Properties

Label 867.2.d.e
Level $867$
Weight $2$
Character orbit 867.d
Analytic conductor $6.923$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [867,2,Mod(577,867)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(867, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("867.577"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 867 = 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 867.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.92302985525\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 51)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{7} q^{2} + \beta_1 q^{3} - \beta_{6} q^{4} + (\beta_{4} - \beta_{2} - \beta_1) q^{5} + \beta_{4} q^{6} + ( - \beta_{4} + 2 \beta_1) q^{7} + ( - \beta_{7} - \beta_{5}) q^{8} - q^{9} + ( - \beta_{4} - 2 \beta_{3} + 2 \beta_1) q^{10}+ \cdots + ( - \beta_{4} + \beta_{3} + \cdots - \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{9} - 8 q^{13} + 8 q^{15} - 16 q^{16} + 24 q^{19} - 16 q^{21} - 16 q^{30} - 8 q^{33} + 32 q^{35} + 32 q^{38} + 16 q^{42} - 8 q^{43} + 16 q^{47} + 8 q^{49} + 32 q^{50} - 16 q^{52} - 16 q^{53} - 24 q^{55}+ \cdots + 64 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( \zeta_{16}^{4} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \zeta_{16}^{5} + \zeta_{16}^{3} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \zeta_{16}^{6} + \zeta_{16}^{2} \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \zeta_{16}^{7} + \zeta_{16} \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( -\zeta_{16}^{7} + \zeta_{16} \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( -\zeta_{16}^{6} + \zeta_{16}^{2} \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( -\zeta_{16}^{5} + \zeta_{16}^{3} \) Copy content Toggle raw display
\(\zeta_{16}\)\(=\) \( ( \beta_{5} + \beta_{4} ) / 2 \) Copy content Toggle raw display
\(\zeta_{16}^{2}\)\(=\) \( ( \beta_{6} + \beta_{3} ) / 2 \) Copy content Toggle raw display
\(\zeta_{16}^{3}\)\(=\) \( ( \beta_{7} + \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\zeta_{16}^{4}\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\zeta_{16}^{5}\)\(=\) \( ( -\beta_{7} + \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\zeta_{16}^{6}\)\(=\) \( ( -\beta_{6} + \beta_{3} ) / 2 \) Copy content Toggle raw display
\(\zeta_{16}^{7}\)\(=\) \( ( -\beta_{5} + \beta_{4} ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/867\mathbb{Z}\right)^\times\).

\(n\) \(290\) \(292\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
577.1
0.382683 + 0.923880i
0.382683 0.923880i
−0.923880 + 0.382683i
−0.923880 0.382683i
0.923880 0.382683i
0.923880 + 0.382683i
−0.382683 0.923880i
−0.382683 + 0.923880i
−1.84776 1.00000i 1.41421 3.61313i 1.84776i 3.84776i 1.08239 −1.00000 6.67619i
577.2 −1.84776 1.00000i 1.41421 3.61313i 1.84776i 3.84776i 1.08239 −1.00000 6.67619i
577.3 −0.765367 1.00000i −1.41421 0.0823922i 0.765367i 2.76537i 2.61313 −1.00000 0.0630603i
577.4 −0.765367 1.00000i −1.41421 0.0823922i 0.765367i 2.76537i 2.61313 −1.00000 0.0630603i
577.5 0.765367 1.00000i −1.41421 2.08239i 0.765367i 1.23463i −2.61313 −1.00000 1.59379i
577.6 0.765367 1.00000i −1.41421 2.08239i 0.765367i 1.23463i −2.61313 −1.00000 1.59379i
577.7 1.84776 1.00000i 1.41421 1.61313i 1.84776i 0.152241i −1.08239 −1.00000 2.98067i
577.8 1.84776 1.00000i 1.41421 1.61313i 1.84776i 0.152241i −1.08239 −1.00000 2.98067i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 577.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 867.2.d.e 8
17.b even 2 1 inner 867.2.d.e 8
17.c even 4 1 867.2.a.m 4
17.c even 4 1 867.2.a.n 4
17.d even 8 2 867.2.e.h 8
17.d even 8 2 867.2.e.i 8
17.e odd 16 2 51.2.h.a 8
17.e odd 16 2 867.2.h.b 8
17.e odd 16 2 867.2.h.f 8
17.e odd 16 2 867.2.h.g 8
51.f odd 4 1 2601.2.a.bc 4
51.f odd 4 1 2601.2.a.bd 4
51.i even 16 2 153.2.l.e 8
68.i even 16 2 816.2.bq.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
51.2.h.a 8 17.e odd 16 2
153.2.l.e 8 51.i even 16 2
816.2.bq.a 8 68.i even 16 2
867.2.a.m 4 17.c even 4 1
867.2.a.n 4 17.c even 4 1
867.2.d.e 8 1.a even 1 1 trivial
867.2.d.e 8 17.b even 2 1 inner
867.2.e.h 8 17.d even 8 2
867.2.e.i 8 17.d even 8 2
867.2.h.b 8 17.e odd 16 2
867.2.h.f 8 17.e odd 16 2
867.2.h.g 8 17.e odd 16 2
2601.2.a.bc 4 51.f odd 4 1
2601.2.a.bd 4 51.f odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} - 4T_{2}^{2} + 2 \) acting on \(S_{2}^{\mathrm{new}}(867, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{4} - 4 T^{2} + 2)^{2} \) Copy content Toggle raw display
$3$ \( (T^{2} + 1)^{4} \) Copy content Toggle raw display
$5$ \( T^{8} + 20 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( T^{8} + 24 T^{6} + \cdots + 4 \) Copy content Toggle raw display
$11$ \( T^{8} + 28 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$13$ \( (T^{4} + 4 T^{3} - 14 T^{2} + \cdots - 47)^{2} \) Copy content Toggle raw display
$17$ \( T^{8} \) Copy content Toggle raw display
$19$ \( (T^{4} - 12 T^{3} + \cdots - 367)^{2} \) Copy content Toggle raw display
$23$ \( T^{8} + 116 T^{6} + \cdots + 73441 \) Copy content Toggle raw display
$29$ \( (T^{4} + 44 T^{2} + 196)^{2} \) Copy content Toggle raw display
$31$ \( T^{8} + 160 T^{6} + \cdots + 399424 \) Copy content Toggle raw display
$37$ \( T^{8} + 184 T^{6} + \cdots + 498436 \) Copy content Toggle raw display
$41$ \( T^{8} + 148 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$43$ \( (T^{4} + 4 T^{3} + \cdots + 1297)^{2} \) Copy content Toggle raw display
$47$ \( (T^{4} - 8 T^{3} + \cdots - 752)^{2} \) Copy content Toggle raw display
$53$ \( (T^{4} + 8 T^{3} + \cdots + 496)^{2} \) Copy content Toggle raw display
$59$ \( (T^{4} + 24 T^{3} + \cdots + 514)^{2} \) Copy content Toggle raw display
$61$ \( T^{8} + 312 T^{6} + \cdots + 1110916 \) Copy content Toggle raw display
$67$ \( (T^{4} - 8 T^{3} + 4 T^{2} + \cdots + 4)^{2} \) Copy content Toggle raw display
$71$ \( T^{8} + 248 T^{6} + \cdots + 4624 \) Copy content Toggle raw display
$73$ \( T^{8} + 560 T^{6} + \cdots + 565504 \) Copy content Toggle raw display
$79$ \( T^{8} + 104 T^{6} + \cdots + 3844 \) Copy content Toggle raw display
$83$ \( (T^{4} + 8 T^{3} + \cdots - 272)^{2} \) Copy content Toggle raw display
$89$ \( (T^{4} - 16 T^{3} + \cdots - 2558)^{2} \) Copy content Toggle raw display
$97$ \( T^{8} + 176 T^{6} + \cdots + 399424 \) Copy content Toggle raw display
show more
show less