Properties

Label 867.2.e.h.829.1
Level $867$
Weight $2$
Character 867.829
Analytic conductor $6.923$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [867,2,Mod(616,867)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(867, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("867.616"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 867 = 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 867.e (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.92302985525\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 51)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 829.1
Root \(-0.923880 - 0.382683i\) of defining polynomial
Character \(\chi\) \(=\) 867.829
Dual form 867.2.e.h.616.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.84776i q^{2} +(-0.707107 - 0.707107i) q^{3} -1.41421 q^{4} +(-2.55487 - 2.55487i) q^{5} +(-1.30656 + 1.30656i) q^{6} +(-2.72078 + 2.72078i) q^{7} -1.08239i q^{8} +1.00000i q^{9} +(-4.72078 + 4.72078i) q^{10} +(-0.140652 + 0.140652i) q^{11} +(1.00000 + 1.00000i) q^{12} +0.883480 q^{13} +(5.02734 + 5.02734i) q^{14} +3.61313i q^{15} -4.82843 q^{16} +1.84776 q^{18} +2.24943i q^{19} +(3.61313 + 3.61313i) q^{20} +3.84776 q^{21} +(0.259892 + 0.259892i) q^{22} +(1.80430 - 1.80430i) q^{23} +(-0.765367 + 0.765367i) q^{24} +8.05468i q^{25} -1.63246i q^{26} +(0.707107 - 0.707107i) q^{27} +(3.84776 - 3.84776i) q^{28} +(1.58579 + 1.58579i) q^{29} +6.67619 q^{30} +(-3.35115 - 3.35115i) q^{31} +6.75699i q^{32} +0.198912 q^{33} +13.9024 q^{35} -1.41421i q^{36} +(4.93608 + 4.93608i) q^{37} +4.15640 q^{38} +(-0.624715 - 0.624715i) q^{39} +(-2.76537 + 2.76537i) q^{40} +(-0.438346 + 0.438346i) q^{41} -7.10973i q^{42} -7.17120i q^{43} +(0.198912 - 0.198912i) q^{44} +(2.55487 - 2.55487i) q^{45} +(-3.33390 - 3.33390i) q^{46} -5.49207 q^{47} +(3.41421 + 3.41421i) q^{48} -7.80525i q^{49} +14.8831 q^{50} -1.24943 q^{52} +5.18759i q^{53} +(-1.30656 - 1.30656i) q^{54} +0.718695 q^{55} +(2.94495 + 2.94495i) q^{56} +(1.59059 - 1.59059i) q^{57} +(2.93015 - 2.93015i) q^{58} +5.01933i q^{59} -5.10973i q^{60} +(-10.6316 + 10.6316i) q^{61} +(-6.19212 + 6.19212i) q^{62} +(-2.72078 - 2.72078i) q^{63} +2.82843 q^{64} +(-2.25717 - 2.25717i) q^{65} -0.367542i q^{66} -0.281305 q^{67} -2.55166 q^{69} -25.6884i q^{70} +(-9.85577 - 9.85577i) q^{71} +1.08239 q^{72} +(11.0592 + 11.0592i) q^{73} +(9.12068 - 9.12068i) q^{74} +(5.69552 - 5.69552i) q^{75} -3.18117i q^{76} -0.765367i q^{77} +(-1.15432 + 1.15432i) q^{78} +(3.62359 - 3.62359i) q^{79} +(12.3360 + 12.3360i) q^{80} -1.00000 q^{81} +(0.809957 + 0.809957i) q^{82} +9.51716i q^{83} -5.44155 q^{84} -13.2506 q^{86} -2.24264i q^{87} +(0.152241 + 0.152241i) q^{88} -4.33476 q^{89} +(-4.72078 - 4.72078i) q^{90} +(-2.40375 + 2.40375i) q^{91} +(-2.55166 + 2.55166i) q^{92} +4.73925i q^{93} +10.1480i q^{94} +(5.74699 - 5.74699i) q^{95} +(4.77791 - 4.77791i) q^{96} +(4.20692 + 4.20692i) q^{97} -14.4222 q^{98} +(-0.140652 - 0.140652i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 16 q^{10} + 8 q^{11} + 8 q^{12} + 8 q^{13} + 8 q^{14} - 16 q^{16} + 8 q^{20} + 16 q^{21} + 16 q^{22} + 16 q^{28} + 24 q^{29} + 16 q^{30} - 32 q^{31} - 8 q^{33} + 32 q^{35} + 16 q^{37} - 32 q^{38}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/867\mathbb{Z}\right)^\times\).

\(n\) \(290\) \(292\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.84776i 1.30656i −0.757115 0.653281i \(-0.773392\pi\)
0.757115 0.653281i \(-0.226608\pi\)
\(3\) −0.707107 0.707107i −0.408248 0.408248i
\(4\) −1.41421 −0.707107
\(5\) −2.55487 2.55487i −1.14257 1.14257i −0.987978 0.154592i \(-0.950594\pi\)
−0.154592 0.987978i \(-0.549406\pi\)
\(6\) −1.30656 + 1.30656i −0.533402 + 0.533402i
\(7\) −2.72078 + 2.72078i −1.02836 + 1.02836i −0.0287708 + 0.999586i \(0.509159\pi\)
−0.999586 + 0.0287708i \(0.990841\pi\)
\(8\) 1.08239i 0.382683i
\(9\) 1.00000i 0.333333i
\(10\) −4.72078 + 4.72078i −1.49284 + 1.49284i
\(11\) −0.140652 + 0.140652i −0.0424083 + 0.0424083i −0.727993 0.685585i \(-0.759547\pi\)
0.685585 + 0.727993i \(0.259547\pi\)
\(12\) 1.00000 + 1.00000i 0.288675 + 0.288675i
\(13\) 0.883480 0.245033 0.122517 0.992466i \(-0.460904\pi\)
0.122517 + 0.992466i \(0.460904\pi\)
\(14\) 5.02734 + 5.02734i 1.34361 + 1.34361i
\(15\) 3.61313i 0.932905i
\(16\) −4.82843 −1.20711
\(17\) 0 0
\(18\) 1.84776 0.435521
\(19\) 2.24943i 0.516054i 0.966138 + 0.258027i \(0.0830724\pi\)
−0.966138 + 0.258027i \(0.916928\pi\)
\(20\) 3.61313 + 3.61313i 0.807920 + 0.807920i
\(21\) 3.84776 0.839650
\(22\) 0.259892 + 0.259892i 0.0554091 + 0.0554091i
\(23\) 1.80430 1.80430i 0.376222 0.376222i −0.493515 0.869737i \(-0.664288\pi\)
0.869737 + 0.493515i \(0.164288\pi\)
\(24\) −0.765367 + 0.765367i −0.156230 + 0.156230i
\(25\) 8.05468i 1.61094i
\(26\) 1.63246i 0.320151i
\(27\) 0.707107 0.707107i 0.136083 0.136083i
\(28\) 3.84776 3.84776i 0.727158 0.727158i
\(29\) 1.58579 + 1.58579i 0.294473 + 0.294473i 0.838844 0.544371i \(-0.183232\pi\)
−0.544371 + 0.838844i \(0.683232\pi\)
\(30\) 6.67619 1.21890
\(31\) −3.35115 3.35115i −0.601885 0.601885i 0.338928 0.940812i \(-0.389936\pi\)
−0.940812 + 0.338928i \(0.889936\pi\)
\(32\) 6.75699i 1.19448i
\(33\) 0.198912 0.0346262
\(34\) 0 0
\(35\) 13.9024 2.34994
\(36\) 1.41421i 0.235702i
\(37\) 4.93608 + 4.93608i 0.811486 + 0.811486i 0.984857 0.173370i \(-0.0554658\pi\)
−0.173370 + 0.984857i \(0.555466\pi\)
\(38\) 4.15640 0.674258
\(39\) −0.624715 0.624715i −0.100034 0.100034i
\(40\) −2.76537 + 2.76537i −0.437243 + 0.437243i
\(41\) −0.438346 + 0.438346i −0.0684581 + 0.0684581i −0.740507 0.672049i \(-0.765415\pi\)
0.672049 + 0.740507i \(0.265415\pi\)
\(42\) 7.10973i 1.09706i
\(43\) 7.17120i 1.09360i −0.837264 0.546799i \(-0.815846\pi\)
0.837264 0.546799i \(-0.184154\pi\)
\(44\) 0.198912 0.198912i 0.0299872 0.0299872i
\(45\) 2.55487 2.55487i 0.380857 0.380857i
\(46\) −3.33390 3.33390i −0.491557 0.491557i
\(47\) −5.49207 −0.801101 −0.400550 0.916275i \(-0.631181\pi\)
−0.400550 + 0.916275i \(0.631181\pi\)
\(48\) 3.41421 + 3.41421i 0.492799 + 0.492799i
\(49\) 7.80525i 1.11504i
\(50\) 14.8831 2.10479
\(51\) 0 0
\(52\) −1.24943 −0.173265
\(53\) 5.18759i 0.712570i 0.934377 + 0.356285i \(0.115957\pi\)
−0.934377 + 0.356285i \(0.884043\pi\)
\(54\) −1.30656 1.30656i −0.177801 0.177801i
\(55\) 0.718695 0.0969089
\(56\) 2.94495 + 2.94495i 0.393535 + 0.393535i
\(57\) 1.59059 1.59059i 0.210678 0.210678i
\(58\) 2.93015 2.93015i 0.384748 0.384748i
\(59\) 5.01933i 0.653461i 0.945117 + 0.326731i \(0.105947\pi\)
−0.945117 + 0.326731i \(0.894053\pi\)
\(60\) 5.10973i 0.659664i
\(61\) −10.6316 + 10.6316i −1.36124 + 1.36124i −0.488892 + 0.872344i \(0.662599\pi\)
−0.872344 + 0.488892i \(0.837401\pi\)
\(62\) −6.19212 + 6.19212i −0.786401 + 0.786401i
\(63\) −2.72078 2.72078i −0.342786 0.342786i
\(64\) 2.82843 0.353553
\(65\) −2.25717 2.25717i −0.279968 0.279968i
\(66\) 0.367542i 0.0452413i
\(67\) −0.281305 −0.0343668 −0.0171834 0.999852i \(-0.505470\pi\)
−0.0171834 + 0.999852i \(0.505470\pi\)
\(68\) 0 0
\(69\) −2.55166 −0.307184
\(70\) 25.6884i 3.07035i
\(71\) −9.85577 9.85577i −1.16966 1.16966i −0.982288 0.187376i \(-0.940002\pi\)
−0.187376 0.982288i \(-0.559998\pi\)
\(72\) 1.08239 0.127561
\(73\) 11.0592 + 11.0592i 1.29438 + 1.29438i 0.932048 + 0.362335i \(0.118021\pi\)
0.362335 + 0.932048i \(0.381979\pi\)
\(74\) 9.12068 9.12068i 1.06026 1.06026i
\(75\) 5.69552 5.69552i 0.657662 0.657662i
\(76\) 3.18117i 0.364906i
\(77\) 0.765367i 0.0872216i
\(78\) −1.15432 + 1.15432i −0.130701 + 0.130701i
\(79\) 3.62359 3.62359i 0.407686 0.407686i −0.473245 0.880931i \(-0.656918\pi\)
0.880931 + 0.473245i \(0.156918\pi\)
\(80\) 12.3360 + 12.3360i 1.37920 + 1.37920i
\(81\) −1.00000 −0.111111
\(82\) 0.809957 + 0.809957i 0.0894448 + 0.0894448i
\(83\) 9.51716i 1.04464i 0.852748 + 0.522322i \(0.174934\pi\)
−0.852748 + 0.522322i \(0.825066\pi\)
\(84\) −5.44155 −0.593722
\(85\) 0 0
\(86\) −13.2506 −1.42885
\(87\) 2.24264i 0.240436i
\(88\) 0.152241 + 0.152241i 0.0162289 + 0.0162289i
\(89\) −4.33476 −0.459484 −0.229742 0.973252i \(-0.573788\pi\)
−0.229742 + 0.973252i \(0.573788\pi\)
\(90\) −4.72078 4.72078i −0.497614 0.497614i
\(91\) −2.40375 + 2.40375i −0.251982 + 0.251982i
\(92\) −2.55166 + 2.55166i −0.266029 + 0.266029i
\(93\) 4.73925i 0.491437i
\(94\) 10.1480i 1.04669i
\(95\) 5.74699 5.74699i 0.589629 0.589629i
\(96\) 4.77791 4.77791i 0.487643 0.487643i
\(97\) 4.20692 + 4.20692i 0.427148 + 0.427148i 0.887656 0.460508i \(-0.152333\pi\)
−0.460508 + 0.887656i \(0.652333\pi\)
\(98\) −14.4222 −1.45686
\(99\) −0.140652 0.140652i −0.0141361 0.0141361i
\(100\) 11.3910i 1.13910i
\(101\) −3.48022 −0.346295 −0.173147 0.984896i \(-0.555394\pi\)
−0.173147 + 0.984896i \(0.555394\pi\)
\(102\) 0 0
\(103\) −10.2649 −1.01143 −0.505716 0.862700i \(-0.668772\pi\)
−0.505716 + 0.862700i \(0.668772\pi\)
\(104\) 0.956272i 0.0937702i
\(105\) −9.83051 9.83051i −0.959359 0.959359i
\(106\) 9.58541 0.931018
\(107\) 1.98682 + 1.98682i 0.192073 + 0.192073i 0.796591 0.604518i \(-0.206634\pi\)
−0.604518 + 0.796591i \(0.706634\pi\)
\(108\) −1.00000 + 1.00000i −0.0962250 + 0.0962250i
\(109\) −6.06306 + 6.06306i −0.580736 + 0.580736i −0.935105 0.354370i \(-0.884695\pi\)
0.354370 + 0.935105i \(0.384695\pi\)
\(110\) 1.32798i 0.126618i
\(111\) 6.98067i 0.662576i
\(112\) 13.1371 13.1371i 1.24134 1.24134i
\(113\) 2.71511 2.71511i 0.255416 0.255416i −0.567770 0.823187i \(-0.692194\pi\)
0.823187 + 0.567770i \(0.192194\pi\)
\(114\) −2.93902 2.93902i −0.275265 0.275265i
\(115\) −9.21946 −0.859719
\(116\) −2.24264 2.24264i −0.208224 0.208224i
\(117\) 0.883480i 0.0816777i
\(118\) 9.27452 0.853788
\(119\) 0 0
\(120\) 3.91082 0.357007
\(121\) 10.9604i 0.996403i
\(122\) 19.6446 + 19.6446i 1.77854 + 1.77854i
\(123\) 0.619914 0.0558958
\(124\) 4.73925 + 4.73925i 0.425597 + 0.425597i
\(125\) 7.80430 7.80430i 0.698037 0.698037i
\(126\) −5.02734 + 5.02734i −0.447871 + 0.447871i
\(127\) 18.3041i 1.62423i −0.583500 0.812113i \(-0.698317\pi\)
0.583500 0.812113i \(-0.301683\pi\)
\(128\) 8.28772i 0.732538i
\(129\) −5.07080 + 5.07080i −0.446459 + 0.446459i
\(130\) −4.17071 + 4.17071i −0.365796 + 0.365796i
\(131\) −8.02413 8.02413i −0.701072 0.701072i 0.263569 0.964641i \(-0.415100\pi\)
−0.964641 + 0.263569i \(0.915100\pi\)
\(132\) −0.281305 −0.0244844
\(133\) −6.12019 6.12019i −0.530688 0.530688i
\(134\) 0.519783i 0.0449024i
\(135\) −3.61313 −0.310968
\(136\) 0 0
\(137\) −7.14961 −0.610833 −0.305416 0.952219i \(-0.598796\pi\)
−0.305416 + 0.952219i \(0.598796\pi\)
\(138\) 4.71485i 0.401355i
\(139\) −7.76745 7.76745i −0.658826 0.658826i 0.296276 0.955102i \(-0.404255\pi\)
−0.955102 + 0.296276i \(0.904255\pi\)
\(140\) −19.6610 −1.66166
\(141\) 3.88348 + 3.88348i 0.327048 + 0.327048i
\(142\) −18.2111 + 18.2111i −1.52824 + 1.52824i
\(143\) −0.124263 + 0.124263i −0.0103914 + 0.0103914i
\(144\) 4.82843i 0.402369i
\(145\) 8.10294i 0.672913i
\(146\) 20.4348 20.4348i 1.69119 1.69119i
\(147\) −5.51915 + 5.51915i −0.455211 + 0.455211i
\(148\) −6.98067 6.98067i −0.573807 0.573807i
\(149\) −5.99480 −0.491114 −0.245557 0.969382i \(-0.578971\pi\)
−0.245557 + 0.969382i \(0.578971\pi\)
\(150\) −10.5239 10.5239i −0.859277 0.859277i
\(151\) 11.4780i 0.934063i 0.884241 + 0.467032i \(0.154677\pi\)
−0.884241 + 0.467032i \(0.845323\pi\)
\(152\) 2.43476 0.197485
\(153\) 0 0
\(154\) −1.41421 −0.113961
\(155\) 17.1235i 1.37539i
\(156\) 0.883480 + 0.883480i 0.0707350 + 0.0707350i
\(157\) −5.81166 −0.463821 −0.231911 0.972737i \(-0.574498\pi\)
−0.231911 + 0.972737i \(0.574498\pi\)
\(158\) −6.69552 6.69552i −0.532667 0.532667i
\(159\) 3.66818 3.66818i 0.290905 0.290905i
\(160\) 17.2632 17.2632i 1.36478 1.36478i
\(161\) 9.81817i 0.773780i
\(162\) 1.84776i 0.145174i
\(163\) −3.82458 + 3.82458i −0.299564 + 0.299564i −0.840843 0.541279i \(-0.817940\pi\)
0.541279 + 0.840843i \(0.317940\pi\)
\(164\) 0.619914 0.619914i 0.0484072 0.0484072i
\(165\) −0.508194 0.508194i −0.0395629 0.0395629i
\(166\) 17.5854 1.36489
\(167\) 2.30544 + 2.30544i 0.178400 + 0.178400i 0.790658 0.612258i \(-0.209739\pi\)
−0.612258 + 0.790658i \(0.709739\pi\)
\(168\) 4.16478i 0.321320i
\(169\) −12.2195 −0.939959
\(170\) 0 0
\(171\) −2.24943 −0.172018
\(172\) 10.1416i 0.773290i
\(173\) 11.9072 + 11.9072i 0.905291 + 0.905291i 0.995888 0.0905971i \(-0.0288775\pi\)
−0.0905971 + 0.995888i \(0.528878\pi\)
\(174\) −4.14386 −0.314145
\(175\) −21.9150 21.9150i −1.65662 1.65662i
\(176\) 0.679129 0.679129i 0.0511913 0.0511913i
\(177\) 3.54920 3.54920i 0.266774 0.266774i
\(178\) 8.00960i 0.600345i
\(179\) 1.10332i 0.0824658i 0.999150 + 0.0412329i \(0.0131286\pi\)
−0.999150 + 0.0412329i \(0.986871\pi\)
\(180\) −3.61313 + 3.61313i −0.269307 + 0.269307i
\(181\) −10.9390 + 10.9390i −0.813091 + 0.813091i −0.985096 0.172005i \(-0.944975\pi\)
0.172005 + 0.985096i \(0.444975\pi\)
\(182\) 4.44155 + 4.44155i 0.329230 + 0.329230i
\(183\) 15.0353 1.11144
\(184\) −1.95295 1.95295i −0.143974 0.143974i
\(185\) 25.2220i 1.85436i
\(186\) 8.75699 0.642093
\(187\) 0 0
\(188\) 7.76696 0.566464
\(189\) 3.84776i 0.279883i
\(190\) −10.6191 10.6191i −0.770387 0.770387i
\(191\) 5.97069 0.432024 0.216012 0.976391i \(-0.430695\pi\)
0.216012 + 0.976391i \(0.430695\pi\)
\(192\) −2.00000 2.00000i −0.144338 0.144338i
\(193\) 7.81204 7.81204i 0.562323 0.562323i −0.367644 0.929967i \(-0.619835\pi\)
0.929967 + 0.367644i \(0.119835\pi\)
\(194\) 7.77337 7.77337i 0.558096 0.558096i
\(195\) 3.19212i 0.228593i
\(196\) 11.0383i 0.788449i
\(197\) −1.26903 + 1.26903i −0.0904143 + 0.0904143i −0.750867 0.660453i \(-0.770364\pi\)
0.660453 + 0.750867i \(0.270364\pi\)
\(198\) −0.259892 + 0.259892i −0.0184697 + 0.0184697i
\(199\) −0.334764 0.334764i −0.0237308 0.0237308i 0.695142 0.718873i \(-0.255342\pi\)
−0.718873 + 0.695142i \(0.755342\pi\)
\(200\) 8.71832 0.616478
\(201\) 0.198912 + 0.198912i 0.0140302 + 0.0140302i
\(202\) 6.43060i 0.452456i
\(203\) −8.62914 −0.605647
\(204\) 0 0
\(205\) 2.23983 0.156436
\(206\) 18.9671i 1.32150i
\(207\) 1.80430 + 1.80430i 0.125407 + 0.125407i
\(208\) −4.26582 −0.295781
\(209\) −0.316387 0.316387i −0.0218850 0.0218850i
\(210\) −18.1644 + 18.1644i −1.25346 + 1.25346i
\(211\) −0.729646 + 0.729646i −0.0502309 + 0.0502309i −0.731776 0.681545i \(-0.761308\pi\)
0.681545 + 0.731776i \(0.261308\pi\)
\(212\) 7.33636i 0.503863i
\(213\) 13.9382i 0.955027i
\(214\) 3.67116 3.67116i 0.250955 0.250955i
\(215\) −18.3215 + 18.3215i −1.24951 + 1.24951i
\(216\) −0.765367 0.765367i −0.0520766 0.0520766i
\(217\) 18.2355 1.23790
\(218\) 11.2031 + 11.2031i 0.758768 + 0.758768i
\(219\) 15.6401i 1.05686i
\(220\) −1.01639 −0.0685249
\(221\) 0 0
\(222\) −12.8986 −0.865697
\(223\) 11.9018i 0.797002i 0.917168 + 0.398501i \(0.130469\pi\)
−0.917168 + 0.398501i \(0.869531\pi\)
\(224\) −18.3842 18.3842i −1.22835 1.22835i
\(225\) −8.05468 −0.536979
\(226\) −5.01688 5.01688i −0.333718 0.333718i
\(227\) −14.1107 + 14.1107i −0.936559 + 0.936559i −0.998104 0.0615451i \(-0.980397\pi\)
0.0615451 + 0.998104i \(0.480397\pi\)
\(228\) −2.24943 + 2.24943i −0.148972 + 0.148972i
\(229\) 0.0263629i 0.00174211i 1.00000 0.000871055i \(0.000277265\pi\)
−1.00000 0.000871055i \(0.999723\pi\)
\(230\) 17.0353i 1.12328i
\(231\) −0.541196 + 0.541196i −0.0356081 + 0.0356081i
\(232\) 1.71644 1.71644i 0.112690 0.112690i
\(233\) −16.0305 16.0305i −1.05020 1.05020i −0.998672 0.0515243i \(-0.983592\pi\)
−0.0515243 0.998672i \(-0.516408\pi\)
\(234\) 1.63246 0.106717
\(235\) 14.0315 + 14.0315i 0.915314 + 0.915314i
\(236\) 7.09841i 0.462067i
\(237\) −5.12453 −0.332874
\(238\) 0 0
\(239\) 10.3205 0.667577 0.333789 0.942648i \(-0.391673\pi\)
0.333789 + 0.942648i \(0.391673\pi\)
\(240\) 17.4457i 1.12612i
\(241\) 3.50388 + 3.50388i 0.225705 + 0.225705i 0.810896 0.585191i \(-0.198980\pi\)
−0.585191 + 0.810896i \(0.698980\pi\)
\(242\) 20.2522 1.30186
\(243\) 0.707107 + 0.707107i 0.0453609 + 0.0453609i
\(244\) 15.0353 15.0353i 0.962539 0.962539i
\(245\) −19.9414 + 19.9414i −1.27401 + 1.27401i
\(246\) 1.14545i 0.0730314i
\(247\) 1.98733i 0.126450i
\(248\) −3.62726 + 3.62726i −0.230331 + 0.230331i
\(249\) 6.72965 6.72965i 0.426474 0.426474i
\(250\) −14.4205 14.4205i −0.912030 0.912030i
\(251\) −27.6021 −1.74223 −0.871115 0.491079i \(-0.836603\pi\)
−0.871115 + 0.491079i \(0.836603\pi\)
\(252\) 3.84776 + 3.84776i 0.242386 + 0.242386i
\(253\) 0.507556i 0.0319098i
\(254\) −33.8216 −2.12215
\(255\) 0 0
\(256\) 20.9706 1.31066
\(257\) 24.6239i 1.53600i −0.640450 0.768000i \(-0.721252\pi\)
0.640450 0.768000i \(-0.278748\pi\)
\(258\) 9.36962 + 9.36962i 0.583327 + 0.583327i
\(259\) −26.8599 −1.66899
\(260\) 3.19212 + 3.19212i 0.197967 + 0.197967i
\(261\) −1.58579 + 1.58579i −0.0981577 + 0.0981577i
\(262\) −14.8267 + 14.8267i −0.915994 + 0.915994i
\(263\) 18.9015i 1.16552i 0.812645 + 0.582759i \(0.198027\pi\)
−0.812645 + 0.582759i \(0.801973\pi\)
\(264\) 0.215301i 0.0132509i
\(265\) 13.2536 13.2536i 0.814162 0.814162i
\(266\) −11.3086 + 11.3086i −0.693377 + 0.693377i
\(267\) 3.06514 + 3.06514i 0.187584 + 0.187584i
\(268\) 0.397825 0.0243010
\(269\) −10.0447 10.0447i −0.612435 0.612435i 0.331145 0.943580i \(-0.392565\pi\)
−0.943580 + 0.331145i \(0.892565\pi\)
\(270\) 6.67619i 0.406300i
\(271\) −19.9314 −1.21074 −0.605372 0.795942i \(-0.706976\pi\)
−0.605372 + 0.795942i \(0.706976\pi\)
\(272\) 0 0
\(273\) 3.39942 0.205742
\(274\) 13.2108i 0.798092i
\(275\) −1.13291 1.13291i −0.0683170 0.0683170i
\(276\) 3.60859 0.217212
\(277\) −15.1341 15.1341i −0.909322 0.909322i 0.0868958 0.996217i \(-0.472305\pi\)
−0.996217 + 0.0868958i \(0.972305\pi\)
\(278\) −14.3524 + 14.3524i −0.860798 + 0.860798i
\(279\) 3.35115 3.35115i 0.200628 0.200628i
\(280\) 15.0479i 0.899283i
\(281\) 21.4669i 1.28061i 0.768121 + 0.640305i \(0.221192\pi\)
−0.768121 + 0.640305i \(0.778808\pi\)
\(282\) 7.17574 7.17574i 0.427309 0.427309i
\(283\) 14.0165 14.0165i 0.833195 0.833195i −0.154758 0.987952i \(-0.549460\pi\)
0.987952 + 0.154758i \(0.0494597\pi\)
\(284\) 13.9382 + 13.9382i 0.827078 + 0.827078i
\(285\) −8.12747 −0.481430
\(286\) 0.229609 + 0.229609i 0.0135771 + 0.0135771i
\(287\) 2.38528i 0.140799i
\(288\) −6.75699 −0.398159
\(289\) 0 0
\(290\) −14.9723 −0.879203
\(291\) 5.94948i 0.348765i
\(292\) −15.6401 15.6401i −0.915267 0.915267i
\(293\) −20.3717 −1.19013 −0.595064 0.803678i \(-0.702873\pi\)
−0.595064 + 0.803678i \(0.702873\pi\)
\(294\) 10.1981 + 10.1981i 0.594762 + 0.594762i
\(295\) 12.8237 12.8237i 0.746626 0.746626i
\(296\) 5.34277 5.34277i 0.310542 0.310542i
\(297\) 0.198912i 0.0115421i
\(298\) 11.0770i 0.641671i
\(299\) 1.59406 1.59406i 0.0921868 0.0921868i
\(300\) −8.05468 + 8.05468i −0.465037 + 0.465037i
\(301\) 19.5112 + 19.5112i 1.12461 + 1.12461i
\(302\) 21.2085 1.22041
\(303\) 2.46088 + 2.46088i 0.141374 + 0.141374i
\(304\) 10.8612i 0.622933i
\(305\) 54.3246 3.11062
\(306\) 0 0
\(307\) −13.6278 −0.777779 −0.388890 0.921284i \(-0.627141\pi\)
−0.388890 + 0.921284i \(0.627141\pi\)
\(308\) 1.08239i 0.0616750i
\(309\) 7.25839 + 7.25839i 0.412915 + 0.412915i
\(310\) 31.6401 1.79704
\(311\) 1.82843 + 1.82843i 0.103681 + 0.103681i 0.757044 0.653364i \(-0.226643\pi\)
−0.653364 + 0.757044i \(0.726643\pi\)
\(312\) −0.676186 + 0.676186i −0.0382815 + 0.0382815i
\(313\) 2.79565 2.79565i 0.158019 0.158019i −0.623669 0.781689i \(-0.714359\pi\)
0.781689 + 0.623669i \(0.214359\pi\)
\(314\) 10.7386i 0.606012i
\(315\) 13.9024i 0.783314i
\(316\) −5.12453 + 5.12453i −0.288277 + 0.288277i
\(317\) 23.6983 23.6983i 1.33103 1.33103i 0.426582 0.904449i \(-0.359718\pi\)
0.904449 0.426582i \(-0.140282\pi\)
\(318\) −6.77791 6.77791i −0.380086 0.380086i
\(319\) −0.446089 −0.0249762
\(320\) −7.22625 7.22625i −0.403960 0.403960i
\(321\) 2.80979i 0.156827i
\(322\) 18.1416 1.01099
\(323\) 0 0
\(324\) 1.41421 0.0785674
\(325\) 7.11615i 0.394733i
\(326\) 7.06691 + 7.06691i 0.391400 + 0.391400i
\(327\) 8.57446 0.474169
\(328\) 0.474462 + 0.474462i 0.0261978 + 0.0261978i
\(329\) 14.9427 14.9427i 0.823817 0.823817i
\(330\) −0.939021 + 0.939021i −0.0516914 + 0.0516914i
\(331\) 19.3037i 1.06103i 0.847676 + 0.530515i \(0.178001\pi\)
−0.847676 + 0.530515i \(0.821999\pi\)
\(332\) 13.4593i 0.738675i
\(333\) −4.93608 + 4.93608i −0.270495 + 0.270495i
\(334\) 4.25989 4.25989i 0.233091 0.233091i
\(335\) 0.718695 + 0.718695i 0.0392665 + 0.0392665i
\(336\) −18.5786 −1.01355
\(337\) 12.3123 + 12.3123i 0.670695 + 0.670695i 0.957876 0.287181i \(-0.0927183\pi\)
−0.287181 + 0.957876i \(0.592718\pi\)
\(338\) 22.5786i 1.22812i
\(339\) −3.83975 −0.208547
\(340\) 0 0
\(341\) 0.942695 0.0510498
\(342\) 4.15640i 0.224753i
\(343\) 2.19090 + 2.19090i 0.118298 + 0.118298i
\(344\) −7.76205 −0.418502
\(345\) 6.51915 + 6.51915i 0.350979 + 0.350979i
\(346\) 22.0017 22.0017i 1.18282 1.18282i
\(347\) 21.9974 21.9974i 1.18088 1.18088i 0.201365 0.979516i \(-0.435462\pi\)
0.979516 0.201365i \(-0.0645376\pi\)
\(348\) 3.17157i 0.170014i
\(349\) 30.0407i 1.60804i −0.594600 0.804022i \(-0.702690\pi\)
0.594600 0.804022i \(-0.297310\pi\)
\(350\) −40.4936 + 40.4936i −2.16447 + 2.16447i
\(351\) 0.624715 0.624715i 0.0333448 0.0333448i
\(352\) −0.950385 0.950385i −0.0506557 0.0506557i
\(353\) 17.2848 0.919977 0.459989 0.887925i \(-0.347853\pi\)
0.459989 + 0.887925i \(0.347853\pi\)
\(354\) −6.55807 6.55807i −0.348558 0.348558i
\(355\) 50.3603i 2.67285i
\(356\) 6.13028 0.324904
\(357\) 0 0
\(358\) 2.03866 0.107747
\(359\) 29.3555i 1.54932i −0.632375 0.774662i \(-0.717920\pi\)
0.632375 0.774662i \(-0.282080\pi\)
\(360\) −2.76537 2.76537i −0.145748 0.145748i
\(361\) 13.9401 0.733688
\(362\) 20.2127 + 20.2127i 1.06235 + 1.06235i
\(363\) 7.75020 7.75020i 0.406780 0.406780i
\(364\) 3.39942 3.39942i 0.178178 0.178178i
\(365\) 56.5096i 2.95785i
\(366\) 27.7817i 1.45217i
\(367\) 8.79638 8.79638i 0.459167 0.459167i −0.439215 0.898382i \(-0.644743\pi\)
0.898382 + 0.439215i \(0.144743\pi\)
\(368\) −8.71191 + 8.71191i −0.454140 + 0.454140i
\(369\) −0.438346 0.438346i −0.0228194 0.0228194i
\(370\) −46.6042 −2.42284
\(371\) −14.1143 14.1143i −0.732776 0.732776i
\(372\) 6.70231i 0.347498i
\(373\) 18.2837 0.946696 0.473348 0.880875i \(-0.343045\pi\)
0.473348 + 0.880875i \(0.343045\pi\)
\(374\) 0 0
\(375\) −11.0369 −0.569945
\(376\) 5.94457i 0.306568i
\(377\) 1.40101 + 1.40101i 0.0721557 + 0.0721557i
\(378\) 7.10973 0.365685
\(379\) 2.49190 + 2.49190i 0.128000 + 0.128000i 0.768205 0.640204i \(-0.221150\pi\)
−0.640204 + 0.768205i \(0.721150\pi\)
\(380\) −8.12747 + 8.12747i −0.416930 + 0.416930i
\(381\) −12.9430 + 12.9430i −0.663088 + 0.663088i
\(382\) 11.0324i 0.564467i
\(383\) 33.2583i 1.69942i −0.527251 0.849709i \(-0.676777\pi\)
0.527251 0.849709i \(-0.323223\pi\)
\(384\) 5.86030 5.86030i 0.299057 0.299057i
\(385\) −1.95541 + 1.95541i −0.0996569 + 0.0996569i
\(386\) −14.4348 14.4348i −0.734710 0.734710i
\(387\) 7.17120 0.364533
\(388\) −5.94948 5.94948i −0.302039 0.302039i
\(389\) 10.0157i 0.507818i −0.967228 0.253909i \(-0.918284\pi\)
0.967228 0.253909i \(-0.0817163\pi\)
\(390\) 5.89828 0.298671
\(391\) 0 0
\(392\) −8.44834 −0.426706
\(393\) 11.3478i 0.572423i
\(394\) 2.34485 + 2.34485i 0.118132 + 0.118132i
\(395\) −18.5156 −0.931619
\(396\) 0.198912 + 0.198912i 0.00999572 + 0.00999572i
\(397\) −22.2111 + 22.2111i −1.11474 + 1.11474i −0.122242 + 0.992500i \(0.539008\pi\)
−0.992500 + 0.122242i \(0.960992\pi\)
\(398\) −0.618564 + 0.618564i −0.0310058 + 0.0310058i
\(399\) 8.65526i 0.433305i
\(400\) 38.8914i 1.94457i
\(401\) 0.515673 0.515673i 0.0257515 0.0257515i −0.694114 0.719865i \(-0.744204\pi\)
0.719865 + 0.694114i \(0.244204\pi\)
\(402\) 0.367542 0.367542i 0.0183313 0.0183313i
\(403\) −2.96068 2.96068i −0.147482 0.147482i
\(404\) 4.92177 0.244867
\(405\) 2.55487 + 2.55487i 0.126952 + 0.126952i
\(406\) 15.9446i 0.791316i
\(407\) −1.38854 −0.0688274
\(408\) 0 0
\(409\) 25.9074 1.28104 0.640520 0.767941i \(-0.278719\pi\)
0.640520 + 0.767941i \(0.278719\pi\)
\(410\) 4.13866i 0.204394i
\(411\) 5.05554 + 5.05554i 0.249371 + 0.249371i
\(412\) 14.5168 0.715191
\(413\) −13.6565 13.6565i −0.671991 0.671991i
\(414\) 3.33390 3.33390i 0.163852 0.163852i
\(415\) 24.3151 24.3151i 1.19358 1.19358i
\(416\) 5.96966i 0.292687i
\(417\) 10.9848i 0.537929i
\(418\) −0.584608 + 0.584608i −0.0285941 + 0.0285941i
\(419\) 23.2076 23.2076i 1.13377 1.13377i 0.144220 0.989546i \(-0.453933\pi\)
0.989546 0.144220i \(-0.0460674\pi\)
\(420\) 13.9024 + 13.9024i 0.678370 + 0.678370i
\(421\) 6.36144 0.310038 0.155019 0.987912i \(-0.450456\pi\)
0.155019 + 0.987912i \(0.450456\pi\)
\(422\) 1.34821 + 1.34821i 0.0656298 + 0.0656298i
\(423\) 5.49207i 0.267034i
\(424\) 5.61500 0.272689
\(425\) 0 0
\(426\) 25.7544 1.24780
\(427\) 57.8524i 2.79967i
\(428\) −2.80979 2.80979i −0.135816 0.135816i
\(429\) 0.175735 0.00848457
\(430\) 33.8536 + 33.8536i 1.63257 + 1.63257i
\(431\) −6.39329 + 6.39329i −0.307954 + 0.307954i −0.844115 0.536162i \(-0.819874\pi\)
0.536162 + 0.844115i \(0.319874\pi\)
\(432\) −3.41421 + 3.41421i −0.164266 + 0.164266i
\(433\) 6.09106i 0.292718i 0.989232 + 0.146359i \(0.0467554\pi\)
−0.989232 + 0.146359i \(0.953245\pi\)
\(434\) 33.6948i 1.61740i
\(435\) −5.72965 + 5.72965i −0.274716 + 0.274716i
\(436\) 8.57446 8.57446i 0.410642 0.410642i
\(437\) 4.05863 + 4.05863i 0.194151 + 0.194151i
\(438\) −28.8991 −1.38085
\(439\) −22.0923 22.0923i −1.05441 1.05441i −0.998432 0.0559763i \(-0.982173\pi\)
−0.0559763 0.998432i \(-0.517827\pi\)
\(440\) 0.777910i 0.0370854i
\(441\) 7.80525 0.371679
\(442\) 0 0
\(443\) −8.90575 −0.423125 −0.211563 0.977364i \(-0.567855\pi\)
−0.211563 + 0.977364i \(0.567855\pi\)
\(444\) 9.87216i 0.468512i
\(445\) 11.0747 + 11.0747i 0.524993 + 0.524993i
\(446\) 21.9916 1.04133
\(447\) 4.23897 + 4.23897i 0.200496 + 0.200496i
\(448\) −7.69552 + 7.69552i −0.363579 + 0.363579i
\(449\) −12.2710 + 12.2710i −0.579102 + 0.579102i −0.934656 0.355554i \(-0.884292\pi\)
0.355554 + 0.934656i \(0.384292\pi\)
\(450\) 14.8831i 0.701596i
\(451\) 0.123309i 0.00580638i
\(452\) −3.83975 + 3.83975i −0.180607 + 0.180607i
\(453\) 8.11615 8.11615i 0.381330 0.381330i
\(454\) 26.0731 + 26.0731i 1.22367 + 1.22367i
\(455\) 12.2825 0.575814
\(456\) −1.72164 1.72164i −0.0806231 0.0806231i
\(457\) 24.8622i 1.16301i −0.813545 0.581503i \(-0.802465\pi\)
0.813545 0.581503i \(-0.197535\pi\)
\(458\) 0.0487123 0.00227618
\(459\) 0 0
\(460\) 13.0383 0.607913
\(461\) 11.3886i 0.530421i −0.964191 0.265210i \(-0.914559\pi\)
0.964191 0.265210i \(-0.0854414\pi\)
\(462\) 1.00000 + 1.00000i 0.0465242 + 0.0465242i
\(463\) 24.9668 1.16031 0.580154 0.814507i \(-0.302992\pi\)
0.580154 + 0.814507i \(0.302992\pi\)
\(464\) −7.65685 7.65685i −0.355461 0.355461i
\(465\) 12.1081 12.1081i 0.561501 0.561501i
\(466\) −29.6206 + 29.6206i −1.37215 + 1.37215i
\(467\) 3.32307i 0.153773i 0.997040 + 0.0768866i \(0.0244979\pi\)
−0.997040 + 0.0768866i \(0.975502\pi\)
\(468\) 1.24943i 0.0577549i
\(469\) 0.765367 0.765367i 0.0353414 0.0353414i
\(470\) 25.9268 25.9268i 1.19592 1.19592i
\(471\) 4.10947 + 4.10947i 0.189354 + 0.189354i
\(472\) 5.43289 0.250069
\(473\) 1.00865 + 1.00865i 0.0463776 + 0.0463776i
\(474\) 9.46889i 0.434921i
\(475\) −18.1184 −0.831331
\(476\) 0 0
\(477\) −5.18759 −0.237523
\(478\) 19.0698i 0.872232i
\(479\) −0.218509 0.218509i −0.00998391 0.00998391i 0.702097 0.712081i \(-0.252247\pi\)
−0.712081 + 0.702097i \(0.752247\pi\)
\(480\) −24.4138 −1.11433
\(481\) 4.36093 + 4.36093i 0.198841 + 0.198841i
\(482\) 6.47433 6.47433i 0.294898 0.294898i
\(483\) 6.94249 6.94249i 0.315894 0.315894i
\(484\) 15.5004i 0.704563i
\(485\) 21.4962i 0.976094i
\(486\) 1.30656 1.30656i 0.0592669 0.0592669i
\(487\) −23.0853 + 23.0853i −1.04610 + 1.04610i −0.0472107 + 0.998885i \(0.515033\pi\)
−0.998885 + 0.0472107i \(0.984967\pi\)
\(488\) 11.5076 + 11.5076i 0.520923 + 0.520923i
\(489\) 5.40878 0.244593
\(490\) 36.8468 + 36.8468i 1.66457 + 1.66457i
\(491\) 21.7074i 0.979640i −0.871824 0.489820i \(-0.837063\pi\)
0.871824 0.489820i \(-0.162937\pi\)
\(492\) −0.876691 −0.0395243
\(493\) 0 0
\(494\) 3.67210 0.165216
\(495\) 0.718695i 0.0323030i
\(496\) 16.1808 + 16.1808i 0.726539 + 0.726539i
\(497\) 53.6307 2.40566
\(498\) −12.4348 12.4348i −0.557215 0.557215i
\(499\) −1.58322 + 1.58322i −0.0708745 + 0.0708745i −0.741656 0.670781i \(-0.765959\pi\)
0.670781 + 0.741656i \(0.265959\pi\)
\(500\) −11.0369 + 11.0369i −0.493587 + 0.493587i
\(501\) 3.26038i 0.145663i
\(502\) 51.0021i 2.27633i
\(503\) −10.2049 + 10.2049i −0.455015 + 0.455015i −0.897015 0.442000i \(-0.854269\pi\)
0.442000 + 0.897015i \(0.354269\pi\)
\(504\) −2.94495 + 2.94495i −0.131178 + 0.131178i
\(505\) 8.89149 + 8.89149i 0.395666 + 0.395666i
\(506\) 0.937842 0.0416922
\(507\) 8.64047 + 8.64047i 0.383737 + 0.383737i
\(508\) 25.8859i 1.14850i
\(509\) −35.4472 −1.57117 −0.785584 0.618755i \(-0.787637\pi\)
−0.785584 + 0.618755i \(0.787637\pi\)
\(510\) 0 0
\(511\) −60.1793 −2.66218
\(512\) 22.1731i 0.979922i
\(513\) 1.59059 + 1.59059i 0.0702261 + 0.0702261i
\(514\) −45.4991 −2.00688
\(515\) 26.2255 + 26.2255i 1.15563 + 1.15563i
\(516\) 7.17120 7.17120i 0.315694 0.315694i
\(517\) 0.772472 0.772472i 0.0339733 0.0339733i
\(518\) 49.6307i 2.18065i
\(519\) 16.8394i 0.739167i
\(520\) −2.44315 + 2.44315i −0.107139 + 0.107139i
\(521\) −10.1110 + 10.1110i −0.442972 + 0.442972i −0.893010 0.450037i \(-0.851411\pi\)
0.450037 + 0.893010i \(0.351411\pi\)
\(522\) 2.93015 + 2.93015i 0.128249 + 0.128249i
\(523\) −6.23946 −0.272832 −0.136416 0.990652i \(-0.543558\pi\)
−0.136416 + 0.990652i \(0.543558\pi\)
\(524\) 11.3478 + 11.3478i 0.495733 + 0.495733i
\(525\) 30.9925i 1.35262i
\(526\) 34.9255 1.52282
\(527\) 0 0
\(528\) −0.960434 −0.0417975
\(529\) 16.4890i 0.716915i
\(530\) −24.4894 24.4894i −1.06375 1.06375i
\(531\) −5.01933 −0.217820
\(532\) 8.65526 + 8.65526i 0.375253 + 0.375253i
\(533\) −0.387270 + 0.387270i −0.0167745 + 0.0167745i
\(534\) 5.66364 5.66364i 0.245090 0.245090i
\(535\) 10.1521i 0.438914i
\(536\) 0.304482i 0.0131516i
\(537\) 0.780163 0.780163i 0.0336665 0.0336665i
\(538\) −18.5602 + 18.5602i −0.800185 + 0.800185i
\(539\) 1.09783 + 1.09783i 0.0472867 + 0.0472867i
\(540\) 5.10973 0.219888
\(541\) 16.9908 + 16.9908i 0.730490 + 0.730490i 0.970717 0.240227i \(-0.0772219\pi\)
−0.240227 + 0.970717i \(0.577222\pi\)
\(542\) 36.8284i 1.58191i
\(543\) 15.4701 0.663886
\(544\) 0 0
\(545\) 30.9806 1.32706
\(546\) 6.28130i 0.268815i
\(547\) 22.3661 + 22.3661i 0.956304 + 0.956304i 0.999084 0.0427807i \(-0.0136217\pi\)
−0.0427807 + 0.999084i \(0.513622\pi\)
\(548\) 10.1111 0.431924
\(549\) −10.6316 10.6316i −0.453745 0.453745i
\(550\) −2.09334 + 2.09334i −0.0892604 + 0.0892604i
\(551\) −3.56711 + 3.56711i −0.151964 + 0.151964i
\(552\) 2.76190i 0.117554i
\(553\) 19.7179i 0.838492i
\(554\) −27.9642 + 27.9642i −1.18809 + 1.18809i
\(555\) −17.8347 + 17.8347i −0.757040 + 0.757040i
\(556\) 10.9848 + 10.9848i 0.465861 + 0.465861i
\(557\) 14.7772 0.626131 0.313065 0.949732i \(-0.398644\pi\)
0.313065 + 0.949732i \(0.398644\pi\)
\(558\) −6.19212 6.19212i −0.262134 0.262134i
\(559\) 6.33561i 0.267968i
\(560\) −67.1269 −2.83663
\(561\) 0 0
\(562\) 39.6657 1.67320
\(563\) 9.39006i 0.395744i 0.980228 + 0.197872i \(0.0634030\pi\)
−0.980228 + 0.197872i \(0.936597\pi\)
\(564\) −5.49207 5.49207i −0.231258 0.231258i
\(565\) −13.8735 −0.583663
\(566\) −25.8991 25.8991i −1.08862 1.08862i
\(567\) 2.72078 2.72078i 0.114262 0.114262i
\(568\) −10.6678 + 10.6678i −0.447611 + 0.447611i
\(569\) 23.3520i 0.978968i −0.872012 0.489484i \(-0.837185\pi\)
0.872012 0.489484i \(-0.162815\pi\)
\(570\) 15.0176i 0.629018i
\(571\) −23.5046 + 23.5046i −0.983637 + 0.983637i −0.999868 0.0162308i \(-0.994833\pi\)
0.0162308 + 0.999868i \(0.494833\pi\)
\(572\) 0.175735 0.175735i 0.00734785 0.00734785i
\(573\) −4.22192 4.22192i −0.176373 0.176373i
\(574\) −4.40743 −0.183962
\(575\) 14.5330 + 14.5330i 0.606069 + 0.606069i
\(576\) 2.82843i 0.117851i
\(577\) 33.8072 1.40741 0.703705 0.710492i \(-0.251528\pi\)
0.703705 + 0.710492i \(0.251528\pi\)
\(578\) 0 0
\(579\) −11.0479 −0.459135
\(580\) 11.4593i 0.475821i
\(581\) −25.8941 25.8941i −1.07427 1.07427i
\(582\) −10.9932 −0.455683
\(583\) −0.729646 0.729646i −0.0302189 0.0302189i
\(584\) 11.9704 11.9704i 0.495339 0.495339i
\(585\) 2.25717 2.25717i 0.0933226 0.0933226i
\(586\) 37.6420i 1.55498i
\(587\) 29.2440i 1.20703i 0.797352 + 0.603514i \(0.206233\pi\)
−0.797352 + 0.603514i \(0.793767\pi\)
\(588\) 7.80525 7.80525i 0.321883 0.321883i
\(589\) 7.53818 7.53818i 0.310605 0.310605i
\(590\) −23.6951 23.6951i −0.975514 0.975514i
\(591\) 1.79467 0.0738230
\(592\) −23.8335 23.8335i −0.979550 0.979550i
\(593\) 0.632327i 0.0259665i −0.999916 0.0129833i \(-0.995867\pi\)
0.999916 0.0129833i \(-0.00413282\pi\)
\(594\) 0.367542 0.0150804
\(595\) 0 0
\(596\) 8.47793 0.347270
\(597\) 0.473428i 0.0193761i
\(598\) −2.94544 2.94544i −0.120448 0.120448i
\(599\) −8.12959 −0.332166 −0.166083 0.986112i \(-0.553112\pi\)
−0.166083 + 0.986112i \(0.553112\pi\)
\(600\) −6.16478 6.16478i −0.251676 0.251676i
\(601\) −3.13482 + 3.13482i −0.127872 + 0.127872i −0.768146 0.640274i \(-0.778821\pi\)
0.640274 + 0.768146i \(0.278821\pi\)
\(602\) 36.0521 36.0521i 1.46937 1.46937i
\(603\) 0.281305i 0.0114556i
\(604\) 16.2323i 0.660483i
\(605\) 28.0024 28.0024i 1.13846 1.13846i
\(606\) 4.54712 4.54712i 0.184714 0.184714i
\(607\) −17.0613 17.0613i −0.692495 0.692495i 0.270285 0.962780i \(-0.412882\pi\)
−0.962780 + 0.270285i \(0.912882\pi\)
\(608\) −15.1994 −0.616415
\(609\) 6.10172 + 6.10172i 0.247254 + 0.247254i
\(610\) 100.379i 4.06422i
\(611\) −4.85213 −0.196296
\(612\) 0 0
\(613\) −0.549449 −0.0221921 −0.0110960 0.999938i \(-0.503532\pi\)
−0.0110960 + 0.999938i \(0.503532\pi\)
\(614\) 25.1809i 1.01622i
\(615\) −1.58380 1.58380i −0.0638649 0.0638649i
\(616\) −0.828427 −0.0333783
\(617\) 0.0254607 + 0.0254607i 0.00102501 + 0.00102501i 0.707619 0.706594i \(-0.249769\pi\)
−0.706594 + 0.707619i \(0.749769\pi\)
\(618\) 13.4118 13.4118i 0.539500 0.539500i
\(619\) −7.92038 + 7.92038i −0.318347 + 0.318347i −0.848132 0.529785i \(-0.822273\pi\)
0.529785 + 0.848132i \(0.322273\pi\)
\(620\) 24.2163i 0.972549i
\(621\) 2.55166i 0.102395i
\(622\) 3.37849 3.37849i 0.135465 0.135465i
\(623\) 11.7939 11.7939i 0.472514 0.472514i
\(624\) 3.01639 + 3.01639i 0.120752 + 0.120752i
\(625\) 0.395541 0.0158217
\(626\) −5.16569 5.16569i −0.206462 0.206462i
\(627\) 0.447439i 0.0178690i
\(628\) 8.21893 0.327971
\(629\) 0 0
\(630\) 25.6884 1.02345
\(631\) 9.12882i 0.363413i −0.983353 0.181706i \(-0.941838\pi\)
0.983353 0.181706i \(-0.0581620\pi\)
\(632\) −3.92214 3.92214i −0.156015 0.156015i
\(633\) 1.03188 0.0410134
\(634\) −43.7888 43.7888i −1.73908 1.73908i
\(635\) −46.7645 + 46.7645i −1.85579 + 1.85579i
\(636\) −5.18759 + 5.18759i −0.205701 + 0.205701i
\(637\) 6.89578i 0.273221i
\(638\) 0.824265i 0.0326330i
\(639\) 9.85577 9.85577i 0.389888 0.389888i
\(640\) 21.1740 21.1740i 0.836976 0.836976i
\(641\) −24.5491 24.5491i −0.969629 0.969629i 0.0299229 0.999552i \(-0.490474\pi\)
−0.999552 + 0.0299229i \(0.990474\pi\)
\(642\) −5.19181 −0.204904
\(643\) −10.3257 10.3257i −0.407206 0.407206i 0.473557 0.880763i \(-0.342970\pi\)
−0.880763 + 0.473557i \(0.842970\pi\)
\(644\) 13.8850i 0.547145i
\(645\) 25.9104 1.02022
\(646\) 0 0
\(647\) 39.5994 1.55681 0.778407 0.627760i \(-0.216028\pi\)
0.778407 + 0.627760i \(0.216028\pi\)
\(648\) 1.08239i 0.0425204i
\(649\) −0.705981 0.705981i −0.0277122 0.0277122i
\(650\) 13.1489 0.515743
\(651\) −12.8944 12.8944i −0.505373 0.505373i
\(652\) 5.40878 5.40878i 0.211824 0.211824i
\(653\) −28.1303 + 28.1303i −1.10082 + 1.10082i −0.106513 + 0.994311i \(0.533968\pi\)
−0.994311 + 0.106513i \(0.966032\pi\)
\(654\) 15.8435i 0.619531i
\(655\) 41.0012i 1.60205i
\(656\) 2.11652 2.11652i 0.0826362 0.0826362i
\(657\) −11.0592 + 11.0592i −0.431461 + 0.431461i
\(658\) −27.6105 27.6105i −1.07637 1.07637i
\(659\) 16.4351 0.640219 0.320109 0.947381i \(-0.396280\pi\)
0.320109 + 0.947381i \(0.396280\pi\)
\(660\) 0.718695 + 0.718695i 0.0279752 + 0.0279752i
\(661\) 34.4462i 1.33980i 0.742450 + 0.669902i \(0.233664\pi\)
−0.742450 + 0.669902i \(0.766336\pi\)
\(662\) 35.6687 1.38630
\(663\) 0 0
\(664\) 10.3013 0.399768
\(665\) 31.2725i 1.21270i
\(666\) 9.12068 + 9.12068i 0.353419 + 0.353419i
\(667\) 5.72245 0.221574
\(668\) −3.26038 3.26038i −0.126148 0.126148i
\(669\) 8.41583 8.41583i 0.325375 0.325375i
\(670\) 1.32798 1.32798i 0.0513042 0.0513042i
\(671\) 2.99072i 0.115455i
\(672\) 25.9993i 1.00294i
\(673\) −23.8869 + 23.8869i −0.920772 + 0.920772i −0.997084 0.0763119i \(-0.975686\pi\)
0.0763119 + 0.997084i \(0.475686\pi\)
\(674\) 22.7502 22.7502i 0.876305 0.876305i
\(675\) 5.69552 + 5.69552i 0.219221 + 0.219221i
\(676\) 17.2809 0.664651
\(677\) 9.42514 + 9.42514i 0.362238 + 0.362238i 0.864636 0.502399i \(-0.167549\pi\)
−0.502399 + 0.864636i \(0.667549\pi\)
\(678\) 7.09494i 0.272479i
\(679\) −22.8922 −0.878521
\(680\) 0 0
\(681\) 19.9555 0.764697
\(682\) 1.74187i 0.0666998i
\(683\) 18.2176 + 18.2176i 0.697077 + 0.697077i 0.963779 0.266702i \(-0.0859339\pi\)
−0.266702 + 0.963779i \(0.585934\pi\)
\(684\) 3.18117 0.121635
\(685\) 18.2663 + 18.2663i 0.697920 + 0.697920i
\(686\) 4.04826 4.04826i 0.154563 0.154563i
\(687\) 0.0186414 0.0186414i 0.000711213 0.000711213i
\(688\) 34.6256i 1.32009i
\(689\) 4.58313i 0.174603i
\(690\) 12.0458 12.0458i 0.458576 0.458576i
\(691\) −4.32569 + 4.32569i −0.164557 + 0.164557i −0.784582 0.620025i \(-0.787122\pi\)
0.620025 + 0.784582i \(0.287122\pi\)
\(692\) −16.8394 16.8394i −0.640137 0.640137i
\(693\) 0.765367 0.0290739
\(694\) −40.6458 40.6458i −1.54290 1.54290i
\(695\) 39.6896i 1.50551i
\(696\) −2.42742 −0.0920110
\(697\) 0 0
\(698\) −55.5080 −2.10101
\(699\) 22.6706i 0.857481i
\(700\) 30.9925 + 30.9925i 1.17141 + 1.17141i
\(701\) −18.4012 −0.695005 −0.347503 0.937679i \(-0.612970\pi\)
−0.347503 + 0.937679i \(0.612970\pi\)
\(702\) −1.15432 1.15432i −0.0435671 0.0435671i
\(703\) −11.1034 + 11.1034i −0.418771 + 0.418771i
\(704\) −0.397825 + 0.397825i −0.0149936 + 0.0149936i
\(705\) 19.8435i 0.747351i
\(706\) 31.9382i 1.20201i
\(707\) 9.46889 9.46889i 0.356114 0.356114i
\(708\) −5.01933 + 5.01933i −0.188638 + 0.188638i
\(709\) −10.0817 10.0817i −0.378627 0.378627i 0.491979 0.870607i \(-0.336274\pi\)
−0.870607 + 0.491979i \(0.836274\pi\)
\(710\) 93.0537 3.49224
\(711\) 3.62359 + 3.62359i 0.135895 + 0.135895i
\(712\) 4.69192i 0.175837i
\(713\) −12.0929 −0.452884
\(714\) 0 0
\(715\) 0.634953 0.0237459
\(716\) 1.56033i 0.0583121i
\(717\) −7.29769 7.29769i −0.272537 0.272537i
\(718\) −54.2419 −2.02429
\(719\) −21.5498 21.5498i −0.803672 0.803672i 0.179995 0.983667i \(-0.442392\pi\)
−0.983667 + 0.179995i \(0.942392\pi\)
\(720\) −12.3360 + 12.3360i −0.459735 + 0.459735i
\(721\) 27.9285 27.9285i 1.04011 1.04011i
\(722\) 25.7579i 0.958609i
\(723\) 4.95524i 0.184287i
\(724\) 15.4701 15.4701i 0.574942 0.574942i
\(725\) −12.7730 + 12.7730i −0.474377 + 0.474377i
\(726\) −14.3205 14.3205i −0.531483 0.531483i
\(727\) −46.6448 −1.72996 −0.864980 0.501806i \(-0.832669\pi\)
−0.864980 + 0.501806i \(0.832669\pi\)
\(728\) 2.60180 + 2.60180i 0.0964292 + 0.0964292i
\(729\) 1.00000i 0.0370370i
\(730\) −104.416 −3.86462
\(731\) 0 0
\(732\) −21.2632 −0.785910
\(733\) 40.8084i 1.50729i 0.657279 + 0.753647i \(0.271707\pi\)
−0.657279 + 0.753647i \(0.728293\pi\)
\(734\) −16.2536 16.2536i −0.599931 0.599931i
\(735\) 28.2014 1.04022
\(736\) 12.1916 + 12.1916i 0.449388 + 0.449388i
\(737\) 0.0395661 0.0395661i 0.00145744 0.00145744i
\(738\) −0.809957 + 0.809957i −0.0298149 + 0.0298149i
\(739\) 37.9474i 1.39592i 0.716138 + 0.697959i \(0.245908\pi\)
−0.716138 + 0.697959i \(0.754092\pi\)
\(740\) 35.6693i 1.31123i
\(741\) 1.40525 1.40525i 0.0516232 0.0516232i
\(742\) −26.0798 + 26.0798i −0.957418 + 0.957418i
\(743\) 1.31959 + 1.31959i 0.0484112 + 0.0484112i 0.730898 0.682487i \(-0.239102\pi\)
−0.682487 + 0.730898i \(0.739102\pi\)
\(744\) 5.12972 0.188065
\(745\) 15.3159 + 15.3159i 0.561132 + 0.561132i
\(746\) 33.7840i 1.23692i
\(747\) −9.51716 −0.348215
\(748\) 0 0
\(749\) −10.8114 −0.395039
\(750\) 20.3936i 0.744669i
\(751\) −27.7029 27.7029i −1.01089 1.01089i −0.999940 0.0109535i \(-0.996513\pi\)
−0.0109535 0.999940i \(-0.503487\pi\)
\(752\) 26.5181 0.967014
\(753\) 19.5176 + 19.5176i 0.711263 + 0.711263i
\(754\) 2.58873 2.58873i 0.0942760 0.0942760i
\(755\) 29.3247 29.3247i 1.06723 1.06723i
\(756\) 5.44155i 0.197907i
\(757\) 24.3356i 0.884493i 0.896894 + 0.442246i \(0.145818\pi\)
−0.896894 + 0.442246i \(0.854182\pi\)
\(758\) 4.60443 4.60443i 0.167240 0.167240i
\(759\) 0.358897 0.358897i 0.0130271 0.0130271i
\(760\) −6.22050 6.22050i −0.225641 0.225641i
\(761\) 25.3506 0.918957 0.459479 0.888189i \(-0.348036\pi\)
0.459479 + 0.888189i \(0.348036\pi\)
\(762\) 23.9155 + 23.9155i 0.866366 + 0.866366i
\(763\) 32.9925i 1.19441i
\(764\) −8.44384 −0.305487
\(765\) 0 0
\(766\) −61.4533 −2.22040
\(767\) 4.43448i 0.160120i
\(768\) −14.8284 14.8284i −0.535075 0.535075i
\(769\) −10.7211 −0.386614 −0.193307 0.981138i \(-0.561921\pi\)
−0.193307 + 0.981138i \(0.561921\pi\)
\(770\) 3.61313 + 3.61313i 0.130208 + 0.130208i
\(771\) −17.4118 + 17.4118i −0.627069 + 0.627069i
\(772\) −11.0479 + 11.0479i −0.397622 + 0.397622i
\(773\) 51.2753i 1.84424i −0.386900 0.922122i \(-0.626454\pi\)
0.386900 0.922122i \(-0.373546\pi\)
\(774\) 13.2506i 0.476285i
\(775\) 26.9925 26.9925i 0.969598 0.969598i
\(776\) 4.55354 4.55354i 0.163462 0.163462i
\(777\) 18.9928 + 18.9928i 0.681364 + 0.681364i
\(778\) −18.5067 −0.663496
\(779\) −0.986028 0.986028i −0.0353281 0.0353281i
\(780\) 4.51434i 0.161639i
\(781\) 2.77247 0.0992069
\(782\) 0 0
\(783\) 2.24264 0.0801454
\(784\) 37.6871i 1.34597i
\(785\) 14.8480 + 14.8480i 0.529949 + 0.529949i
\(786\) 20.9681 0.747906
\(787\) 15.7537 + 15.7537i 0.561558 + 0.561558i 0.929750 0.368192i \(-0.120023\pi\)
−0.368192 + 0.929750i \(0.620023\pi\)
\(788\) 1.79467 1.79467i 0.0639326 0.0639326i
\(789\) 13.3654 13.3654i 0.475821 0.475821i
\(790\) 34.2123i 1.21722i
\(791\) 14.7744i 0.525319i
\(792\) −0.152241 + 0.152241i −0.00540965 + 0.00540965i
\(793\) −9.39280 + 9.39280i −0.333548 + 0.333548i
\(794\) 41.0407 + 41.0407i 1.45648 + 1.45648i
\(795\) −18.7434 −0.664760
\(796\) 0.473428 + 0.473428i 0.0167802 + 0.0167802i
\(797\) 12.5375i 0.444102i 0.975035 + 0.222051i \(0.0712751\pi\)
−0.975035 + 0.222051i \(0.928725\pi\)
\(798\) 15.9928 0.566140
\(799\) 0 0
\(800\) −54.4253 −1.92423
\(801\) 4.33476i 0.153161i
\(802\) −0.952840 0.952840i −0.0336460 0.0336460i
\(803\) −3.11101 −0.109785
\(804\) −0.281305 0.281305i −0.00992085 0.00992085i
\(805\) 25.0841 25.0841i 0.884098 0.884098i
\(806\) −5.47062 + 5.47062i −0.192694 + 0.192694i
\(807\) 14.2053i 0.500051i
\(808\) 3.76696i 0.132521i
\(809\) 6.57125 6.57125i 0.231033 0.231033i −0.582091 0.813124i \(-0.697765\pi\)
0.813124 + 0.582091i \(0.197765\pi\)
\(810\) 4.72078 4.72078i 0.165871 0.165871i
\(811\) 7.98029 + 7.98029i 0.280226 + 0.280226i 0.833199 0.552973i \(-0.186507\pi\)
−0.552973 + 0.833199i \(0.686507\pi\)
\(812\) 12.2034 0.428257
\(813\) 14.0936 + 14.0936i 0.494284 + 0.494284i
\(814\) 2.56569i 0.0899274i
\(815\) 19.5426 0.684547
\(816\) 0 0
\(817\) 16.1311 0.564356
\(818\) 47.8707i 1.67376i
\(819\) −2.40375 2.40375i −0.0839939 0.0839939i
\(820\) −3.16760 −0.110617
\(821\) −5.87348 5.87348i −0.204986 0.204986i 0.597146 0.802132i \(-0.296301\pi\)
−0.802132 + 0.597146i \(0.796301\pi\)
\(822\) 9.34142 9.34142i 0.325819 0.325819i
\(823\) −13.1698 + 13.1698i −0.459071 + 0.459071i −0.898350 0.439280i \(-0.855234\pi\)
0.439280 + 0.898350i \(0.355234\pi\)
\(824\) 11.1107i 0.387058i
\(825\) 1.60218i 0.0557806i
\(826\) −25.2339 + 25.2339i −0.877999 + 0.877999i
\(827\) −19.7042 + 19.7042i −0.685181 + 0.685181i −0.961163 0.275982i \(-0.910997\pi\)
0.275982 + 0.961163i \(0.410997\pi\)
\(828\) −2.55166 2.55166i −0.0886763 0.0886763i
\(829\) −12.4653 −0.432937 −0.216469 0.976290i \(-0.569454\pi\)
−0.216469 + 0.976290i \(0.569454\pi\)
\(830\) −44.9284 44.9284i −1.55949 1.55949i
\(831\) 21.4029i 0.742458i
\(832\) 2.49886 0.0866323
\(833\) 0 0
\(834\) 20.2973 0.702839
\(835\) 11.7802i 0.407669i
\(836\) 0.447439 + 0.447439i 0.0154750 + 0.0154750i
\(837\) −4.73925 −0.163812
\(838\) −42.8821 42.8821i −1.48134 1.48134i
\(839\) −30.5545 + 30.5545i −1.05486 + 1.05486i −0.0564530 + 0.998405i \(0.517979\pi\)
−0.998405 + 0.0564530i \(0.982021\pi\)
\(840\) −10.6405 + 10.6405i −0.367131 + 0.367131i
\(841\) 23.9706i 0.826571i
\(842\) 11.7544i 0.405084i
\(843\) 15.1794 15.1794i 0.522807 0.522807i
\(844\) 1.03188 1.03188i 0.0355186 0.0355186i
\(845\) 31.2191 + 31.2191i 1.07397 + 1.07397i
\(846\) −10.1480 −0.348896
\(847\) −29.8209 29.8209i −1.02466 1.02466i
\(848\) 25.0479i 0.860148i
\(849\) −19.8223 −0.680301
\(850\) 0 0
\(851\) 17.8123 0.610597
\(852\) 19.7115i 0.675306i
\(853\) 6.89545 + 6.89545i 0.236096 + 0.236096i 0.815231 0.579136i \(-0.196610\pi\)
−0.579136 + 0.815231i \(0.696610\pi\)
\(854\) −106.897 −3.65795
\(855\) 5.74699 + 5.74699i 0.196543 + 0.196543i
\(856\) 2.15052 2.15052i 0.0735032 0.0735032i
\(857\) −16.9704 + 16.9704i −0.579698 + 0.579698i −0.934820 0.355122i \(-0.884439\pi\)
0.355122 + 0.934820i \(0.384439\pi\)
\(858\) 0.324716i 0.0110856i
\(859\) 16.5708i 0.565389i −0.959210 0.282695i \(-0.908772\pi\)
0.959210 0.282695i \(-0.0912283\pi\)
\(860\) 25.9104 25.9104i 0.883539 0.883539i
\(861\) −1.68665 + 1.68665i −0.0574808 + 0.0574808i
\(862\) 11.8133 + 11.8133i 0.402361 + 0.402361i
\(863\) −56.5312 −1.92435 −0.962173 0.272440i \(-0.912169\pi\)
−0.962173 + 0.272440i \(0.912169\pi\)
\(864\) 4.77791 + 4.77791i 0.162548 + 0.162548i
\(865\) 60.8428i 2.06872i
\(866\) 11.2548 0.382454
\(867\) 0 0
\(868\) −25.7889 −0.875331
\(869\) 1.01933i 0.0345785i
\(870\) 10.5870 + 10.5870i 0.358933 + 0.358933i
\(871\) −0.248527 −0.00842101
\(872\) 6.56261 + 6.56261i 0.222238 + 0.222238i
\(873\) −4.20692 + 4.20692i −0.142383 + 0.142383i
\(874\) 7.49938 7.49938i 0.253670 0.253670i
\(875\) 42.4675i 1.43566i
\(876\) 22.1184i 0.747312i
\(877\) 28.4067 28.4067i 0.959226 0.959226i −0.0399748 0.999201i \(-0.512728\pi\)
0.999201 + 0.0399748i \(0.0127278\pi\)
\(878\) −40.8213 + 40.8213i −1.37765 + 1.37765i
\(879\) 14.4050 + 14.4050i 0.485868 + 0.485868i
\(880\) −3.47017 −0.116979
\(881\) −7.89180 7.89180i −0.265882 0.265882i 0.561557 0.827438i \(-0.310203\pi\)
−0.827438 + 0.561557i \(0.810203\pi\)
\(882\) 14.4222i 0.485621i
\(883\) 39.5682 1.33158 0.665789 0.746140i \(-0.268095\pi\)
0.665789 + 0.746140i \(0.268095\pi\)
\(884\) 0 0
\(885\) −18.1355 −0.609617
\(886\) 16.4557i 0.552840i
\(887\) −29.9310 29.9310i −1.00499 1.00499i −0.999988 0.00499773i \(-0.998409\pi\)
−0.00499773 0.999988i \(-0.501591\pi\)
\(888\) −7.55582 −0.253557
\(889\) 49.8014 + 49.8014i 1.67028 + 1.67028i
\(890\) 20.4635 20.4635i 0.685937 0.685937i
\(891\) 0.140652 0.140652i 0.00471203 0.00471203i
\(892\) 16.8317i 0.563566i
\(893\) 12.3540i 0.413412i
\(894\) 7.83259 7.83259i 0.261961 0.261961i
\(895\) 2.81883 2.81883i 0.0942230 0.0942230i
\(896\) −22.5490 22.5490i −0.753310 0.753310i
\(897\) −2.25434 −0.0752702
\(898\) 22.6738 + 22.6738i 0.756634 + 0.756634i
\(899\) 10.6284i 0.354478i
\(900\) 11.3910 0.379701
\(901\) 0 0
\(902\) −0.227845 −0.00758640
\(903\) 27.5930i 0.918239i
\(904\) −2.93882 2.93882i −0.0977437 0.0977437i
\(905\) 55.8955 1.85803
\(906\) −14.9967 14.9967i −0.498231 0.498231i
\(907\) −14.4700 + 14.4700i −0.480470 + 0.480470i −0.905282 0.424812i \(-0.860340\pi\)
0.424812 + 0.905282i \(0.360340\pi\)
\(908\) 19.9555 19.9555i 0.662247 0.662247i
\(909\) 3.48022i 0.115432i
\(910\) 22.6951i 0.752337i
\(911\) 1.61082 1.61082i 0.0533689 0.0533689i −0.679919 0.733288i \(-0.737985\pi\)
0.733288 + 0.679919i \(0.237985\pi\)
\(912\) −7.68003 + 7.68003i −0.254311 + 0.254311i
\(913\) −1.33861 1.33861i −0.0443015 0.0443015i
\(914\) −45.9394 −1.51954
\(915\) −38.4133 38.4133i −1.26990 1.26990i
\(916\) 0.0372828i 0.00123186i
\(917\) 43.6637 1.44190
\(918\) 0 0
\(919\) 36.0659 1.18970 0.594851 0.803836i \(-0.297211\pi\)
0.594851 + 0.803836i \(0.297211\pi\)
\(920\) 9.97908i 0.329000i
\(921\) 9.63630 + 9.63630i 0.317527 + 0.317527i
\(922\) −21.0434 −0.693028
\(923\) −8.70737 8.70737i −0.286607 0.286607i
\(924\) 0.765367 0.765367i 0.0251787 0.0251787i
\(925\) −39.7585 + 39.7585i −1.30725 + 1.30725i
\(926\) 46.1327i 1.51602i
\(927\) 10.2649i 0.337144i
\(928\) −10.7151 + 10.7151i −0.351742 + 0.351742i
\(929\) −39.1824 + 39.1824i −1.28553 + 1.28553i −0.348059 + 0.937473i \(0.613159\pi\)
−0.937473 + 0.348059i \(0.886841\pi\)
\(930\) −22.3729 22.3729i −0.733637 0.733637i
\(931\) 17.5574 0.575419
\(932\) 22.6706 + 22.6706i 0.742601 + 0.742601i
\(933\) 2.58579i 0.0846548i
\(934\) 6.14023 0.200914
\(935\) 0 0
\(936\) 0.956272 0.0312567
\(937\) 40.8695i 1.33515i −0.744543 0.667575i \(-0.767332\pi\)
0.744543 0.667575i \(-0.232668\pi\)
\(938\) −1.41421 1.41421i −0.0461757 0.0461757i
\(939\) −3.95365 −0.129022
\(940\) −19.8435 19.8435i −0.647225 0.647225i
\(941\) −10.8567 + 10.8567i −0.353917 + 0.353917i −0.861565 0.507648i \(-0.830515\pi\)
0.507648 + 0.861565i \(0.330515\pi\)
\(942\) 7.59331 7.59331i 0.247403 0.247403i
\(943\) 1.58181i 0.0515108i
\(944\) 24.2355i 0.788798i
\(945\) 9.83051 9.83051i 0.319786 0.319786i
\(946\) 1.86373 1.86373i 0.0605952 0.0605952i
\(947\) −28.9127 28.9127i −0.939537 0.939537i 0.0587361 0.998274i \(-0.481293\pi\)
−0.998274 + 0.0587361i \(0.981293\pi\)
\(948\) 7.24718 0.235377
\(949\) 9.77059 + 9.77059i 0.317167 + 0.317167i
\(950\) 33.4785i 1.08619i
\(951\) −33.5145 −1.08678
\(952\) 0 0
\(953\) −25.5007 −0.826050 −0.413025 0.910720i \(-0.635528\pi\)
−0.413025 + 0.910720i \(0.635528\pi\)
\(954\) 9.58541i 0.310339i
\(955\) −15.2543 15.2543i −0.493618 0.493618i
\(956\) −14.5954 −0.472049
\(957\) 0.315433 + 0.315433i 0.0101965 + 0.0101965i
\(958\) −0.403751 + 0.403751i −0.0130446 + 0.0130446i
\(959\) 19.4525 19.4525i 0.628154 0.628154i
\(960\) 10.2195i 0.329832i
\(961\) 8.53954i 0.275469i
\(962\) 8.05794 8.05794i 0.259798 0.259798i
\(963\) −1.98682 + 1.98682i −0.0640243 + 0.0640243i
\(964\) −4.95524 4.95524i −0.159597 0.159597i
\(965\) −39.9174 −1.28499
\(966\) −12.8281 12.8281i −0.412736 0.412736i
\(967\) 12.0223i 0.386610i −0.981139 0.193305i \(-0.938079\pi\)
0.981139 0.193305i \(-0.0619207\pi\)
\(968\) 11.8635 0.381307
\(969\) 0 0
\(970\) −39.7199 −1.27533
\(971\) 48.0362i 1.54155i −0.637105 0.770777i \(-0.719868\pi\)
0.637105 0.770777i \(-0.280132\pi\)
\(972\) −1.00000 1.00000i −0.0320750 0.0320750i
\(973\) 42.2670 1.35502
\(974\) 42.6561 + 42.6561i 1.36679 + 1.36679i
\(975\) 5.03188 5.03188i 0.161149 0.161149i
\(976\) 51.3339 51.3339i 1.64316 1.64316i
\(977\) 29.7041i 0.950319i 0.879900 + 0.475160i \(0.157610\pi\)
−0.879900 + 0.475160i \(0.842390\pi\)
\(978\) 9.99411i 0.319577i
\(979\) 0.609695 0.609695i 0.0194859 0.0194859i
\(980\) 28.2014 28.2014i 0.900859 0.900859i
\(981\) −6.06306 6.06306i −0.193579 0.193579i
\(982\) −40.1100 −1.27996
\(983\) −2.77733 2.77733i −0.0885830 0.0885830i 0.661427 0.750010i \(-0.269951\pi\)
−0.750010 + 0.661427i \(0.769951\pi\)
\(984\) 0.670991i 0.0213904i
\(985\) 6.48438 0.206609
\(986\) 0 0
\(987\) −21.1322 −0.672644
\(988\) 2.81050i 0.0894140i
\(989\) −12.9390 12.9390i −0.411435 0.411435i
\(990\) 1.32798 0.0422058
\(991\) 6.38425 + 6.38425i 0.202802 + 0.202802i 0.801200 0.598397i \(-0.204196\pi\)
−0.598397 + 0.801200i \(0.704196\pi\)
\(992\) 22.6437 22.6437i 0.718938 0.718938i
\(993\) 13.6498 13.6498i 0.433163 0.433163i
\(994\) 99.0966i 3.14315i
\(995\) 1.71056i 0.0542283i
\(996\) −9.51716 + 9.51716i −0.301563 + 0.301563i
\(997\) 25.9633 25.9633i 0.822266 0.822266i −0.164167 0.986433i \(-0.552494\pi\)
0.986433 + 0.164167i \(0.0524936\pi\)
\(998\) 2.92540 + 2.92540i 0.0926020 + 0.0926020i
\(999\) 6.98067 0.220859
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 867.2.e.h.829.1 8
17.2 even 8 867.2.a.m.1.4 4
17.3 odd 16 867.2.h.f.712.1 8
17.4 even 4 inner 867.2.e.h.616.4 8
17.5 odd 16 867.2.h.g.733.2 8
17.6 odd 16 51.2.h.a.43.2 yes 8
17.7 odd 16 867.2.h.f.688.1 8
17.8 even 8 867.2.d.e.577.2 8
17.9 even 8 867.2.d.e.577.1 8
17.10 odd 16 867.2.h.b.688.1 8
17.11 odd 16 867.2.h.g.757.2 8
17.12 odd 16 51.2.h.a.19.2 8
17.13 even 4 867.2.e.i.616.4 8
17.14 odd 16 867.2.h.b.712.1 8
17.15 even 8 867.2.a.n.1.4 4
17.16 even 2 867.2.e.i.829.1 8
51.2 odd 8 2601.2.a.bc.1.1 4
51.23 even 16 153.2.l.e.145.1 8
51.29 even 16 153.2.l.e.19.1 8
51.32 odd 8 2601.2.a.bd.1.1 4
68.23 even 16 816.2.bq.a.145.2 8
68.63 even 16 816.2.bq.a.529.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.2.h.a.19.2 8 17.12 odd 16
51.2.h.a.43.2 yes 8 17.6 odd 16
153.2.l.e.19.1 8 51.29 even 16
153.2.l.e.145.1 8 51.23 even 16
816.2.bq.a.145.2 8 68.23 even 16
816.2.bq.a.529.2 8 68.63 even 16
867.2.a.m.1.4 4 17.2 even 8
867.2.a.n.1.4 4 17.15 even 8
867.2.d.e.577.1 8 17.9 even 8
867.2.d.e.577.2 8 17.8 even 8
867.2.e.h.616.4 8 17.4 even 4 inner
867.2.e.h.829.1 8 1.1 even 1 trivial
867.2.e.i.616.4 8 17.13 even 4
867.2.e.i.829.1 8 17.16 even 2
867.2.h.b.688.1 8 17.10 odd 16
867.2.h.b.712.1 8 17.14 odd 16
867.2.h.f.688.1 8 17.7 odd 16
867.2.h.f.712.1 8 17.3 odd 16
867.2.h.g.733.2 8 17.5 odd 16
867.2.h.g.757.2 8 17.11 odd 16
2601.2.a.bc.1.1 4 51.2 odd 8
2601.2.a.bd.1.1 4 51.32 odd 8