130\) −16.1747 −1.41862
\(131\) 6.61671 0.578104 0.289052 0.957313i \(-0.406660\pi\)
0.289052 + 0.957313i \(0.406660\pi\)
\(132\) 0 0
\(133\) 15.0891 1.30839
\(134\) 13.1541 1.13634
\(135\) 0 0
\(136\) 0 0
\(137\) 10.4851 0.895804 0.447902 0.894083i \(-0.352171\pi\)
0.447902 + 0.894083i \(0.352171\pi\)
\(138\) 0 0
\(139\) −5.28597 −0.448350 −0.224175 0.974549i \(-0.571969\pi\)
−0.224175 + 0.974549i \(0.571969\pi\)
\(140\) 13.3919 1.13182
\(141\) 0 0
\(142\) 3.30555 0.277395
\(143\) −18.2943 −1.52984
\(144\) 0 0
\(145\) 6.65585 0.552738
\(146\) 10.5702 0.874795
\(147\) 0 0
\(148\) −0.874580 −0.0718901
\(149\) 22.4592 1.83993 0.919965 0.392000i \(-0.128217\pi\)
0.919965 + 0.392000i \(0.128217\pi\)
\(150\) 0 0
\(151\) −9.52717 −0.775310 −0.387655 0.921804i \(-0.626715\pi\)
−0.387655 + 0.921804i \(0.626715\pi\)
\(152\) −12.2072 −0.990136
\(153\) 0 0
\(154\) −10.5861 −0.853051
\(155\) −1.43338 −0.115132
\(156\) 0 0
\(157\) 14.1185 1.12678 0.563390 0.826191i \(-0.309497\pi\)
0.563390 + 0.826191i \(0.309497\pi\)
\(158\) −5.10953 −0.406492
\(159\) 0 0
\(160\) −17.6540 −1.39567
\(161\) 16.3913 1.29182
\(162\) 0 0
\(163\) −3.53391 −0.276797 −0.138398 0.990377i \(-0.544195\pi\)
−0.138398 + 0.990377i \(0.544195\pi\)
\(164\) 5.28948 0.413039
\(165\) 0 0
\(166\) −3.55818 −0.276169
\(167\) −16.1872 −1.25260 −0.626300 0.779582i \(-0.715432\pi\)
−0.626300 + 0.779582i \(0.715432\pi\)
\(168\) 0 0
\(169\) 18.1823 1.39864
\(170\) 0 0
\(171\) 0 0
\(172\) −7.19234 −0.548411
\(173\) −18.3180 −1.39269 −0.696346 0.717706i \(-0.745192\pi\)
−0.696346 + 0.717706i \(0.745192\pi\)
\(174\) 0 0
\(175\) −18.5147 −1.39958
\(176\) 0.850680 0.0641224
\(177\) 0 0
\(178\) 13.2596 0.993846
\(179\) −20.7057 −1.54762 −0.773809 0.633419i \(-0.781651\pi\)
−0.773809 + 0.633419i \(0.781651\pi\)
\(180\) 0 0
\(181\) −18.6500 −1.38624 −0.693122 0.720820i \(-0.743765\pi\)
−0.693122 + 0.720820i \(0.743765\pi\)
\(182\) 18.0438 1.33750
\(183\) 0 0
\(184\) −13.2607 −0.977592
\(185\) 2.37236 0.174420
\(186\) 0 0
\(187\) 0 0
\(188\) −2.66998 −0.194728
\(189\) 0 0
\(190\) 12.2691 0.890091
\(191\) −2.19374 −0.158734 −0.0793669 0.996845i \(-0.525290\pi\)
−0.0793669 + 0.996845i \(0.525290\pi\)
\(192\) 0 0
\(193\) −3.31205 −0.238407 −0.119203 0.992870i \(-0.538034\pi\)
−0.119203 + 0.992870i \(0.538034\pi\)
\(194\) −0.751401 −0.0539474
\(195\) 0 0
\(196\) −6.69878 −0.478484
\(197\) −18.0182 −1.28374 −0.641872 0.766811i \(-0.721842\pi\)
−0.641872 + 0.766811i \(0.721842\pi\)
\(198\) 0 0
\(199\) 3.98156 0.282245 0.141123 0.989992i \(-0.454929\pi\)
0.141123 + 0.989992i \(0.454929\pi\)
\(200\) 14.9785 1.05914
\(201\) 0 0
\(202\) 4.47132 0.314601
\(203\) −7.42498 −0.521131
\(204\) 0 0
\(205\) −14.3481 −1.00211
\(206\) −10.3720 −0.722652
\(207\) 0 0
\(208\) −1.44997 −0.100537
\(209\) 13.8768 0.959881
\(210\) 0 0
\(211\) 0.200896 0.0138303 0.00691514 0.999976i \(-0.497799\pi\)
0.00691514 + 0.999976i \(0.497799\pi\)
\(212\) 8.89611 0.610988
\(213\) 0 0
\(214\) 15.9576 1.09084
\(215\) 19.5097 1.33055
\(216\) 0 0
\(217\) 1.59902 0.108549
\(218\) −12.8363 −0.869384
\(219\) 0 0
\(220\) 12.3159 0.830340
\(221\) 0 0
\(222\) 0 0
\(223\) −11.5997 −0.776770 −0.388385 0.921497i \(-0.626967\pi\)
−0.388385 + 0.921497i \(0.626967\pi\)
\(224\) 19.6940 1.31586
\(225\) 0 0
\(226\) 18.5055 1.23097
\(227\) 9.51394 0.631462 0.315731 0.948849i \(-0.397750\pi\)
0.315731 + 0.948849i \(0.397750\pi\)
\(228\) 0 0
\(229\) −16.7700 −1.10819 −0.554097 0.832452i \(-0.686936\pi\)
−0.554097 + 0.832452i \(0.686936\pi\)
\(230\) 13.3279 0.878815
\(231\) 0 0
\(232\) 6.00686 0.394370
\(233\) −9.44867 −0.619003 −0.309501 0.950899i \(-0.600162\pi\)
−0.309501 + 0.950899i \(0.600162\pi\)
\(234\) 0 0
\(235\) 7.24251 0.472450
\(236\) −3.33387 −0.217017
\(237\) 0 0
\(238\) 0 0
\(239\) −6.42079 −0.415326 −0.207663 0.978200i \(-0.566586\pi\)
−0.207663 + 0.978200i \(0.566586\pi\)
\(240\) 0 0
\(241\) −15.4831 −0.997355 −0.498678 0.866788i \(-0.666181\pi\)
−0.498678 + 0.866788i \(0.666181\pi\)
\(242\) 0.242155 0.0155663
\(243\) 0 0
\(244\) −4.60752 −0.294966
\(245\) 18.1709 1.16090
\(246\) 0 0
\(247\) −23.6528 −1.50499
\(248\) −1.29362 −0.0821448
\(249\) 0 0
\(250\) −0.571642 −0.0361538
\(251\) −25.7024 −1.62232 −0.811162 0.584821i \(-0.801165\pi\)
−0.811162 + 0.584821i \(0.801165\pi\)
\(252\) 0 0
\(253\) 15.0744 0.947720
\(254\) −2.66078 −0.166952
\(255\) 0 0
\(256\) −16.5439 −1.03400
\(257\) −2.50466 −0.156236 −0.0781182 0.996944i \(-0.524891\pi\)
−0.0781182 + 0.996944i \(0.524891\pi\)
\(258\) 0 0
\(259\) −2.64651 −0.164446
\(260\) −20.9923 −1.30189
\(261\) 0 0
\(262\) −6.00179 −0.370792
\(263\) −6.09867 −0.376060 −0.188030 0.982163i \(-0.560210\pi\)
−0.188030 + 0.982163i \(0.560210\pi\)
\(264\) 0 0
\(265\) −24.1314 −1.48238
\(266\) −13.6868 −0.839194
\(267\) 0 0
\(268\) 17.0721 1.04284
\(269\) −4.11451 −0.250866 −0.125433 0.992102i \(-0.540032\pi\)
−0.125433 + 0.992102i \(0.540032\pi\)
\(270\) 0 0
\(271\) −11.8548 −0.720128 −0.360064 0.932928i \(-0.617245\pi\)
−0.360064 + 0.932928i \(0.617245\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −9.51068 −0.574561
\(275\) −17.0272 −1.02678
\(276\) 0 0
\(277\) 16.2756 0.977908 0.488954 0.872309i \(-0.337379\pi\)
0.488954 + 0.872309i \(0.337379\pi\)
\(278\) 4.79472 0.287568
\(279\) 0 0
\(280\) −32.7844 −1.95924
\(281\) −15.2506 −0.909774 −0.454887 0.890549i \(-0.650320\pi\)
−0.454887 + 0.890549i \(0.650320\pi\)
\(282\) 0 0
\(283\) −20.8911 −1.24185 −0.620924 0.783871i \(-0.713242\pi\)
−0.620924 + 0.783871i \(0.713242\pi\)
\(284\) 4.29009 0.254570
\(285\) 0 0
\(286\) 16.5941 0.981230
\(287\) 16.0061 0.944811
\(288\) 0 0
\(289\) 0 0
\(290\) −6.03729 −0.354522
\(291\) 0 0
\(292\) 13.7185 0.802814
\(293\) −22.4544 −1.31180 −0.655900 0.754848i \(-0.727711\pi\)
−0.655900 + 0.754848i \(0.727711\pi\)
\(294\) 0 0
\(295\) 9.04338 0.526526
\(296\) 2.14104 0.124446
\(297\) 0 0
\(298\) −20.3720 −1.18012
\(299\) −25.6941 −1.48593
\(300\) 0 0
\(301\) −21.7642 −1.25447
\(302\) 8.64177 0.497278
\(303\) 0 0
\(304\) 1.09985 0.0630808
\(305\) 12.4982 0.715647
\(306\) 0 0
\(307\) −0.733467 −0.0418611 −0.0209306 0.999781i \(-0.506663\pi\)
−0.0209306 + 0.999781i \(0.506663\pi\)
\(308\) −13.7391 −0.782859
\(309\) 0 0
\(310\) 1.30017 0.0738448
\(311\) 24.2195 1.37336 0.686681 0.726959i \(-0.259067\pi\)
0.686681 + 0.726959i \(0.259067\pi\)
\(312\) 0 0
\(313\) 3.82843 0.216396 0.108198 0.994129i \(-0.465492\pi\)
0.108198 + 0.994129i \(0.465492\pi\)
\(314\) −12.8064 −0.722708
\(315\) 0 0
\(316\) −6.63139 −0.373045
\(317\) −3.49283 −0.196177 −0.0980885 0.995178i \(-0.531273\pi\)
−0.0980885 + 0.995178i \(0.531273\pi\)
\(318\) 0 0
\(319\) −6.82843 −0.382319
\(320\) 17.6717 0.987876
\(321\) 0 0
\(322\) −14.8680 −0.828563
\(323\) 0 0
\(324\) 0 0
\(325\) 29.0226 1.60988
\(326\) 3.20548 0.177535
\(327\) 0 0
\(328\) −12.9491 −0.714992
\(329\) −8.07944 −0.445434
\(330\) 0 0
\(331\) 5.00357 0.275021 0.137511 0.990500i \(-0.456090\pi\)
0.137511 + 0.990500i \(0.456090\pi\)
\(332\) −4.61798 −0.253444
\(333\) 0 0
\(334\) 14.6828 0.803408
\(335\) −46.3092 −2.53014
\(336\) 0 0
\(337\) −27.0434 −1.47315 −0.736573 0.676358i \(-0.763557\pi\)
−0.736573 + 0.676358i \(0.763557\pi\)
\(338\) −16.4925 −0.897075
\(339\) 0 0
\(340\) 0 0
\(341\) 1.47055 0.0796347
\(342\) 0 0
\(343\) 4.66568 0.251923
\(344\) 17.6074 0.949328
\(345\) 0 0
\(346\) 16.6156 0.893262
\(347\) 4.31305 0.231537 0.115768 0.993276i \(-0.463067\pi\)
0.115768 + 0.993276i \(0.463067\pi\)
\(348\) 0 0
\(349\) 29.1251 1.55903 0.779516 0.626382i \(-0.215465\pi\)
0.779516 + 0.626382i \(0.215465\pi\)
\(350\) 16.7941 0.897682
\(351\) 0 0
\(352\) 18.1117 0.965358
\(353\) 11.5730 0.615971 0.307985 0.951391i \(-0.400345\pi\)
0.307985 + 0.951391i \(0.400345\pi\)
\(354\) 0 0
\(355\) −11.6372 −0.617638
\(356\) 17.2089 0.912069
\(357\) 0 0
\(358\) 18.7814 0.992630
\(359\) 26.1470 1.37998 0.689992 0.723817i \(-0.257614\pi\)
0.689992 + 0.723817i \(0.257614\pi\)
\(360\) 0 0
\(361\) −1.05852 −0.0557118
\(362\) 16.9168 0.889126
\(363\) 0 0
\(364\) 23.4181 1.22744
\(365\) −37.2124 −1.94779
\(366\) 0 0
\(367\) −21.8427 −1.14018 −0.570089 0.821583i \(-0.693091\pi\)
−0.570089 + 0.821583i \(0.693091\pi\)
\(368\) 1.19477 0.0622817
\(369\) 0 0
\(370\) −2.15189 −0.111871
\(371\) 26.9199 1.39761
\(372\) 0 0
\(373\) 31.0065 1.60545 0.802727 0.596347i \(-0.203382\pi\)
0.802727 + 0.596347i \(0.203382\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 6.53632 0.337085
\(377\) 11.6389 0.599436
\(378\) 0 0
\(379\) 11.7686 0.604513 0.302256 0.953227i \(-0.402260\pi\)
0.302256 + 0.953227i \(0.402260\pi\)
\(380\) 15.9234 0.816852
\(381\) 0 0
\(382\) 1.98987 0.101811
\(383\) 20.0262 1.02329 0.511645 0.859197i \(-0.329036\pi\)
0.511645 + 0.859197i \(0.329036\pi\)
\(384\) 0 0
\(385\) 37.2684 1.89937
\(386\) 3.00425 0.152912
\(387\) 0 0
\(388\) −0.975203 −0.0495085
\(389\) −12.7561 −0.646758 −0.323379 0.946270i \(-0.604819\pi\)
−0.323379 + 0.946270i \(0.604819\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 16.3991 0.828282
\(393\) 0 0
\(394\) 16.3437 0.823384
\(395\) 17.9881 0.905081
\(396\) 0 0
\(397\) 27.3141 1.37086 0.685428 0.728140i \(-0.259615\pi\)
0.685428 + 0.728140i \(0.259615\pi\)
\(398\) −3.61153 −0.181030
\(399\) 0 0
\(400\) −1.34954 −0.0674772
\(401\) 31.3594 1.56601 0.783007 0.622013i \(-0.213685\pi\)
0.783007 + 0.622013i \(0.213685\pi\)
\(402\) 0 0
\(403\) −2.50653 −0.124859
\(404\) 5.80309 0.288715
\(405\) 0 0
\(406\) 6.73494 0.334250
\(407\) −2.43388 −0.120643
\(408\) 0 0
\(409\) 17.1030 0.845688 0.422844 0.906202i \(-0.361032\pi\)
0.422844 + 0.906202i \(0.361032\pi\)
\(410\) 13.0147 0.642748
\(411\) 0 0
\(412\) −13.4613 −0.663190
\(413\) −10.0884 −0.496418
\(414\) 0 0
\(415\) 12.5266 0.614907
\(416\) −30.8711 −1.51358
\(417\) 0 0
\(418\) −12.5872 −0.615660
\(419\) 15.2428 0.744660 0.372330 0.928100i \(-0.378559\pi\)
0.372330 + 0.928100i \(0.378559\pi\)
\(420\) 0 0
\(421\) 6.96252 0.339332 0.169666 0.985502i \(-0.445731\pi\)
0.169666 + 0.985502i \(0.445731\pi\)
\(422\) −0.182226 −0.00887063
\(423\) 0 0
\(424\) −21.7784 −1.05765
\(425\) 0 0
\(426\) 0 0
\(427\) −13.9425 −0.674725
\(428\) 20.7105 1.00108
\(429\) 0 0
\(430\) −17.6966 −0.853407
\(431\) −21.4684 −1.03410 −0.517049 0.855956i \(-0.672969\pi\)
−0.517049 + 0.855956i \(0.672969\pi\)
\(432\) 0 0
\(433\) 33.1954 1.59527 0.797635 0.603140i \(-0.206084\pi\)
0.797635 + 0.603140i \(0.206084\pi\)
\(434\) −1.45042 −0.0696222
\(435\) 0 0
\(436\) −16.6596 −0.797848
\(437\) 19.4898 0.932325
\(438\) 0 0
\(439\) −35.7203 −1.70484 −0.852418 0.522861i \(-0.824865\pi\)
−0.852418 + 0.522861i \(0.824865\pi\)
\(440\) −30.1504 −1.43736
\(441\) 0 0
\(442\) 0 0
\(443\) −13.8366 −0.657398 −0.328699 0.944435i \(-0.606610\pi\)
−0.328699 + 0.944435i \(0.606610\pi\)
\(444\) 0 0
\(445\) −46.6803 −2.21286
\(446\) 10.5216 0.498214
\(447\) 0 0
\(448\) −19.7137 −0.931387
\(449\) 4.67471 0.220613 0.110307 0.993898i \(-0.464817\pi\)
0.110307 + 0.993898i \(0.464817\pi\)
\(450\) 0 0
\(451\) 14.7201 0.693144
\(452\) 24.0173 1.12968
\(453\) 0 0
\(454\) −8.62977 −0.405015
\(455\) −63.5233 −2.97802
\(456\) 0 0
\(457\) −5.17186 −0.241930 −0.120965 0.992657i \(-0.538599\pi\)
−0.120965 + 0.992657i \(0.538599\pi\)
\(458\) 15.2115 0.710787
\(459\) 0 0
\(460\) 17.2976 0.806503
\(461\) −22.6450 −1.05468 −0.527341 0.849654i \(-0.676811\pi\)
−0.527341 + 0.849654i \(0.676811\pi\)
\(462\) 0 0
\(463\) 38.8961 1.80766 0.903828 0.427897i \(-0.140745\pi\)
0.903828 + 0.427897i \(0.140745\pi\)
\(464\) −0.541209 −0.0251250
\(465\) 0 0
\(466\) 8.57056 0.397023
\(467\) 16.7116 0.773322 0.386661 0.922222i \(-0.373628\pi\)
0.386661 + 0.922222i \(0.373628\pi\)
\(468\) 0 0
\(469\) 51.6606 2.38546
\(470\) −6.56944 −0.303025
\(471\) 0 0
\(472\) 8.16159 0.375667
\(473\) −20.0156 −0.920320
\(474\) 0 0
\(475\) −22.0146 −1.01010
\(476\) 0 0
\(477\) 0 0
\(478\) 5.82408 0.266387
\(479\) 10.5031 0.479899 0.239949 0.970785i \(-0.422869\pi\)
0.239949 + 0.970785i \(0.422869\pi\)
\(480\) 0 0
\(481\) 4.14851 0.189156
\(482\) 14.0442 0.639696
\(483\) 0 0
\(484\) 0.314280 0.0142855
\(485\) 2.64531 0.120117
\(486\) 0 0
\(487\) 24.2456 1.09867 0.549336 0.835601i \(-0.314881\pi\)
0.549336 + 0.835601i \(0.314881\pi\)
\(488\) 11.2796 0.510603
\(489\) 0 0
\(490\) −16.4822 −0.744591
\(491\) 14.7261 0.664580 0.332290 0.943177i \(-0.392179\pi\)
0.332290 + 0.943177i \(0.392179\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 21.4547 0.965291
\(495\) 0 0
\(496\) 0.116553 0.00523338
\(497\) 12.9820 0.582320
\(498\) 0 0
\(499\) −14.3585 −0.642775 −0.321388 0.946948i \(-0.604149\pi\)
−0.321388 + 0.946948i \(0.604149\pi\)
\(500\) −0.741904 −0.0331789
\(501\) 0 0
\(502\) 23.3138 1.04055
\(503\) 16.5970 0.740022 0.370011 0.929027i \(-0.379354\pi\)
0.370011 + 0.929027i \(0.379354\pi\)
\(504\) 0 0
\(505\) −15.7413 −0.700479
\(506\) −13.6735 −0.607860
\(507\) 0 0
\(508\) −3.45329 −0.153215
\(509\) 33.1048 1.46734 0.733672 0.679503i \(-0.237805\pi\)
0.733672 + 0.679503i \(0.237805\pi\)
\(510\) 0 0
\(511\) 41.5126 1.83641
\(512\) 2.93216 0.129584
\(513\) 0 0
\(514\) 2.27189 0.100209
\(515\) 36.5147 1.60903
\(516\) 0 0
\(517\) −7.43031 −0.326785
\(518\) 2.40056 0.105474
\(519\) 0 0
\(520\) 51.3908 2.25364
\(521\) −24.2541 −1.06259 −0.531295 0.847187i \(-0.678294\pi\)
−0.531295 + 0.847187i \(0.678294\pi\)
\(522\) 0 0
\(523\) −2.14935 −0.0939843 −0.0469922 0.998895i \(-0.514964\pi\)
−0.0469922 + 0.998895i \(0.514964\pi\)
\(524\) −7.78940 −0.340282
\(525\) 0 0
\(526\) 5.53189 0.241202
\(527\) 0 0
\(528\) 0 0
\(529\) −1.82818 −0.0794862
\(530\) 21.8887 0.950786
\(531\) 0 0
\(532\) −17.7634 −0.770142
\(533\) −25.0902 −1.08678
\(534\) 0 0
\(535\) −56.1787 −2.42882
\(536\) −41.7938 −1.80522
\(537\) 0 0
\(538\) 3.73213 0.160904
\(539\) −18.6421 −0.802972
\(540\) 0 0
\(541\) 4.04781 0.174029 0.0870145 0.996207i \(-0.472267\pi\)
0.0870145 + 0.996207i \(0.472267\pi\)
\(542\) 10.7531 0.461884
\(543\) 0 0
\(544\) 0 0
\(545\) 45.1903 1.93574
\(546\) 0 0
\(547\) 38.1034 1.62918 0.814591 0.580036i \(-0.196961\pi\)
0.814591 + 0.580036i \(0.196961\pi\)
\(548\) −12.3434 −0.527284
\(549\) 0 0
\(550\) 15.4448 0.658568
\(551\) −8.82854 −0.376108
\(552\) 0 0
\(553\) −20.0668 −0.853327
\(554\) −14.7631 −0.627223
\(555\) 0 0
\(556\) 6.22282 0.263906
\(557\) −47.0274 −1.99262 −0.996308 0.0858461i \(-0.972641\pi\)
−0.996308 + 0.0858461i \(0.972641\pi\)
\(558\) 0 0
\(559\) 34.1163 1.44297
\(560\) 2.95382 0.124822
\(561\) 0 0
\(562\) 13.8333 0.583522
\(563\) −28.7543 −1.21185 −0.605925 0.795521i \(-0.707197\pi\)
−0.605925 + 0.795521i \(0.707197\pi\)
\(564\) 0 0
\(565\) −65.1488 −2.74083
\(566\) 18.9496 0.796512
\(567\) 0 0
\(568\) −10.5025 −0.440675
\(569\) 1.04600 0.0438505 0.0219252 0.999760i \(-0.493020\pi\)
0.0219252 + 0.999760i \(0.493020\pi\)
\(570\) 0 0
\(571\) −26.2531 −1.09866 −0.549330 0.835606i \(-0.685117\pi\)
−0.549330 + 0.835606i \(0.685117\pi\)
\(572\) 21.5366 0.900491
\(573\) 0 0
\(574\) −14.5186 −0.605995
\(575\) −23.9145 −0.997303
\(576\) 0 0
\(577\) 38.7607 1.61363 0.806814 0.590806i \(-0.201190\pi\)
0.806814 + 0.590806i \(0.201190\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) −7.83548 −0.325351
\(581\) −13.9741 −0.579745
\(582\) 0 0
\(583\) 24.7571 1.02533
\(584\) −33.5840 −1.38971
\(585\) 0 0
\(586\) 20.3676 0.841378
\(587\) 41.5716 1.71584 0.857921 0.513781i \(-0.171756\pi\)
0.857921 + 0.513781i \(0.171756\pi\)
\(588\) 0 0
\(589\) 1.90129 0.0783411
\(590\) −8.20294 −0.337710
\(591\) 0 0
\(592\) −0.192905 −0.00792833
\(593\) 13.7886 0.566230 0.283115 0.959086i \(-0.408632\pi\)
0.283115 + 0.959086i \(0.408632\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −26.4397 −1.08301
\(597\) 0 0
\(598\) 23.3062 0.953062
\(599\) −0.372690 −0.0152277 −0.00761386 0.999971i \(-0.502424\pi\)
−0.00761386 + 0.999971i \(0.502424\pi\)
\(600\) 0 0
\(601\) −23.0325 −0.939515 −0.469757 0.882796i \(-0.655659\pi\)
−0.469757 + 0.882796i \(0.655659\pi\)
\(602\) 19.7416 0.804607
\(603\) 0 0
\(604\) 11.2157 0.456360
\(605\) −0.852509 −0.0346594
\(606\) 0 0
\(607\) 16.1050 0.653681 0.326840 0.945080i \(-0.394016\pi\)
0.326840 + 0.945080i \(0.394016\pi\)
\(608\) 23.4168 0.949677
\(609\) 0 0
\(610\) −11.3367 −0.459011
\(611\) 12.6648 0.512365
\(612\) 0 0
\(613\) −14.9606 −0.604251 −0.302126 0.953268i \(-0.597696\pi\)
−0.302126 + 0.953268i \(0.597696\pi\)
\(614\) 0.665302 0.0268494
\(615\) 0 0
\(616\) 33.6345 1.35517
\(617\) −4.75542 −0.191446 −0.0957230 0.995408i \(-0.530516\pi\)
−0.0957230 + 0.995408i \(0.530516\pi\)
\(618\) 0 0
\(619\) −43.0995 −1.73232 −0.866158 0.499770i \(-0.833418\pi\)
−0.866158 + 0.499770i \(0.833418\pi\)
\(620\) 1.68742 0.0677686
\(621\) 0 0
\(622\) −21.9687 −0.880864
\(623\) 52.0746 2.08632
\(624\) 0 0
\(625\) −23.9743 −0.958972
\(626\) −3.47264 −0.138795
\(627\) 0 0
\(628\) −16.6208 −0.663241
\(629\) 0 0
\(630\) 0 0
\(631\) 11.3212 0.450690 0.225345 0.974279i \(-0.427649\pi\)
0.225345 + 0.974279i \(0.427649\pi\)
\(632\) 16.2342 0.645760
\(633\) 0 0
\(634\) 3.16823 0.125826
\(635\) 9.36730 0.371730
\(636\) 0 0
\(637\) 31.7751 1.25898
\(638\) 6.19384 0.245216
\(639\) 0 0
\(640\) 19.2786 0.762052
\(641\) −15.8764 −0.627081 −0.313541 0.949575i \(-0.601515\pi\)
−0.313541 + 0.949575i \(0.601515\pi\)
\(642\) 0 0
\(643\) 25.7352 1.01490 0.507448 0.861682i \(-0.330589\pi\)
0.507448 + 0.861682i \(0.330589\pi\)
\(644\) −19.2964 −0.760386
\(645\) 0 0
\(646\) 0 0
\(647\) 26.9015 1.05761 0.528804 0.848744i \(-0.322641\pi\)
0.528804 + 0.848744i \(0.322641\pi\)
\(648\) 0 0
\(649\) −9.27787 −0.364188
\(650\) −26.3254 −1.03257
\(651\) 0 0
\(652\) 4.16023 0.162927
\(653\) 20.6599 0.808484 0.404242 0.914652i \(-0.367535\pi\)
0.404242 + 0.914652i \(0.367535\pi\)
\(654\) 0 0
\(655\) 21.1293 0.825591
\(656\) 1.16669 0.0455516
\(657\) 0 0
\(658\) 7.32858 0.285698
\(659\) 25.5651 0.995875 0.497937 0.867213i \(-0.334091\pi\)
0.497937 + 0.867213i \(0.334091\pi\)
\(660\) 0 0
\(661\) 27.9387 1.08669 0.543345 0.839510i \(-0.317158\pi\)
0.543345 + 0.839510i \(0.317158\pi\)
\(662\) −4.53857 −0.176396
\(663\) 0 0
\(664\) 11.3052 0.438726
\(665\) 48.1846 1.86852
\(666\) 0 0
\(667\) −9.59045 −0.371344
\(668\) 19.0561 0.737301
\(669\) 0 0
\(670\) 42.0055 1.62281
\(671\) −12.8223 −0.495000
\(672\) 0 0
\(673\) −2.58625 −0.0996927 −0.0498464 0.998757i \(-0.515873\pi\)
−0.0498464 + 0.998757i \(0.515873\pi\)
\(674\) 24.5301 0.944865
\(675\) 0 0
\(676\) −21.4048 −0.823261
\(677\) 0.886837 0.0340839 0.0170420 0.999855i \(-0.494575\pi\)
0.0170420 + 0.999855i \(0.494575\pi\)
\(678\) 0 0
\(679\) −2.95100 −0.113249
\(680\) 0 0
\(681\) 0 0
\(682\) −1.33388 −0.0510771
\(683\) −26.9328 −1.03055 −0.515277 0.857024i \(-0.672311\pi\)
−0.515277 + 0.857024i \(0.672311\pi\)
\(684\) 0 0
\(685\) 33.4824 1.27930
\(686\) −4.23208 −0.161581
\(687\) 0 0
\(688\) −1.58640 −0.0604810
\(689\) −42.1980 −1.60762
\(690\) 0 0
\(691\) 10.3832 0.394994 0.197497 0.980303i \(-0.436719\pi\)
0.197497 + 0.980303i \(0.436719\pi\)
\(692\) 21.5646 0.819761
\(693\) 0 0
\(694\) −3.91222 −0.148506
\(695\) −16.8798 −0.640289
\(696\) 0 0
\(697\) 0 0
\(698\) −26.4184 −0.999951
\(699\) 0 0
\(700\) 21.7962 0.823817
\(701\) −49.5351 −1.87091 −0.935457 0.353440i \(-0.885012\pi\)
−0.935457 + 0.353440i \(0.885012\pi\)
\(702\) 0 0
\(703\) −3.14678 −0.118683
\(704\) −18.1299 −0.683295
\(705\) 0 0
\(706\) −10.4975 −0.395079
\(707\) 17.5603 0.660424
\(708\) 0 0
\(709\) 36.3527 1.36526 0.682628 0.730766i \(-0.260837\pi\)
0.682628 + 0.730766i \(0.260837\pi\)
\(710\) 10.5557 0.396148
\(711\) 0 0
\(712\) −42.1287 −1.57884
\(713\) 2.06537 0.0773486
\(714\) 0 0
\(715\) −58.4197 −2.18477
\(716\) 24.3754 0.910953
\(717\) 0 0
\(718\) −23.7170 −0.885112
\(719\) 18.0506 0.673175 0.336588 0.941652i \(-0.390727\pi\)
0.336588 + 0.941652i \(0.390727\pi\)
\(720\) 0 0
\(721\) −40.7343 −1.51702
\(722\) 0.960151 0.0357331
\(723\) 0 0
\(724\) 21.9554 0.815966
\(725\) 10.8328 0.402321
\(726\) 0 0
\(727\) 25.6114 0.949873 0.474936 0.880020i \(-0.342471\pi\)
0.474936 + 0.880020i \(0.342471\pi\)
\(728\) −57.3294 −2.12477
\(729\) 0 0
\(730\) 33.7541 1.24930
\(731\) 0 0
\(732\) 0 0
\(733\) 31.6733 1.16988 0.584941 0.811076i \(-0.301118\pi\)
0.584941 + 0.811076i \(0.301118\pi\)
\(734\) 19.8127 0.731301
\(735\) 0 0
\(736\) 25.4377 0.937645
\(737\) 47.5100 1.75005
\(738\) 0 0
\(739\) −31.3462 −1.15309 −0.576543 0.817066i \(-0.695599\pi\)
−0.576543 + 0.817066i \(0.695599\pi\)
\(740\) −2.79282 −0.102666
\(741\) 0 0
\(742\) −24.4181 −0.896418
\(743\) 3.20001 0.117397 0.0586984 0.998276i \(-0.481305\pi\)
0.0586984 + 0.998276i \(0.481305\pi\)
\(744\) 0 0
\(745\) 71.7196 2.62760
\(746\) −28.1249 −1.02973
\(747\) 0 0
\(748\) 0 0
\(749\) 62.6705 2.28993
\(750\) 0 0
\(751\) 27.5933 1.00689 0.503446 0.864026i \(-0.332065\pi\)
0.503446 + 0.864026i \(0.332065\pi\)
\(752\) −0.588913 −0.0214754
\(753\) 0 0
\(754\) −10.5573 −0.384474
\(755\) −30.4234 −1.10722
\(756\) 0 0
\(757\) −10.1597 −0.369259 −0.184629 0.982808i \(-0.559108\pi\)
−0.184629 + 0.982808i \(0.559108\pi\)
\(758\) −10.6749 −0.387730
\(759\) 0 0
\(760\) −38.9817 −1.41401
\(761\) −8.12911 −0.294680 −0.147340 0.989086i \(-0.547071\pi\)
−0.147340 + 0.989086i \(0.547071\pi\)
\(762\) 0 0
\(763\) −50.4124 −1.82505
\(764\) 2.58255 0.0934333
\(765\) 0 0
\(766\) −18.1650 −0.656330
\(767\) 15.8140 0.571009
\(768\) 0 0
\(769\) 16.6656 0.600978 0.300489 0.953785i \(-0.402850\pi\)
0.300489 + 0.953785i \(0.402850\pi\)
\(770\) −33.8049 −1.21824
\(771\) 0 0
\(772\) 3.89906 0.140330
\(773\) −42.9077 −1.54328 −0.771641 0.636058i \(-0.780564\pi\)
−0.771641 + 0.636058i \(0.780564\pi\)
\(774\) 0 0
\(775\) −2.33292 −0.0838011
\(776\) 2.38738 0.0857018
\(777\) 0 0
\(778\) 11.5706 0.414826
\(779\) 19.0318 0.681885
\(780\) 0 0
\(781\) 11.9389 0.427209
\(782\) 0 0
\(783\) 0 0
\(784\) −1.47754 −0.0527692
\(785\) 45.0851 1.60916
\(786\) 0 0
\(787\) 10.6447 0.379444 0.189722 0.981838i \(-0.439241\pi\)
0.189722 + 0.981838i \(0.439241\pi\)
\(788\) 21.2116 0.755633
\(789\) 0 0
\(790\) −16.3164 −0.580512
\(791\) 72.6772 2.58410
\(792\) 0 0
\(793\) 21.8554 0.776109
\(794\) −24.7757 −0.879257
\(795\) 0 0
\(796\) −4.68722 −0.166134
\(797\) 29.6872 1.05157 0.525787 0.850617i \(-0.323771\pi\)
0.525787 + 0.850617i \(0.323771\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −28.7330 −1.01586
\(801\) 0 0
\(802\) −28.4450 −1.00443
\(803\) 38.1773 1.34725
\(804\) 0 0
\(805\) 52.3430 1.84485
\(806\) 2.27358 0.0800836
\(807\) 0 0
\(808\) −14.2064 −0.499780
\(809\) −22.8310 −0.802694 −0.401347 0.915926i \(-0.631458\pi\)
−0.401347 + 0.915926i \(0.631458\pi\)
\(810\) 0 0
\(811\) −37.2506 −1.30805 −0.654023 0.756475i \(-0.726920\pi\)
−0.654023 + 0.756475i \(0.726920\pi\)
\(812\) 8.74093 0.306746
\(813\) 0 0
\(814\) 2.20769 0.0773794
\(815\) −11.2849 −0.395294
\(816\) 0 0
\(817\) −25.8784 −0.905370
\(818\) −15.5135 −0.542418
\(819\) 0 0
\(820\) 16.8910 0.589861
\(821\) −3.29267 −0.114915 −0.0574574 0.998348i \(-0.518299\pi\)
−0.0574574 + 0.998348i \(0.518299\pi\)
\(822\) 0 0
\(823\) 12.7887 0.445786 0.222893 0.974843i \(-0.428450\pi\)
0.222893 + 0.974843i \(0.428450\pi\)
\(824\) 32.9543 1.14802
\(825\) 0 0
\(826\) 9.15084 0.318399
\(827\) −36.4922 −1.26896 −0.634480 0.772939i \(-0.718786\pi\)
−0.634480 + 0.772939i \(0.718786\pi\)
\(828\) 0 0
\(829\) −0.425058 −0.0147629 −0.00738144 0.999973i \(-0.502350\pi\)
−0.00738144 + 0.999973i \(0.502350\pi\)
\(830\) −11.3624 −0.394396
\(831\) 0 0
\(832\) 30.9021 1.07134
\(833\) 0 0
\(834\) 0 0
\(835\) −51.6909 −1.78884
\(836\) −16.3363 −0.565001
\(837\) 0 0
\(838\) −13.8262 −0.477619
\(839\) 31.6812 1.09376 0.546879 0.837212i \(-0.315816\pi\)
0.546879 + 0.837212i \(0.315816\pi\)
\(840\) 0 0
\(841\) −24.6557 −0.850197
\(842\) −6.31546 −0.217645
\(843\) 0 0
\(844\) −0.236502 −0.00814072
\(845\) 58.0620 1.99740
\(846\) 0 0
\(847\) 0.951023 0.0326775
\(848\) 1.96220 0.0673822
\(849\) 0 0
\(850\) 0 0
\(851\) −3.41835 −0.117180
\(852\) 0 0
\(853\) 15.3947 0.527104 0.263552 0.964645i \(-0.415106\pi\)
0.263552 + 0.964645i \(0.415106\pi\)
\(854\) 12.6468 0.432763
\(855\) 0 0
\(856\) −50.7009 −1.73292
\(857\) 40.7518 1.39205 0.696027 0.718016i \(-0.254949\pi\)
0.696027 + 0.718016i \(0.254949\pi\)
\(858\) 0 0
\(859\) −46.4431 −1.58462 −0.792310 0.610119i \(-0.791122\pi\)
−0.792310 + 0.610119i \(0.791122\pi\)
\(860\) −22.9675 −0.783185
\(861\) 0 0
\(862\) 19.4733 0.663262
\(863\) 47.2341 1.60787 0.803934 0.594719i \(-0.202737\pi\)
0.803934 + 0.594719i \(0.202737\pi\)
\(864\) 0 0
\(865\) −58.4954 −1.98890
\(866\) −30.1104 −1.02319
\(867\) 0 0
\(868\) −1.88242 −0.0638934
\(869\) −18.4546 −0.626028
\(870\) 0 0
\(871\) −80.9800 −2.74390
\(872\) 40.7839 1.38112
\(873\) 0 0
\(874\) −17.6786 −0.597986
\(875\) −2.24502 −0.0758957
\(876\) 0 0
\(877\) 0.316438 0.0106854 0.00534268 0.999986i \(-0.498299\pi\)
0.00534268 + 0.999986i \(0.498299\pi\)
\(878\) 32.4006 1.09347
\(879\) 0 0
\(880\) 2.71650 0.0915733
\(881\) 36.1357 1.21744 0.608721 0.793385i \(-0.291683\pi\)
0.608721 + 0.793385i \(0.291683\pi\)
\(882\) 0 0
\(883\) 0.156899 0.00528008 0.00264004 0.999997i \(-0.499160\pi\)
0.00264004 + 0.999997i \(0.499160\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 12.5507 0.421650
\(887\) 30.1071 1.01090 0.505448 0.862857i \(-0.331327\pi\)
0.505448 + 0.862857i \(0.331327\pi\)
\(888\) 0 0
\(889\) −10.4498 −0.350474
\(890\) 42.3421 1.41931
\(891\) 0 0
\(892\) 13.6555 0.457219
\(893\) −9.60671 −0.321476
\(894\) 0 0
\(895\) −66.1202 −2.21015
\(896\) −21.5063 −0.718477
\(897\) 0 0
\(898\) −4.24027 −0.141500
\(899\) −0.935574 −0.0312031
\(900\) 0 0
\(901\) 0 0
\(902\) −13.3521 −0.444577
\(903\) 0 0
\(904\) −58.7963 −1.95554
\(905\) −59.5556 −1.97970
\(906\) 0 0
\(907\) −38.4765 −1.27759 −0.638795 0.769377i \(-0.720567\pi\)
−0.638795 + 0.769377i \(0.720567\pi\)
\(908\) −11.2001 −0.371689
\(909\) 0 0
\(910\) 57.6198 1.91008
\(911\) −1.87182 −0.0620162 −0.0310081 0.999519i \(-0.509872\pi\)
−0.0310081 + 0.999519i \(0.509872\pi\)
\(912\) 0 0
\(913\) −12.8514 −0.425320
\(914\) 4.69122 0.155172
\(915\) 0 0
\(916\) 19.7422 0.652301
\(917\) −23.5710 −0.778382
\(918\) 0 0
\(919\) 6.41003 0.211447 0.105724 0.994396i \(-0.466284\pi\)
0.105724 + 0.994396i \(0.466284\pi\)
\(920\) −42.3458 −1.39610
\(921\) 0 0
\(922\) 20.5405 0.676464
\(923\) −20.3497 −0.669819
\(924\) 0 0
\(925\) 3.86118 0.126955
\(926\) −35.2813 −1.15942
\(927\) 0 0
\(928\) −11.5228 −0.378255
\(929\) 5.74229 0.188398 0.0941992 0.995553i \(-0.469971\pi\)
0.0941992 + 0.995553i \(0.469971\pi\)
\(930\) 0 0
\(931\) −24.1025 −0.789928
\(932\) 11.1233 0.364355
\(933\) 0 0
\(934\) −15.1585 −0.496003
\(935\) 0 0
\(936\) 0 0
\(937\) −35.7264 −1.16713 −0.583566 0.812066i \(-0.698343\pi\)
−0.583566 + 0.812066i \(0.698343\pi\)
\(938\) −46.8595 −1.53002
\(939\) 0 0
\(940\) −8.52612 −0.278091
\(941\) −10.9669 −0.357511 −0.178756 0.983893i \(-0.557207\pi\)
−0.178756 + 0.983893i \(0.557207\pi\)
\(942\) 0 0
\(943\) 20.6742 0.673246
\(944\) −0.735347 −0.0239335
\(945\) 0 0
\(946\) 18.1555 0.590286
\(947\) −39.7162 −1.29060 −0.645301 0.763928i \(-0.723268\pi\)
−0.645301 + 0.763928i \(0.723268\pi\)
\(948\) 0 0
\(949\) −65.0726 −2.11235
\(950\) 19.9687 0.647870
\(951\) 0 0
\(952\) 0 0
\(953\) 5.33601 0.172850 0.0864252 0.996258i \(-0.472456\pi\)
0.0864252 + 0.996258i \(0.472456\pi\)
\(954\) 0 0
\(955\) −7.00535 −0.226688
\(956\) 7.55876 0.244468
\(957\) 0 0
\(958\) −9.52700 −0.307803
\(959\) −37.3516 −1.20614
\(960\) 0 0
\(961\) −30.7985 −0.993501
\(962\) −3.76297 −0.121323
\(963\) 0 0
\(964\) 18.2272 0.587059
\(965\) −10.5765 −0.340469
\(966\) 0 0
\(967\) 49.3477 1.58692 0.793458 0.608625i \(-0.208279\pi\)
0.793458 + 0.608625i \(0.208279\pi\)
\(968\) −0.769384 −0.0247289
\(969\) 0 0
\(970\) −2.39947 −0.0770424
\(971\) 15.7566 0.505654 0.252827 0.967512i \(-0.418640\pi\)
0.252827 + 0.967512i \(0.418640\pi\)
\(972\) 0 0
\(973\) 18.8304 0.603676
\(974\) −21.9923 −0.704680
\(975\) 0 0
\(976\) −1.01627 −0.0325301
\(977\) 37.9092 1.21282 0.606411 0.795151i \(-0.292609\pi\)
0.606411 + 0.795151i \(0.292609\pi\)
\(978\) 0 0
\(979\) 47.8908 1.53060
\(980\) −21.3914 −0.683323
\(981\) 0 0
\(982\) −13.3575 −0.426257
\(983\) −1.08178 −0.0345035 −0.0172518 0.999851i \(-0.505492\pi\)
−0.0172518 + 0.999851i \(0.505492\pi\)
\(984\) 0 0
\(985\) −57.5381 −1.83332
\(986\) 0 0
\(987\) 0 0
\(988\) 27.8449 0.885863
\(989\) −28.1117 −0.893900
\(990\) 0 0
\(991\) 9.64197 0.306287 0.153144 0.988204i \(-0.451060\pi\)
0.153144 + 0.988204i \(0.451060\pi\)
\(992\) 2.48151 0.0787882
\(993\) 0 0
\(994\) −11.7755 −0.373496
\(995\) 12.7144 0.403074
\(996\) 0 0
\(997\) −6.84545 −0.216798 −0.108399 0.994107i \(-0.534572\pi\)
−0.108399 + 0.994107i \(0.534572\pi\)
\(998\) 13.0241 0.412271
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2601.2.a.bh.1.3 6
3.2 odd 2 867.2.a.o.1.4 6
17.16 even 2 2601.2.a.bi.1.3 6
51.2 odd 8 867.2.e.k.616.7 24
51.5 even 16 867.2.h.m.688.6 48
51.8 odd 8 867.2.e.k.829.6 24
51.11 even 16 867.2.h.m.733.8 48
51.14 even 16 867.2.h.m.757.8 48
51.20 even 16 867.2.h.m.757.7 48
51.23 even 16 867.2.h.m.733.7 48
51.26 odd 8 867.2.e.k.829.5 24
51.29 even 16 867.2.h.m.688.5 48
51.32 odd 8 867.2.e.k.616.8 24
51.38 odd 4 867.2.d.g.577.6 12
51.41 even 16 867.2.h.m.712.6 48
51.44 even 16 867.2.h.m.712.5 48
51.47 odd 4 867.2.d.g.577.5 12
51.50 odd 2 867.2.a.p.1.4 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
867.2.a.o.1.4 6 3.2 odd 2
867.2.a.p.1.4 yes 6 51.50 odd 2
867.2.d.g.577.5 12 51.47 odd 4
867.2.d.g.577.6 12 51.38 odd 4
867.2.e.k.616.7 24 51.2 odd 8
867.2.e.k.616.8 24 51.32 odd 8
867.2.e.k.829.5 24 51.26 odd 8
867.2.e.k.829.6 24 51.8 odd 8
867.2.h.m.688.5 48 51.29 even 16
867.2.h.m.688.6 48 51.5 even 16
867.2.h.m.712.5 48 51.44 even 16
867.2.h.m.712.6 48 51.41 even 16
867.2.h.m.733.7 48 51.23 even 16
867.2.h.m.733.8 48 51.11 even 16
867.2.h.m.757.7 48 51.20 even 16
867.2.h.m.757.8 48 51.14 even 16
2601.2.a.bh.1.3 6 1.1 even 1 trivial
2601.2.a.bi.1.3 6 17.16 even 2