Properties

Label 867.2.d.e.577.1
Level $867$
Weight $2$
Character 867.577
Analytic conductor $6.923$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [867,2,Mod(577,867)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(867, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("867.577"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 867 = 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 867.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.92302985525\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 51)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 577.1
Root \(0.382683 + 0.923880i\) of defining polynomial
Character \(\chi\) \(=\) 867.577
Dual form 867.2.d.e.577.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.84776 q^{2} -1.00000i q^{3} +1.41421 q^{4} +3.61313i q^{5} +1.84776i q^{6} -3.84776i q^{7} +1.08239 q^{8} -1.00000 q^{9} -6.67619i q^{10} +0.198912i q^{11} -1.41421i q^{12} -0.883480 q^{13} +7.10973i q^{14} +3.61313 q^{15} -4.82843 q^{16} +1.84776 q^{18} +2.24943 q^{19} +5.10973i q^{20} -3.84776 q^{21} -0.367542i q^{22} -2.55166i q^{23} -1.08239i q^{24} -8.05468 q^{25} +1.63246 q^{26} +1.00000i q^{27} -5.44155i q^{28} -2.24264i q^{29} -6.67619 q^{30} -4.73925i q^{31} +6.75699 q^{32} +0.198912 q^{33} +13.9024 q^{35} -1.41421 q^{36} +6.98067i q^{37} -4.15640 q^{38} +0.883480i q^{39} +3.91082i q^{40} -0.619914i q^{41} +7.10973 q^{42} +7.17120 q^{43} +0.281305i q^{44} -3.61313i q^{45} +4.71485i q^{46} +5.49207 q^{47} +4.82843i q^{48} -7.80525 q^{49} +14.8831 q^{50} -1.24943 q^{52} +5.18759 q^{53} -1.84776i q^{54} -0.718695 q^{55} -4.16478i q^{56} -2.24943i q^{57} +4.14386i q^{58} -5.01933 q^{59} +5.10973 q^{60} -15.0353i q^{61} +8.75699i q^{62} +3.84776i q^{63} -2.82843 q^{64} -3.19212i q^{65} -0.367542 q^{66} -0.281305 q^{67} -2.55166 q^{69} -25.6884 q^{70} -13.9382i q^{71} -1.08239 q^{72} -15.6401i q^{73} -12.8986i q^{74} +8.05468i q^{75} +3.18117 q^{76} +0.765367 q^{77} -1.63246i q^{78} -5.12453i q^{79} -17.4457i q^{80} +1.00000 q^{81} +1.14545i q^{82} +9.51716 q^{83} -5.44155 q^{84} -13.2506 q^{86} -2.24264 q^{87} +0.215301i q^{88} +4.33476 q^{89} +6.67619i q^{90} +3.39942i q^{91} -3.60859i q^{92} -4.73925 q^{93} -10.1480 q^{94} +8.12747i q^{95} -6.75699i q^{96} -5.94948i q^{97} +14.4222 q^{98} -0.198912i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{9} - 8 q^{13} + 8 q^{15} - 16 q^{16} + 24 q^{19} - 16 q^{21} - 16 q^{30} - 8 q^{33} + 32 q^{35} + 32 q^{38} + 16 q^{42} - 8 q^{43} + 16 q^{47} + 8 q^{49} + 32 q^{50} - 16 q^{52} - 16 q^{53} - 24 q^{55}+ \cdots + 64 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/867\mathbb{Z}\right)^\times\).

\(n\) \(290\) \(292\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.84776 −1.30656 −0.653281 0.757115i \(-0.726608\pi\)
−0.653281 + 0.757115i \(0.726608\pi\)
\(3\) − 1.00000i − 0.577350i
\(4\) 1.41421 0.707107
\(5\) 3.61313i 1.61584i 0.589293 + 0.807920i \(0.299406\pi\)
−0.589293 + 0.807920i \(0.700594\pi\)
\(6\) 1.84776i 0.754344i
\(7\) − 3.84776i − 1.45432i −0.686470 0.727158i \(-0.740841\pi\)
0.686470 0.727158i \(-0.259159\pi\)
\(8\) 1.08239 0.382683
\(9\) −1.00000 −0.333333
\(10\) − 6.67619i − 2.11120i
\(11\) 0.198912i 0.0599743i 0.999550 + 0.0299872i \(0.00954664\pi\)
−0.999550 + 0.0299872i \(0.990453\pi\)
\(12\) − 1.41421i − 0.408248i
\(13\) −0.883480 −0.245033 −0.122517 0.992466i \(-0.539096\pi\)
−0.122517 + 0.992466i \(0.539096\pi\)
\(14\) 7.10973i 1.90016i
\(15\) 3.61313 0.932905
\(16\) −4.82843 −1.20711
\(17\) 0 0
\(18\) 1.84776 0.435521
\(19\) 2.24943 0.516054 0.258027 0.966138i \(-0.416928\pi\)
0.258027 + 0.966138i \(0.416928\pi\)
\(20\) 5.10973i 1.14257i
\(21\) −3.84776 −0.839650
\(22\) − 0.367542i − 0.0783602i
\(23\) − 2.55166i − 0.532058i −0.963965 0.266029i \(-0.914288\pi\)
0.963965 0.266029i \(-0.0857116\pi\)
\(24\) − 1.08239i − 0.220942i
\(25\) −8.05468 −1.61094
\(26\) 1.63246 0.320151
\(27\) 1.00000i 0.192450i
\(28\) − 5.44155i − 1.02836i
\(29\) − 2.24264i − 0.416448i −0.978081 0.208224i \(-0.933232\pi\)
0.978081 0.208224i \(-0.0667683\pi\)
\(30\) −6.67619 −1.21890
\(31\) − 4.73925i − 0.851194i −0.904913 0.425597i \(-0.860064\pi\)
0.904913 0.425597i \(-0.139936\pi\)
\(32\) 6.75699 1.19448
\(33\) 0.198912 0.0346262
\(34\) 0 0
\(35\) 13.9024 2.34994
\(36\) −1.41421 −0.235702
\(37\) 6.98067i 1.14761i 0.818990 + 0.573807i \(0.194534\pi\)
−0.818990 + 0.573807i \(0.805466\pi\)
\(38\) −4.15640 −0.674258
\(39\) 0.883480i 0.141470i
\(40\) 3.91082i 0.618355i
\(41\) − 0.619914i − 0.0968144i −0.998828 0.0484072i \(-0.984585\pi\)
0.998828 0.0484072i \(-0.0154145\pi\)
\(42\) 7.10973 1.09706
\(43\) 7.17120 1.09360 0.546799 0.837264i \(-0.315846\pi\)
0.546799 + 0.837264i \(0.315846\pi\)
\(44\) 0.281305i 0.0424083i
\(45\) − 3.61313i − 0.538613i
\(46\) 4.71485i 0.695167i
\(47\) 5.49207 0.801101 0.400550 0.916275i \(-0.368819\pi\)
0.400550 + 0.916275i \(0.368819\pi\)
\(48\) 4.82843i 0.696923i
\(49\) −7.80525 −1.11504
\(50\) 14.8831 2.10479
\(51\) 0 0
\(52\) −1.24943 −0.173265
\(53\) 5.18759 0.712570 0.356285 0.934377i \(-0.384043\pi\)
0.356285 + 0.934377i \(0.384043\pi\)
\(54\) − 1.84776i − 0.251448i
\(55\) −0.718695 −0.0969089
\(56\) − 4.16478i − 0.556543i
\(57\) − 2.24943i − 0.297944i
\(58\) 4.14386i 0.544115i
\(59\) −5.01933 −0.653461 −0.326731 0.945117i \(-0.605947\pi\)
−0.326731 + 0.945117i \(0.605947\pi\)
\(60\) 5.10973 0.659664
\(61\) − 15.0353i − 1.92508i −0.271142 0.962539i \(-0.587401\pi\)
0.271142 0.962539i \(-0.412599\pi\)
\(62\) 8.75699i 1.11214i
\(63\) 3.84776i 0.484772i
\(64\) −2.82843 −0.353553
\(65\) − 3.19212i − 0.395934i
\(66\) −0.367542 −0.0452413
\(67\) −0.281305 −0.0343668 −0.0171834 0.999852i \(-0.505470\pi\)
−0.0171834 + 0.999852i \(0.505470\pi\)
\(68\) 0 0
\(69\) −2.55166 −0.307184
\(70\) −25.6884 −3.07035
\(71\) − 13.9382i − 1.65416i −0.562088 0.827078i \(-0.690002\pi\)
0.562088 0.827078i \(-0.309998\pi\)
\(72\) −1.08239 −0.127561
\(73\) − 15.6401i − 1.83053i −0.402847 0.915267i \(-0.631979\pi\)
0.402847 0.915267i \(-0.368021\pi\)
\(74\) − 12.8986i − 1.49943i
\(75\) 8.05468i 0.930074i
\(76\) 3.18117 0.364906
\(77\) 0.765367 0.0872216
\(78\) − 1.63246i − 0.184839i
\(79\) − 5.12453i − 0.576554i −0.957547 0.288277i \(-0.906918\pi\)
0.957547 0.288277i \(-0.0930825\pi\)
\(80\) − 17.4457i − 1.95049i
\(81\) 1.00000 0.111111
\(82\) 1.14545i 0.126494i
\(83\) 9.51716 1.04464 0.522322 0.852748i \(-0.325066\pi\)
0.522322 + 0.852748i \(0.325066\pi\)
\(84\) −5.44155 −0.593722
\(85\) 0 0
\(86\) −13.2506 −1.42885
\(87\) −2.24264 −0.240436
\(88\) 0.215301i 0.0229512i
\(89\) 4.33476 0.459484 0.229742 0.973252i \(-0.426212\pi\)
0.229742 + 0.973252i \(0.426212\pi\)
\(90\) 6.67619i 0.703732i
\(91\) 3.39942i 0.356356i
\(92\) − 3.60859i − 0.376222i
\(93\) −4.73925 −0.491437
\(94\) −10.1480 −1.04669
\(95\) 8.12747i 0.833861i
\(96\) − 6.75699i − 0.689632i
\(97\) − 5.94948i − 0.604078i −0.953295 0.302039i \(-0.902333\pi\)
0.953295 0.302039i \(-0.0976674\pi\)
\(98\) 14.4222 1.45686
\(99\) − 0.198912i − 0.0199914i
\(100\) −11.3910 −1.13910
\(101\) −3.48022 −0.346295 −0.173147 0.984896i \(-0.555394\pi\)
−0.173147 + 0.984896i \(0.555394\pi\)
\(102\) 0 0
\(103\) −10.2649 −1.01143 −0.505716 0.862700i \(-0.668772\pi\)
−0.505716 + 0.862700i \(0.668772\pi\)
\(104\) −0.956272 −0.0937702
\(105\) − 13.9024i − 1.35674i
\(106\) −9.58541 −0.931018
\(107\) − 2.80979i − 0.271632i −0.990734 0.135816i \(-0.956634\pi\)
0.990734 0.135816i \(-0.0433656\pi\)
\(108\) 1.41421i 0.136083i
\(109\) − 8.57446i − 0.821285i −0.911797 0.410642i \(-0.865305\pi\)
0.911797 0.410642i \(-0.134695\pi\)
\(110\) 1.32798 0.126618
\(111\) 6.98067 0.662576
\(112\) 18.5786i 1.75551i
\(113\) − 3.83975i − 0.361213i −0.983555 0.180607i \(-0.942194\pi\)
0.983555 0.180607i \(-0.0578061\pi\)
\(114\) 4.15640i 0.389283i
\(115\) 9.21946 0.859719
\(116\) − 3.17157i − 0.294473i
\(117\) 0.883480 0.0816777
\(118\) 9.27452 0.853788
\(119\) 0 0
\(120\) 3.91082 0.357007
\(121\) 10.9604 0.996403
\(122\) 27.7817i 2.51524i
\(123\) −0.619914 −0.0558958
\(124\) − 6.70231i − 0.601885i
\(125\) − 11.0369i − 0.987174i
\(126\) − 7.10973i − 0.633385i
\(127\) 18.3041 1.62423 0.812113 0.583500i \(-0.198317\pi\)
0.812113 + 0.583500i \(0.198317\pi\)
\(128\) −8.28772 −0.732538
\(129\) − 7.17120i − 0.631389i
\(130\) 5.89828i 0.517313i
\(131\) 11.3478i 0.991465i 0.868475 + 0.495733i \(0.165100\pi\)
−0.868475 + 0.495733i \(0.834900\pi\)
\(132\) 0.281305 0.0244844
\(133\) − 8.65526i − 0.750506i
\(134\) 0.519783 0.0449024
\(135\) −3.61313 −0.310968
\(136\) 0 0
\(137\) −7.14961 −0.610833 −0.305416 0.952219i \(-0.598796\pi\)
−0.305416 + 0.952219i \(0.598796\pi\)
\(138\) 4.71485 0.401355
\(139\) − 10.9848i − 0.931721i −0.884858 0.465861i \(-0.845745\pi\)
0.884858 0.465861i \(-0.154255\pi\)
\(140\) 19.6610 1.66166
\(141\) − 5.49207i − 0.462516i
\(142\) 25.7544i 2.16126i
\(143\) − 0.175735i − 0.0146957i
\(144\) 4.82843 0.402369
\(145\) 8.10294 0.672913
\(146\) 28.8991i 2.39171i
\(147\) 7.80525i 0.643766i
\(148\) 9.87216i 0.811486i
\(149\) 5.99480 0.491114 0.245557 0.969382i \(-0.421029\pi\)
0.245557 + 0.969382i \(0.421029\pi\)
\(150\) − 14.8831i − 1.21520i
\(151\) 11.4780 0.934063 0.467032 0.884241i \(-0.345323\pi\)
0.467032 + 0.884241i \(0.345323\pi\)
\(152\) 2.43476 0.197485
\(153\) 0 0
\(154\) −1.41421 −0.113961
\(155\) 17.1235 1.37539
\(156\) 1.24943i 0.100034i
\(157\) 5.81166 0.463821 0.231911 0.972737i \(-0.425502\pi\)
0.231911 + 0.972737i \(0.425502\pi\)
\(158\) 9.46889i 0.753305i
\(159\) − 5.18759i − 0.411402i
\(160\) 24.4138i 1.93008i
\(161\) −9.81817 −0.773780
\(162\) −1.84776 −0.145174
\(163\) − 5.40878i − 0.423648i −0.977308 0.211824i \(-0.932060\pi\)
0.977308 0.211824i \(-0.0679404\pi\)
\(164\) − 0.876691i − 0.0684581i
\(165\) 0.718695i 0.0559504i
\(166\) −17.5854 −1.36489
\(167\) 3.26038i 0.252296i 0.992011 + 0.126148i \(0.0402614\pi\)
−0.992011 + 0.126148i \(0.959739\pi\)
\(168\) −4.16478 −0.321320
\(169\) −12.2195 −0.939959
\(170\) 0 0
\(171\) −2.24943 −0.172018
\(172\) 10.1416 0.773290
\(173\) 16.8394i 1.28027i 0.768261 + 0.640137i \(0.221122\pi\)
−0.768261 + 0.640137i \(0.778878\pi\)
\(174\) 4.14386 0.314145
\(175\) 30.9925i 2.34281i
\(176\) − 0.960434i − 0.0723954i
\(177\) 5.01933i 0.377276i
\(178\) −8.00960 −0.600345
\(179\) −1.10332 −0.0824658 −0.0412329 0.999150i \(-0.513129\pi\)
−0.0412329 + 0.999150i \(0.513129\pi\)
\(180\) − 5.10973i − 0.380857i
\(181\) 15.4701i 1.14988i 0.818194 + 0.574942i \(0.194975\pi\)
−0.818194 + 0.574942i \(0.805025\pi\)
\(182\) − 6.28130i − 0.465601i
\(183\) −15.0353 −1.11144
\(184\) − 2.76190i − 0.203610i
\(185\) −25.2220 −1.85436
\(186\) 8.75699 0.642093
\(187\) 0 0
\(188\) 7.76696 0.566464
\(189\) 3.84776 0.279883
\(190\) − 15.0176i − 1.08949i
\(191\) −5.97069 −0.432024 −0.216012 0.976391i \(-0.569305\pi\)
−0.216012 + 0.976391i \(0.569305\pi\)
\(192\) 2.82843i 0.204124i
\(193\) − 11.0479i − 0.795245i −0.917549 0.397622i \(-0.869835\pi\)
0.917549 0.397622i \(-0.130165\pi\)
\(194\) 10.9932i 0.789267i
\(195\) −3.19212 −0.228593
\(196\) −11.0383 −0.788449
\(197\) − 1.79467i − 0.127865i −0.997954 0.0639326i \(-0.979636\pi\)
0.997954 0.0639326i \(-0.0203643\pi\)
\(198\) 0.367542i 0.0261201i
\(199\) 0.473428i 0.0335605i 0.999859 + 0.0167802i \(0.00534156\pi\)
−0.999859 + 0.0167802i \(0.994658\pi\)
\(200\) −8.71832 −0.616478
\(201\) 0.281305i 0.0198417i
\(202\) 6.43060 0.452456
\(203\) −8.62914 −0.605647
\(204\) 0 0
\(205\) 2.23983 0.156436
\(206\) 18.9671 1.32150
\(207\) 2.55166i 0.177353i
\(208\) 4.26582 0.295781
\(209\) 0.447439i 0.0309500i
\(210\) 25.6884i 1.77266i
\(211\) − 1.03188i − 0.0710372i −0.999369 0.0355186i \(-0.988692\pi\)
0.999369 0.0355186i \(-0.0113083\pi\)
\(212\) 7.33636 0.503863
\(213\) −13.9382 −0.955027
\(214\) 5.19181i 0.354905i
\(215\) 25.9104i 1.76708i
\(216\) 1.08239i 0.0736475i
\(217\) −18.2355 −1.23790
\(218\) 15.8435i 1.07306i
\(219\) −15.6401 −1.05686
\(220\) −1.01639 −0.0685249
\(221\) 0 0
\(222\) −12.8986 −0.865697
\(223\) 11.9018 0.797002 0.398501 0.917168i \(-0.369531\pi\)
0.398501 + 0.917168i \(0.369531\pi\)
\(224\) − 25.9993i − 1.73715i
\(225\) 8.05468 0.536979
\(226\) 7.09494i 0.471948i
\(227\) 19.9555i 1.32449i 0.749285 + 0.662247i \(0.230397\pi\)
−0.749285 + 0.662247i \(0.769603\pi\)
\(228\) − 3.18117i − 0.210678i
\(229\) −0.0263629 −0.00174211 −0.000871055 1.00000i \(-0.500277\pi\)
−0.000871055 1.00000i \(0.500277\pi\)
\(230\) −17.0353 −1.12328
\(231\) − 0.765367i − 0.0503574i
\(232\) − 2.42742i − 0.159368i
\(233\) 22.6706i 1.48520i 0.669734 + 0.742601i \(0.266408\pi\)
−0.669734 + 0.742601i \(0.733592\pi\)
\(234\) −1.63246 −0.106717
\(235\) 19.8435i 1.29445i
\(236\) −7.09841 −0.462067
\(237\) −5.12453 −0.332874
\(238\) 0 0
\(239\) 10.3205 0.667577 0.333789 0.942648i \(-0.391673\pi\)
0.333789 + 0.942648i \(0.391673\pi\)
\(240\) −17.4457 −1.12612
\(241\) 4.95524i 0.319195i 0.987182 + 0.159597i \(0.0510196\pi\)
−0.987182 + 0.159597i \(0.948980\pi\)
\(242\) −20.2522 −1.30186
\(243\) − 1.00000i − 0.0641500i
\(244\) − 21.2632i − 1.36124i
\(245\) − 28.2014i − 1.80172i
\(246\) 1.14545 0.0730314
\(247\) −1.98733 −0.126450
\(248\) − 5.12972i − 0.325738i
\(249\) − 9.51716i − 0.603125i
\(250\) 20.3936i 1.28980i
\(251\) 27.6021 1.74223 0.871115 0.491079i \(-0.163397\pi\)
0.871115 + 0.491079i \(0.163397\pi\)
\(252\) 5.44155i 0.342786i
\(253\) 0.507556 0.0319098
\(254\) −33.8216 −2.12215
\(255\) 0 0
\(256\) 20.9706 1.31066
\(257\) −24.6239 −1.53600 −0.768000 0.640450i \(-0.778748\pi\)
−0.768000 + 0.640450i \(0.778748\pi\)
\(258\) 13.2506i 0.824949i
\(259\) 26.8599 1.66899
\(260\) − 4.51434i − 0.279968i
\(261\) 2.24264i 0.138816i
\(262\) − 20.9681i − 1.29541i
\(263\) −18.9015 −1.16552 −0.582759 0.812645i \(-0.698027\pi\)
−0.582759 + 0.812645i \(0.698027\pi\)
\(264\) 0.215301 0.0132509
\(265\) 18.7434i 1.15140i
\(266\) 15.9928i 0.980584i
\(267\) − 4.33476i − 0.265283i
\(268\) −0.397825 −0.0243010
\(269\) − 14.2053i − 0.866114i −0.901367 0.433057i \(-0.857435\pi\)
0.901367 0.433057i \(-0.142565\pi\)
\(270\) 6.67619 0.406300
\(271\) −19.9314 −1.21074 −0.605372 0.795942i \(-0.706976\pi\)
−0.605372 + 0.795942i \(0.706976\pi\)
\(272\) 0 0
\(273\) 3.39942 0.205742
\(274\) 13.2108 0.798092
\(275\) − 1.60218i − 0.0966148i
\(276\) −3.60859 −0.217212
\(277\) 21.4029i 1.28597i 0.765877 + 0.642987i \(0.222305\pi\)
−0.765877 + 0.642987i \(0.777695\pi\)
\(278\) 20.2973i 1.21735i
\(279\) 4.73925i 0.283731i
\(280\) 15.0479 0.899283
\(281\) −21.4669 −1.28061 −0.640305 0.768121i \(-0.721192\pi\)
−0.640305 + 0.768121i \(0.721192\pi\)
\(282\) 10.1480i 0.604306i
\(283\) − 19.8223i − 1.17832i −0.808018 0.589158i \(-0.799460\pi\)
0.808018 0.589158i \(-0.200540\pi\)
\(284\) − 19.7115i − 1.16966i
\(285\) 8.12747 0.481430
\(286\) 0.324716i 0.0192009i
\(287\) −2.38528 −0.140799
\(288\) −6.75699 −0.398159
\(289\) 0 0
\(290\) −14.9723 −0.879203
\(291\) −5.94948 −0.348765
\(292\) − 22.1184i − 1.29438i
\(293\) 20.3717 1.19013 0.595064 0.803678i \(-0.297127\pi\)
0.595064 + 0.803678i \(0.297127\pi\)
\(294\) − 14.4222i − 0.841121i
\(295\) − 18.1355i − 1.05589i
\(296\) 7.55582i 0.439173i
\(297\) −0.198912 −0.0115421
\(298\) −11.0770 −0.641671
\(299\) 2.25434i 0.130372i
\(300\) 11.3910i 0.657662i
\(301\) − 27.5930i − 1.59044i
\(302\) −21.2085 −1.22041
\(303\) 3.48022i 0.199933i
\(304\) −10.8612 −0.622933
\(305\) 54.3246 3.11062
\(306\) 0 0
\(307\) −13.6278 −0.777779 −0.388890 0.921284i \(-0.627141\pi\)
−0.388890 + 0.921284i \(0.627141\pi\)
\(308\) 1.08239 0.0616750
\(309\) 10.2649i 0.583951i
\(310\) −31.6401 −1.79704
\(311\) − 2.58579i − 0.146626i −0.997309 0.0733132i \(-0.976643\pi\)
0.997309 0.0733132i \(-0.0233573\pi\)
\(312\) 0.956272i 0.0541382i
\(313\) 3.95365i 0.223473i 0.993738 + 0.111737i \(0.0356413\pi\)
−0.993738 + 0.111737i \(0.964359\pi\)
\(314\) −10.7386 −0.606012
\(315\) −13.9024 −0.783314
\(316\) − 7.24718i − 0.407686i
\(317\) − 33.5145i − 1.88236i −0.337903 0.941181i \(-0.609718\pi\)
0.337903 0.941181i \(-0.390282\pi\)
\(318\) 9.58541i 0.537523i
\(319\) 0.446089 0.0249762
\(320\) − 10.2195i − 0.571285i
\(321\) −2.80979 −0.156827
\(322\) 18.1416 1.01099
\(323\) 0 0
\(324\) 1.41421 0.0785674
\(325\) 7.11615 0.394733
\(326\) 9.99411i 0.553523i
\(327\) −8.57446 −0.474169
\(328\) − 0.670991i − 0.0370493i
\(329\) − 21.1322i − 1.16505i
\(330\) − 1.32798i − 0.0731027i
\(331\) −19.3037 −1.06103 −0.530515 0.847676i \(-0.678001\pi\)
−0.530515 + 0.847676i \(0.678001\pi\)
\(332\) 13.4593 0.738675
\(333\) − 6.98067i − 0.382538i
\(334\) − 6.02440i − 0.329640i
\(335\) − 1.01639i − 0.0555313i
\(336\) 18.5786 1.01355
\(337\) 17.4122i 0.948506i 0.880389 + 0.474253i \(0.157282\pi\)
−0.880389 + 0.474253i \(0.842718\pi\)
\(338\) 22.5786 1.22812
\(339\) −3.83975 −0.208547
\(340\) 0 0
\(341\) 0.942695 0.0510498
\(342\) 4.15640 0.224753
\(343\) 3.09841i 0.167298i
\(344\) 7.76205 0.418502
\(345\) − 9.21946i − 0.496359i
\(346\) − 31.1151i − 1.67276i
\(347\) 31.1090i 1.67002i 0.550236 + 0.835009i \(0.314538\pi\)
−0.550236 + 0.835009i \(0.685462\pi\)
\(348\) −3.17157 −0.170014
\(349\) 30.0407 1.60804 0.804022 0.594600i \(-0.202690\pi\)
0.804022 + 0.594600i \(0.202690\pi\)
\(350\) − 57.2666i − 3.06103i
\(351\) − 0.883480i − 0.0471567i
\(352\) 1.34405i 0.0716380i
\(353\) −17.2848 −0.919977 −0.459989 0.887925i \(-0.652147\pi\)
−0.459989 + 0.887925i \(0.652147\pi\)
\(354\) − 9.27452i − 0.492935i
\(355\) 50.3603 2.67285
\(356\) 6.13028 0.324904
\(357\) 0 0
\(358\) 2.03866 0.107747
\(359\) −29.3555 −1.54932 −0.774662 0.632375i \(-0.782080\pi\)
−0.774662 + 0.632375i \(0.782080\pi\)
\(360\) − 3.91082i − 0.206118i
\(361\) −13.9401 −0.733688
\(362\) − 28.5850i − 1.50240i
\(363\) − 10.9604i − 0.575274i
\(364\) 4.80750i 0.251982i
\(365\) 56.5096 2.95785
\(366\) 27.7817 1.45217
\(367\) 12.4400i 0.649361i 0.945824 + 0.324680i \(0.105257\pi\)
−0.945824 + 0.324680i \(0.894743\pi\)
\(368\) 12.3205i 0.642250i
\(369\) 0.619914i 0.0322715i
\(370\) 46.6042 2.42284
\(371\) − 19.9606i − 1.03630i
\(372\) −6.70231 −0.347498
\(373\) 18.2837 0.946696 0.473348 0.880875i \(-0.343045\pi\)
0.473348 + 0.880875i \(0.343045\pi\)
\(374\) 0 0
\(375\) −11.0369 −0.569945
\(376\) 5.94457 0.306568
\(377\) 1.98133i 0.102044i
\(378\) −7.10973 −0.365685
\(379\) − 3.52408i − 0.181020i −0.995896 0.0905098i \(-0.971150\pi\)
0.995896 0.0905098i \(-0.0288497\pi\)
\(380\) 11.4940i 0.589629i
\(381\) − 18.3041i − 0.937748i
\(382\) 11.0324 0.564467
\(383\) 33.2583 1.69942 0.849709 0.527251i \(-0.176777\pi\)
0.849709 + 0.527251i \(0.176777\pi\)
\(384\) 8.28772i 0.422931i
\(385\) 2.76537i 0.140936i
\(386\) 20.4138i 1.03904i
\(387\) −7.17120 −0.364533
\(388\) − 8.41384i − 0.427148i
\(389\) −10.0157 −0.507818 −0.253909 0.967228i \(-0.581716\pi\)
−0.253909 + 0.967228i \(0.581716\pi\)
\(390\) 5.89828 0.298671
\(391\) 0 0
\(392\) −8.44834 −0.426706
\(393\) 11.3478 0.572423
\(394\) 3.31612i 0.167064i
\(395\) 18.5156 0.931619
\(396\) − 0.281305i − 0.0141361i
\(397\) 31.4112i 1.57648i 0.615366 + 0.788242i \(0.289008\pi\)
−0.615366 + 0.788242i \(0.710992\pi\)
\(398\) − 0.874782i − 0.0438488i
\(399\) −8.65526 −0.433305
\(400\) 38.8914 1.94457
\(401\) 0.729272i 0.0364181i 0.999834 + 0.0182091i \(0.00579644\pi\)
−0.999834 + 0.0182091i \(0.994204\pi\)
\(402\) − 0.519783i − 0.0259244i
\(403\) 4.18703i 0.208571i
\(404\) −4.92177 −0.244867
\(405\) 3.61313i 0.179538i
\(406\) 15.9446 0.791316
\(407\) −1.38854 −0.0688274
\(408\) 0 0
\(409\) 25.9074 1.28104 0.640520 0.767941i \(-0.278719\pi\)
0.640520 + 0.767941i \(0.278719\pi\)
\(410\) −4.13866 −0.204394
\(411\) 7.14961i 0.352664i
\(412\) −14.5168 −0.715191
\(413\) 19.3132i 0.950339i
\(414\) − 4.71485i − 0.231722i
\(415\) 34.3867i 1.68798i
\(416\) −5.96966 −0.292687
\(417\) −10.9848 −0.537929
\(418\) − 0.826760i − 0.0404382i
\(419\) − 32.8205i − 1.60339i −0.597735 0.801694i \(-0.703933\pi\)
0.597735 0.801694i \(-0.296067\pi\)
\(420\) − 19.6610i − 0.959359i
\(421\) −6.36144 −0.310038 −0.155019 0.987912i \(-0.549544\pi\)
−0.155019 + 0.987912i \(0.549544\pi\)
\(422\) 1.90666i 0.0928146i
\(423\) −5.49207 −0.267034
\(424\) 5.61500 0.272689
\(425\) 0 0
\(426\) 25.7544 1.24780
\(427\) −57.8524 −2.79967
\(428\) − 3.97364i − 0.192073i
\(429\) −0.175735 −0.00848457
\(430\) − 47.8763i − 2.30880i
\(431\) 9.04148i 0.435513i 0.976003 + 0.217756i \(0.0698738\pi\)
−0.976003 + 0.217756i \(0.930126\pi\)
\(432\) − 4.82843i − 0.232308i
\(433\) −6.09106 −0.292718 −0.146359 0.989232i \(-0.546755\pi\)
−0.146359 + 0.989232i \(0.546755\pi\)
\(434\) 33.6948 1.61740
\(435\) − 8.10294i − 0.388506i
\(436\) − 12.1261i − 0.580736i
\(437\) − 5.73977i − 0.274571i
\(438\) 28.8991 1.38085
\(439\) − 31.2432i − 1.49116i −0.666417 0.745579i \(-0.732173\pi\)
0.666417 0.745579i \(-0.267827\pi\)
\(440\) −0.777910 −0.0370854
\(441\) 7.80525 0.371679
\(442\) 0 0
\(443\) −8.90575 −0.423125 −0.211563 0.977364i \(-0.567855\pi\)
−0.211563 + 0.977364i \(0.567855\pi\)
\(444\) 9.87216 0.468512
\(445\) 15.6620i 0.742452i
\(446\) −21.9916 −1.04133
\(447\) − 5.99480i − 0.283545i
\(448\) 10.8831i 0.514178i
\(449\) − 17.3538i − 0.818974i −0.912316 0.409487i \(-0.865708\pi\)
0.912316 0.409487i \(-0.134292\pi\)
\(450\) −14.8831 −0.701596
\(451\) 0.123309 0.00580638
\(452\) − 5.43023i − 0.255416i
\(453\) − 11.4780i − 0.539282i
\(454\) − 36.8730i − 1.73054i
\(455\) −12.2825 −0.575814
\(456\) − 2.43476i − 0.114018i
\(457\) −24.8622 −1.16301 −0.581503 0.813545i \(-0.697535\pi\)
−0.581503 + 0.813545i \(0.697535\pi\)
\(458\) 0.0487123 0.00227618
\(459\) 0 0
\(460\) 13.0383 0.607913
\(461\) −11.3886 −0.530421 −0.265210 0.964191i \(-0.585441\pi\)
−0.265210 + 0.964191i \(0.585441\pi\)
\(462\) 1.41421i 0.0657952i
\(463\) −24.9668 −1.16031 −0.580154 0.814507i \(-0.697008\pi\)
−0.580154 + 0.814507i \(0.697008\pi\)
\(464\) 10.8284i 0.502697i
\(465\) − 17.1235i − 0.794083i
\(466\) − 41.8898i − 1.94051i
\(467\) −3.32307 −0.153773 −0.0768866 0.997040i \(-0.524498\pi\)
−0.0768866 + 0.997040i \(0.524498\pi\)
\(468\) 1.24943 0.0577549
\(469\) 1.08239i 0.0499802i
\(470\) − 36.6661i − 1.69128i
\(471\) − 5.81166i − 0.267787i
\(472\) −5.43289 −0.250069
\(473\) 1.42644i 0.0655878i
\(474\) 9.46889 0.434921
\(475\) −18.1184 −0.831331
\(476\) 0 0
\(477\) −5.18759 −0.237523
\(478\) −19.0698 −0.872232
\(479\) − 0.309018i − 0.0141194i −0.999975 0.00705969i \(-0.997753\pi\)
0.999975 0.00705969i \(-0.00224719\pi\)
\(480\) 24.4138 1.11433
\(481\) − 6.16728i − 0.281204i
\(482\) − 9.15609i − 0.417048i
\(483\) 9.81817i 0.446742i
\(484\) 15.5004 0.704563
\(485\) 21.4962 0.976094
\(486\) 1.84776i 0.0838161i
\(487\) 32.6476i 1.47940i 0.672935 + 0.739701i \(0.265033\pi\)
−0.672935 + 0.739701i \(0.734967\pi\)
\(488\) − 16.2741i − 0.736696i
\(489\) −5.40878 −0.244593
\(490\) 52.1093i 2.35406i
\(491\) −21.7074 −0.979640 −0.489820 0.871824i \(-0.662937\pi\)
−0.489820 + 0.871824i \(0.662937\pi\)
\(492\) −0.876691 −0.0395243
\(493\) 0 0
\(494\) 3.67210 0.165216
\(495\) 0.718695 0.0323030
\(496\) 22.8831i 1.02748i
\(497\) −53.6307 −2.40566
\(498\) 17.5854i 0.788021i
\(499\) 2.23901i 0.100232i 0.998743 + 0.0501159i \(0.0159591\pi\)
−0.998743 + 0.0501159i \(0.984041\pi\)
\(500\) − 15.6086i − 0.698037i
\(501\) 3.26038 0.145663
\(502\) −51.0021 −2.27633
\(503\) − 14.4320i − 0.643489i −0.946827 0.321744i \(-0.895731\pi\)
0.946827 0.321744i \(-0.104269\pi\)
\(504\) 4.16478i 0.185514i
\(505\) − 12.5745i − 0.559556i
\(506\) −0.937842 −0.0416922
\(507\) 12.2195i 0.542685i
\(508\) 25.8859 1.14850
\(509\) −35.4472 −1.57117 −0.785584 0.618755i \(-0.787637\pi\)
−0.785584 + 0.618755i \(0.787637\pi\)
\(510\) 0 0
\(511\) −60.1793 −2.66218
\(512\) −22.1731 −0.979922
\(513\) 2.24943i 0.0993147i
\(514\) 45.4991 2.00688
\(515\) − 37.0884i − 1.63431i
\(516\) − 10.1416i − 0.446459i
\(517\) 1.09244i 0.0480455i
\(518\) −49.6307 −2.18065
\(519\) 16.8394 0.739167
\(520\) − 3.45513i − 0.151517i
\(521\) 14.2992i 0.626457i 0.949678 + 0.313229i \(0.101411\pi\)
−0.949678 + 0.313229i \(0.898589\pi\)
\(522\) − 4.14386i − 0.181372i
\(523\) 6.23946 0.272832 0.136416 0.990652i \(-0.456442\pi\)
0.136416 + 0.990652i \(0.456442\pi\)
\(524\) 16.0483i 0.701072i
\(525\) 30.9925 1.35262
\(526\) 34.9255 1.52282
\(527\) 0 0
\(528\) −0.960434 −0.0417975
\(529\) 16.4890 0.716915
\(530\) − 34.6333i − 1.50437i
\(531\) 5.01933 0.217820
\(532\) − 12.2404i − 0.530688i
\(533\) 0.547682i 0.0237227i
\(534\) 8.00960i 0.346609i
\(535\) 10.1521 0.438914
\(536\) −0.304482 −0.0131516
\(537\) 1.10332i 0.0476116i
\(538\) 26.2480i 1.13163i
\(539\) − 1.55256i − 0.0668735i
\(540\) −5.10973 −0.219888
\(541\) 24.0286i 1.03307i 0.856267 + 0.516534i \(0.172778\pi\)
−0.856267 + 0.516534i \(0.827222\pi\)
\(542\) 36.8284 1.58191
\(543\) 15.4701 0.663886
\(544\) 0 0
\(545\) 30.9806 1.32706
\(546\) −6.28130 −0.268815
\(547\) 31.6304i 1.35242i 0.736710 + 0.676209i \(0.236378\pi\)
−0.736710 + 0.676209i \(0.763622\pi\)
\(548\) −10.1111 −0.431924
\(549\) 15.0353i 0.641693i
\(550\) 2.96043i 0.126233i
\(551\) − 5.04466i − 0.214910i
\(552\) −2.76190 −0.117554
\(553\) −19.7179 −0.838492
\(554\) − 39.5474i − 1.68021i
\(555\) 25.2220i 1.07062i
\(556\) − 15.5349i − 0.658826i
\(557\) −14.7772 −0.626131 −0.313065 0.949732i \(-0.601356\pi\)
−0.313065 + 0.949732i \(0.601356\pi\)
\(558\) − 8.75699i − 0.370713i
\(559\) −6.33561 −0.267968
\(560\) −67.1269 −2.83663
\(561\) 0 0
\(562\) 39.6657 1.67320
\(563\) 9.39006 0.395744 0.197872 0.980228i \(-0.436597\pi\)
0.197872 + 0.980228i \(0.436597\pi\)
\(564\) − 7.76696i − 0.327048i
\(565\) 13.8735 0.583663
\(566\) 36.6269i 1.53954i
\(567\) − 3.84776i − 0.161591i
\(568\) − 15.0866i − 0.633018i
\(569\) 23.3520 0.978968 0.489484 0.872012i \(-0.337185\pi\)
0.489484 + 0.872012i \(0.337185\pi\)
\(570\) −15.0176 −0.629018
\(571\) − 33.2405i − 1.39107i −0.718491 0.695537i \(-0.755167\pi\)
0.718491 0.695537i \(-0.244833\pi\)
\(572\) − 0.248527i − 0.0103914i
\(573\) 5.97069i 0.249429i
\(574\) 4.40743 0.183962
\(575\) 20.5528i 0.857111i
\(576\) 2.82843 0.117851
\(577\) 33.8072 1.40741 0.703705 0.710492i \(-0.251528\pi\)
0.703705 + 0.710492i \(0.251528\pi\)
\(578\) 0 0
\(579\) −11.0479 −0.459135
\(580\) 11.4593 0.475821
\(581\) − 36.6197i − 1.51924i
\(582\) 10.9932 0.455683
\(583\) 1.03188i 0.0427359i
\(584\) − 16.9287i − 0.700515i
\(585\) 3.19212i 0.131978i
\(586\) −37.6420 −1.55498
\(587\) −29.2440 −1.20703 −0.603514 0.797352i \(-0.706233\pi\)
−0.603514 + 0.797352i \(0.706233\pi\)
\(588\) 11.0383i 0.455211i
\(589\) − 10.6606i − 0.439262i
\(590\) 33.5100i 1.37958i
\(591\) −1.79467 −0.0738230
\(592\) − 33.7056i − 1.38529i
\(593\) −0.632327 −0.0259665 −0.0129833 0.999916i \(-0.504133\pi\)
−0.0129833 + 0.999916i \(0.504133\pi\)
\(594\) 0.367542 0.0150804
\(595\) 0 0
\(596\) 8.47793 0.347270
\(597\) 0.473428 0.0193761
\(598\) − 4.16547i − 0.170339i
\(599\) 8.12959 0.332166 0.166083 0.986112i \(-0.446888\pi\)
0.166083 + 0.986112i \(0.446888\pi\)
\(600\) 8.71832i 0.355924i
\(601\) 4.43330i 0.180838i 0.995904 + 0.0904191i \(0.0288207\pi\)
−0.995904 + 0.0904191i \(0.971179\pi\)
\(602\) 50.9853i 2.07801i
\(603\) 0.281305 0.0114556
\(604\) 16.2323 0.660483
\(605\) 39.6014i 1.61003i
\(606\) − 6.43060i − 0.261225i
\(607\) 24.1283i 0.979336i 0.871909 + 0.489668i \(0.162882\pi\)
−0.871909 + 0.489668i \(0.837118\pi\)
\(608\) 15.1994 0.616415
\(609\) 8.62914i 0.349670i
\(610\) −100.379 −4.06422
\(611\) −4.85213 −0.196296
\(612\) 0 0
\(613\) −0.549449 −0.0221921 −0.0110960 0.999938i \(-0.503532\pi\)
−0.0110960 + 0.999938i \(0.503532\pi\)
\(614\) 25.1809 1.01622
\(615\) − 2.23983i − 0.0903186i
\(616\) 0.828427 0.0333783
\(617\) − 0.0360068i − 0.00144958i −1.00000 0.000724790i \(-0.999769\pi\)
1.00000 0.000724790i \(-0.000230708\pi\)
\(618\) − 18.9671i − 0.762968i
\(619\) − 11.2011i − 0.450211i −0.974334 0.225105i \(-0.927727\pi\)
0.974334 0.225105i \(-0.0722726\pi\)
\(620\) 24.2163 0.972549
\(621\) 2.55166 0.102395
\(622\) 4.77791i 0.191577i
\(623\) − 16.6791i − 0.668235i
\(624\) − 4.26582i − 0.170769i
\(625\) −0.395541 −0.0158217
\(626\) − 7.30538i − 0.291982i
\(627\) 0.447439 0.0178690
\(628\) 8.21893 0.327971
\(629\) 0 0
\(630\) 25.6884 1.02345
\(631\) −9.12882 −0.363413 −0.181706 0.983353i \(-0.558162\pi\)
−0.181706 + 0.983353i \(0.558162\pi\)
\(632\) − 5.54675i − 0.220638i
\(633\) −1.03188 −0.0410134
\(634\) 61.9267i 2.45942i
\(635\) 66.1350i 2.62449i
\(636\) − 7.33636i − 0.290905i
\(637\) 6.89578 0.273221
\(638\) −0.824265 −0.0326330
\(639\) 13.9382i 0.551385i
\(640\) − 29.9446i − 1.18366i
\(641\) 34.7176i 1.37126i 0.727949 + 0.685631i \(0.240474\pi\)
−0.727949 + 0.685631i \(0.759526\pi\)
\(642\) 5.19181 0.204904
\(643\) − 14.6027i − 0.575876i −0.957649 0.287938i \(-0.907030\pi\)
0.957649 0.287938i \(-0.0929696\pi\)
\(644\) −13.8850 −0.547145
\(645\) 25.9104 1.02022
\(646\) 0 0
\(647\) 39.5994 1.55681 0.778407 0.627760i \(-0.216028\pi\)
0.778407 + 0.627760i \(0.216028\pi\)
\(648\) 1.08239 0.0425204
\(649\) − 0.998407i − 0.0391909i
\(650\) −13.1489 −0.515743
\(651\) 18.2355i 0.714705i
\(652\) − 7.64916i − 0.299564i
\(653\) − 39.7823i − 1.55680i −0.627769 0.778400i \(-0.716032\pi\)
0.627769 0.778400i \(-0.283968\pi\)
\(654\) 15.8435 0.619531
\(655\) −41.0012 −1.60205
\(656\) 2.99321i 0.116865i
\(657\) 15.6401i 0.610178i
\(658\) 39.0471i 1.52222i
\(659\) −16.4351 −0.640219 −0.320109 0.947381i \(-0.603720\pi\)
−0.320109 + 0.947381i \(0.603720\pi\)
\(660\) 1.01639i 0.0395629i
\(661\) 34.4462 1.33980 0.669902 0.742450i \(-0.266336\pi\)
0.669902 + 0.742450i \(0.266336\pi\)
\(662\) 35.6687 1.38630
\(663\) 0 0
\(664\) 10.3013 0.399768
\(665\) 31.2725 1.21270
\(666\) 12.8986i 0.499810i
\(667\) −5.72245 −0.221574
\(668\) 4.61087i 0.178400i
\(669\) − 11.9018i − 0.460149i
\(670\) 1.87804i 0.0725551i
\(671\) 2.99072 0.115455
\(672\) −25.9993 −1.00294
\(673\) − 33.7812i − 1.30217i −0.759006 0.651084i \(-0.774314\pi\)
0.759006 0.651084i \(-0.225686\pi\)
\(674\) − 32.1736i − 1.23928i
\(675\) − 8.05468i − 0.310025i
\(676\) −17.2809 −0.664651
\(677\) 13.3292i 0.512281i 0.966640 + 0.256141i \(0.0824510\pi\)
−0.966640 + 0.256141i \(0.917549\pi\)
\(678\) 7.09494 0.272479
\(679\) −22.8922 −0.878521
\(680\) 0 0
\(681\) 19.9555 0.764697
\(682\) −1.74187 −0.0666998
\(683\) 25.7636i 0.985816i 0.870081 + 0.492908i \(0.164066\pi\)
−0.870081 + 0.492908i \(0.835934\pi\)
\(684\) −3.18117 −0.121635
\(685\) − 25.8325i − 0.987007i
\(686\) − 5.72511i − 0.218586i
\(687\) 0.0263629i 0.00100581i
\(688\) −34.6256 −1.32009
\(689\) −4.58313 −0.174603
\(690\) 17.0353i 0.648525i
\(691\) 6.11745i 0.232719i 0.993207 + 0.116359i \(0.0371225\pi\)
−0.993207 + 0.116359i \(0.962878\pi\)
\(692\) 23.8145i 0.905291i
\(693\) −0.765367 −0.0290739
\(694\) − 57.4819i − 2.18198i
\(695\) 39.6896 1.50551
\(696\) −2.42742 −0.0920110
\(697\) 0 0
\(698\) −55.5080 −2.10101
\(699\) 22.6706 0.857481
\(700\) 43.8300i 1.65662i
\(701\) 18.4012 0.695005 0.347503 0.937679i \(-0.387030\pi\)
0.347503 + 0.937679i \(0.387030\pi\)
\(702\) 1.63246i 0.0616132i
\(703\) 15.7025i 0.592232i
\(704\) − 0.562609i − 0.0212041i
\(705\) 19.8435 0.747351
\(706\) 31.9382 1.20201
\(707\) 13.3910i 0.503622i
\(708\) 7.09841i 0.266774i
\(709\) 14.2577i 0.535460i 0.963494 + 0.267730i \(0.0862735\pi\)
−0.963494 + 0.267730i \(0.913726\pi\)
\(710\) −93.0537 −3.49224
\(711\) 5.12453i 0.192185i
\(712\) 4.69192 0.175837
\(713\) −12.0929 −0.452884
\(714\) 0 0
\(715\) 0.634953 0.0237459
\(716\) −1.56033 −0.0583121
\(717\) − 10.3205i − 0.385426i
\(718\) 54.2419 2.02429
\(719\) 30.4760i 1.13656i 0.822834 + 0.568282i \(0.192392\pi\)
−0.822834 + 0.568282i \(0.807608\pi\)
\(720\) 17.4457i 0.650163i
\(721\) 39.4969i 1.47094i
\(722\) 25.7579 0.958609
\(723\) 4.95524 0.184287
\(724\) 21.8780i 0.813091i
\(725\) 18.0638i 0.670871i
\(726\) 20.2522i 0.751631i
\(727\) 46.6448 1.72996 0.864980 0.501806i \(-0.167331\pi\)
0.864980 + 0.501806i \(0.167331\pi\)
\(728\) 3.67950i 0.136371i
\(729\) −1.00000 −0.0370370
\(730\) −104.416 −3.86462
\(731\) 0 0
\(732\) −21.2632 −0.785910
\(733\) 40.8084 1.50729 0.753647 0.657279i \(-0.228293\pi\)
0.753647 + 0.657279i \(0.228293\pi\)
\(734\) − 22.9860i − 0.848431i
\(735\) −28.2014 −1.04022
\(736\) − 17.2415i − 0.635531i
\(737\) − 0.0559550i − 0.00206113i
\(738\) − 1.14545i − 0.0421647i
\(739\) −37.9474 −1.39592 −0.697959 0.716138i \(-0.745908\pi\)
−0.697959 + 0.716138i \(0.745908\pi\)
\(740\) −35.6693 −1.31123
\(741\) 1.98733i 0.0730062i
\(742\) 36.8824i 1.35399i
\(743\) − 1.86619i − 0.0684638i −0.999414 0.0342319i \(-0.989102\pi\)
0.999414 0.0342319i \(-0.0108985\pi\)
\(744\) −5.12972 −0.188065
\(745\) 21.6600i 0.793560i
\(746\) −33.7840 −1.23692
\(747\) −9.51716 −0.348215
\(748\) 0 0
\(749\) −10.8114 −0.395039
\(750\) 20.3936 0.744669
\(751\) − 39.1778i − 1.42962i −0.699319 0.714810i \(-0.746513\pi\)
0.699319 0.714810i \(-0.253487\pi\)
\(752\) −26.5181 −0.967014
\(753\) − 27.6021i − 1.00588i
\(754\) − 3.66102i − 0.133326i
\(755\) 41.4713i 1.50930i
\(756\) 5.44155 0.197907
\(757\) −24.3356 −0.884493 −0.442246 0.896894i \(-0.645818\pi\)
−0.442246 + 0.896894i \(0.645818\pi\)
\(758\) 6.51164i 0.236514i
\(759\) − 0.507556i − 0.0184231i
\(760\) 8.79711i 0.319105i
\(761\) −25.3506 −0.918957 −0.459479 0.888189i \(-0.651964\pi\)
−0.459479 + 0.888189i \(0.651964\pi\)
\(762\) 33.8216i 1.22523i
\(763\) −32.9925 −1.19441
\(764\) −8.44384 −0.305487
\(765\) 0 0
\(766\) −61.4533 −2.22040
\(767\) 4.43448 0.160120
\(768\) − 20.9706i − 0.756710i
\(769\) 10.7211 0.386614 0.193307 0.981138i \(-0.438079\pi\)
0.193307 + 0.981138i \(0.438079\pi\)
\(770\) − 5.10973i − 0.184142i
\(771\) 24.6239i 0.886810i
\(772\) − 15.6241i − 0.562323i
\(773\) 51.2753 1.84424 0.922122 0.386900i \(-0.126454\pi\)
0.922122 + 0.386900i \(0.126454\pi\)
\(774\) 13.2506 0.476285
\(775\) 38.1731i 1.37122i
\(776\) − 6.43967i − 0.231171i
\(777\) − 26.8599i − 0.963595i
\(778\) 18.5067 0.663496
\(779\) − 1.39445i − 0.0499615i
\(780\) −4.51434 −0.161639
\(781\) 2.77247 0.0992069
\(782\) 0 0
\(783\) 2.24264 0.0801454
\(784\) 37.6871 1.34597
\(785\) 20.9983i 0.749461i
\(786\) −20.9681 −0.747906
\(787\) − 22.2791i − 0.794162i −0.917783 0.397081i \(-0.870023\pi\)
0.917783 0.397081i \(-0.129977\pi\)
\(788\) − 2.53805i − 0.0904143i
\(789\) 18.9015i 0.672912i
\(790\) −34.2123 −1.21722
\(791\) −14.7744 −0.525319
\(792\) − 0.215301i − 0.00765039i
\(793\) 13.2834i 0.471708i
\(794\) − 58.0404i − 2.05978i
\(795\) 18.7434 0.664760
\(796\) 0.669529i 0.0237308i
\(797\) 12.5375 0.444102 0.222051 0.975035i \(-0.428725\pi\)
0.222051 + 0.975035i \(0.428725\pi\)
\(798\) 15.9928 0.566140
\(799\) 0 0
\(800\) −54.4253 −1.92423
\(801\) −4.33476 −0.153161
\(802\) − 1.34752i − 0.0475826i
\(803\) 3.11101 0.109785
\(804\) 0.397825i 0.0140302i
\(805\) − 35.4743i − 1.25030i
\(806\) − 7.73662i − 0.272511i
\(807\) −14.2053 −0.500051
\(808\) −3.76696 −0.132521
\(809\) 9.29316i 0.326730i 0.986566 + 0.163365i \(0.0522348\pi\)
−0.986566 + 0.163365i \(0.947765\pi\)
\(810\) − 6.67619i − 0.234577i
\(811\) − 11.2858i − 0.396299i −0.980172 0.198150i \(-0.936507\pi\)
0.980172 0.198150i \(-0.0634932\pi\)
\(812\) −12.2034 −0.428257
\(813\) 19.9314i 0.699024i
\(814\) 2.56569 0.0899274
\(815\) 19.5426 0.684547
\(816\) 0 0
\(817\) 16.1311 0.564356
\(818\) −47.8707 −1.67376
\(819\) − 3.39942i − 0.118785i
\(820\) 3.16760 0.110617
\(821\) 8.30636i 0.289894i 0.989439 + 0.144947i \(0.0463012\pi\)
−0.989439 + 0.144947i \(0.953699\pi\)
\(822\) − 13.2108i − 0.460778i
\(823\) − 18.6249i − 0.649224i −0.945847 0.324612i \(-0.894766\pi\)
0.945847 0.324612i \(-0.105234\pi\)
\(824\) −11.1107 −0.387058
\(825\) −1.60218 −0.0557806
\(826\) − 35.6861i − 1.24168i
\(827\) 27.8659i 0.968992i 0.874793 + 0.484496i \(0.160997\pi\)
−0.874793 + 0.484496i \(0.839003\pi\)
\(828\) 3.60859i 0.125407i
\(829\) 12.4653 0.432937 0.216469 0.976290i \(-0.430546\pi\)
0.216469 + 0.976290i \(0.430546\pi\)
\(830\) − 63.5383i − 2.20545i
\(831\) 21.4029 0.742458
\(832\) 2.49886 0.0866323
\(833\) 0 0
\(834\) 20.2973 0.702839
\(835\) −11.7802 −0.407669
\(836\) 0.632775i 0.0218850i
\(837\) 4.73925 0.163812
\(838\) 60.6444i 2.09493i
\(839\) 43.2106i 1.49179i 0.666061 + 0.745897i \(0.267979\pi\)
−0.666061 + 0.745897i \(0.732021\pi\)
\(840\) − 15.0479i − 0.519202i
\(841\) 23.9706 0.826571
\(842\) 11.7544 0.405084
\(843\) 21.4669i 0.739360i
\(844\) − 1.45929i − 0.0502309i
\(845\) − 44.1505i − 1.51882i
\(846\) 10.1480 0.348896
\(847\) − 42.1731i − 1.44909i
\(848\) −25.0479 −0.860148
\(849\) −19.8223 −0.680301
\(850\) 0 0
\(851\) 17.8123 0.610597
\(852\) −19.7115 −0.675306
\(853\) 9.75164i 0.333890i 0.985966 + 0.166945i \(0.0533902\pi\)
−0.985966 + 0.166945i \(0.946610\pi\)
\(854\) 106.897 3.65795
\(855\) − 8.12747i − 0.277954i
\(856\) − 3.04129i − 0.103949i
\(857\) − 23.9998i − 0.819817i −0.912127 0.409908i \(-0.865561\pi\)
0.912127 0.409908i \(-0.134439\pi\)
\(858\) 0.324716 0.0110856
\(859\) 16.5708 0.565389 0.282695 0.959210i \(-0.408772\pi\)
0.282695 + 0.959210i \(0.408772\pi\)
\(860\) 36.6429i 1.24951i
\(861\) 2.38528i 0.0812902i
\(862\) − 16.7065i − 0.569025i
\(863\) 56.5312 1.92435 0.962173 0.272440i \(-0.0878306\pi\)
0.962173 + 0.272440i \(0.0878306\pi\)
\(864\) 6.75699i 0.229877i
\(865\) −60.8428 −2.06872
\(866\) 11.2548 0.382454
\(867\) 0 0
\(868\) −25.7889 −0.875331
\(869\) 1.01933 0.0345785
\(870\) 14.9723i 0.507608i
\(871\) 0.248527 0.00842101
\(872\) − 9.28093i − 0.314292i
\(873\) 5.94948i 0.201359i
\(874\) 10.6057i 0.358744i
\(875\) −42.4675 −1.43566
\(876\) −22.1184 −0.747312
\(877\) 40.1731i 1.35655i 0.734808 + 0.678275i \(0.237272\pi\)
−0.734808 + 0.678275i \(0.762728\pi\)
\(878\) 57.7300i 1.94829i
\(879\) − 20.3717i − 0.687121i
\(880\) 3.47017 0.116979
\(881\) − 11.1607i − 0.376013i −0.982168 0.188007i \(-0.939797\pi\)
0.982168 0.188007i \(-0.0602027\pi\)
\(882\) −14.4222 −0.485621
\(883\) 39.5682 1.33158 0.665789 0.746140i \(-0.268095\pi\)
0.665789 + 0.746140i \(0.268095\pi\)
\(884\) 0 0
\(885\) −18.1355 −0.609617
\(886\) 16.4557 0.552840
\(887\) − 42.3289i − 1.42126i −0.703564 0.710632i \(-0.748409\pi\)
0.703564 0.710632i \(-0.251591\pi\)
\(888\) 7.55582 0.253557
\(889\) − 70.4298i − 2.36214i
\(890\) − 28.9397i − 0.970061i
\(891\) 0.198912i 0.00666382i
\(892\) 16.8317 0.563566
\(893\) 12.3540 0.413412
\(894\) 11.0770i 0.370469i
\(895\) − 3.98642i − 0.133251i
\(896\) 31.8891i 1.06534i
\(897\) 2.25434 0.0752702
\(898\) 32.0656i 1.07004i
\(899\) −10.6284 −0.354478
\(900\) 11.3910 0.379701
\(901\) 0 0
\(902\) −0.227845 −0.00758640
\(903\) −27.5930 −0.918239
\(904\) − 4.15612i − 0.138230i
\(905\) −55.8955 −1.85803
\(906\) 21.2085i 0.704606i
\(907\) 20.4637i 0.679487i 0.940518 + 0.339743i \(0.110340\pi\)
−0.940518 + 0.339743i \(0.889660\pi\)
\(908\) 28.2214i 0.936559i
\(909\) 3.48022 0.115432
\(910\) 22.6951 0.752337
\(911\) 2.27804i 0.0754750i 0.999288 + 0.0377375i \(0.0120151\pi\)
−0.999288 + 0.0377375i \(0.987985\pi\)
\(912\) 10.8612i 0.359650i
\(913\) 1.89308i 0.0626518i
\(914\) 45.9394 1.51954
\(915\) − 54.3246i − 1.79592i
\(916\) −0.0372828 −0.00123186
\(917\) 43.6637 1.44190
\(918\) 0 0
\(919\) 36.0659 1.18970 0.594851 0.803836i \(-0.297211\pi\)
0.594851 + 0.803836i \(0.297211\pi\)
\(920\) 9.97908 0.329000
\(921\) 13.6278i 0.449051i
\(922\) 21.0434 0.693028
\(923\) 12.3141i 0.405323i
\(924\) − 1.08239i − 0.0356081i
\(925\) − 56.2270i − 1.84873i
\(926\) 46.1327 1.51602
\(927\) 10.2649 0.337144
\(928\) − 15.1535i − 0.497438i
\(929\) 55.4122i 1.81802i 0.416779 + 0.909008i \(0.363159\pi\)
−0.416779 + 0.909008i \(0.636841\pi\)
\(930\) 31.6401i 1.03752i
\(931\) −17.5574 −0.575419
\(932\) 32.0611i 1.05020i
\(933\) −2.58579 −0.0846548
\(934\) 6.14023 0.200914
\(935\) 0 0
\(936\) 0.956272 0.0312567
\(937\) −40.8695 −1.33515 −0.667575 0.744543i \(-0.732668\pi\)
−0.667575 + 0.744543i \(0.732668\pi\)
\(938\) − 2.00000i − 0.0653023i
\(939\) 3.95365 0.129022
\(940\) 28.0630i 0.915314i
\(941\) 15.3536i 0.500515i 0.968179 + 0.250257i \(0.0805152\pi\)
−0.968179 + 0.250257i \(0.919485\pi\)
\(942\) 10.7386i 0.349881i
\(943\) −1.58181 −0.0515108
\(944\) 24.2355 0.788798
\(945\) 13.9024i 0.452246i
\(946\) − 2.63572i − 0.0856946i
\(947\) 40.8888i 1.32871i 0.747419 + 0.664353i \(0.231293\pi\)
−0.747419 + 0.664353i \(0.768707\pi\)
\(948\) −7.24718 −0.235377
\(949\) 13.8177i 0.448542i
\(950\) 33.4785 1.08619
\(951\) −33.5145 −1.08678
\(952\) 0 0
\(953\) −25.5007 −0.826050 −0.413025 0.910720i \(-0.635528\pi\)
−0.413025 + 0.910720i \(0.635528\pi\)
\(954\) 9.58541 0.310339
\(955\) − 21.5729i − 0.698082i
\(956\) 14.5954 0.472049
\(957\) − 0.446089i − 0.0144200i
\(958\) 0.570990i 0.0184479i
\(959\) 27.5100i 0.888344i
\(960\) −10.2195 −0.329832
\(961\) 8.53954 0.275469
\(962\) 11.3956i 0.367410i
\(963\) 2.80979i 0.0905441i
\(964\) 7.00777i 0.225705i
\(965\) 39.9174 1.28499
\(966\) − 18.1416i − 0.583697i
\(967\) −12.0223 −0.386610 −0.193305 0.981139i \(-0.561921\pi\)
−0.193305 + 0.981139i \(0.561921\pi\)
\(968\) 11.8635 0.381307
\(969\) 0 0
\(970\) −39.7199 −1.27533
\(971\) −48.0362 −1.54155 −0.770777 0.637105i \(-0.780132\pi\)
−0.770777 + 0.637105i \(0.780132\pi\)
\(972\) − 1.41421i − 0.0453609i
\(973\) −42.2670 −1.35502
\(974\) − 60.3248i − 1.93293i
\(975\) − 7.11615i − 0.227899i
\(976\) 72.5971i 2.32378i
\(977\) −29.7041 −0.950319 −0.475160 0.879900i \(-0.657610\pi\)
−0.475160 + 0.879900i \(0.657610\pi\)
\(978\) 9.99411 0.319577
\(979\) 0.862238i 0.0275573i
\(980\) − 39.8827i − 1.27401i
\(981\) 8.57446i 0.273762i
\(982\) 40.1100 1.27996
\(983\) − 3.92774i − 0.125275i −0.998036 0.0626377i \(-0.980049\pi\)
0.998036 0.0626377i \(-0.0199513\pi\)
\(984\) −0.670991 −0.0213904
\(985\) 6.48438 0.206609
\(986\) 0 0
\(987\) −21.1322 −0.672644
\(988\) −2.81050 −0.0894140
\(989\) − 18.2985i − 0.581857i
\(990\) −1.32798 −0.0422058
\(991\) − 9.02869i − 0.286806i −0.989664 0.143403i \(-0.954196\pi\)
0.989664 0.143403i \(-0.0458045\pi\)
\(992\) − 32.0230i − 1.01673i
\(993\) 19.3037i 0.612585i
\(994\) 99.0966 3.14315
\(995\) −1.71056 −0.0542283
\(996\) − 13.4593i − 0.426474i
\(997\) − 36.7176i − 1.16286i −0.813597 0.581430i \(-0.802494\pi\)
0.813597 0.581430i \(-0.197506\pi\)
\(998\) − 4.13715i − 0.130959i
\(999\) −6.98067 −0.220859
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 867.2.d.e.577.1 8
17.2 even 8 867.2.e.h.829.1 8
17.3 odd 16 867.2.h.b.688.1 8
17.4 even 4 867.2.a.m.1.4 4
17.5 odd 16 867.2.h.g.757.2 8
17.6 odd 16 867.2.h.f.712.1 8
17.7 odd 16 51.2.h.a.19.2 8
17.8 even 8 867.2.e.h.616.4 8
17.9 even 8 867.2.e.i.616.4 8
17.10 odd 16 867.2.h.g.733.2 8
17.11 odd 16 867.2.h.b.712.1 8
17.12 odd 16 51.2.h.a.43.2 yes 8
17.13 even 4 867.2.a.n.1.4 4
17.14 odd 16 867.2.h.f.688.1 8
17.15 even 8 867.2.e.i.829.1 8
17.16 even 2 inner 867.2.d.e.577.2 8
51.29 even 16 153.2.l.e.145.1 8
51.38 odd 4 2601.2.a.bc.1.1 4
51.41 even 16 153.2.l.e.19.1 8
51.47 odd 4 2601.2.a.bd.1.1 4
68.7 even 16 816.2.bq.a.529.2 8
68.63 even 16 816.2.bq.a.145.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.2.h.a.19.2 8 17.7 odd 16
51.2.h.a.43.2 yes 8 17.12 odd 16
153.2.l.e.19.1 8 51.41 even 16
153.2.l.e.145.1 8 51.29 even 16
816.2.bq.a.145.2 8 68.63 even 16
816.2.bq.a.529.2 8 68.7 even 16
867.2.a.m.1.4 4 17.4 even 4
867.2.a.n.1.4 4 17.13 even 4
867.2.d.e.577.1 8 1.1 even 1 trivial
867.2.d.e.577.2 8 17.16 even 2 inner
867.2.e.h.616.4 8 17.8 even 8
867.2.e.h.829.1 8 17.2 even 8
867.2.e.i.616.4 8 17.9 even 8
867.2.e.i.829.1 8 17.15 even 8
867.2.h.b.688.1 8 17.3 odd 16
867.2.h.b.712.1 8 17.11 odd 16
867.2.h.f.688.1 8 17.14 odd 16
867.2.h.f.712.1 8 17.6 odd 16
867.2.h.g.733.2 8 17.10 odd 16
867.2.h.g.757.2 8 17.5 odd 16
2601.2.a.bc.1.1 4 51.38 odd 4
2601.2.a.bd.1.1 4 51.47 odd 4